MATHEMATICAL PROGRAMMING

Depth Exam: Answer any 6 of the following 8 questions Breadth Exam: Answer any 3 of the following 8 questions

1. A textile firm is capable of producing 3 products in amounts x_1 , x_2 , x_3 . Its production plan for the next month must satisfy the constraints:

$$x_1 + 2x_2 + 2x_3 \le 12$$
$$2x_1 + 4x_2 + x_3 \le f$$
$$x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0$$

The first constraint is determined by equipment availability and is fixed. The second constraint is determined by the availability of cotton, with f being the amount of cotton available. The net profits of the products are 2, 3 and 3 per unit respectively, excluding the cost of cotton.

- (a) Find the optimal dual variable (shadow price) λ₂ of the cotton input as a function of f. Plot λ₂(f) and the net profit z(f), excluding the cost of cotton.
- (b) The firm may purchase cotton on the open market at a price of $\frac{1}{6}$. However, it may acquire a limited amount s at a price of $\frac{1}{12}$ from a major supplier that it purchases from frequently. Determine the net profit of the firm $\Pi(s)$ as a function of s.
- 2. Consider the following linear system:

$$Ax = b$$
$$x \ge 0$$

where A is an $m \times n$ real matrix with rank (A) = m and $0 \neq b \in \mathbb{R}^m$. Let $\Omega = \{x \in \mathbb{R}^n : Ax = b, x \ge 0\} \neq \emptyset$ and for each x let $X := \text{diag}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$. Show that the two following statements are **equivalent**:

- (a) rank $(AX) = m \quad \forall x \in \Omega$
- (b) b cannot be expressed as nonnegative linear combination of m-1 or fewer columns of A.
- Hint: The matrix AX is comprised of positively-scaled columns of A and columns of zeros.

3. Let P(x) denote the pure network flow problem

$$\begin{array}{ll} \min_{x} & cx\\ \text{s.t.} & Ax = b\\ & 0 \le x \le u, \end{array}$$

where A is a node-arc incidence matrix. Suppose that \bar{x} is a BFS (basic feasible solution) of P(x) and that x_1 and x_2 correspond to two pivot-eligible arcs (relative to \bar{x}).

- (a) State conditions under which x_1 and x_2 can be "simultaneously" (i.e. in parallel) brought into the basis, producing the same new primal BFS that would result if they were brought in sequentially (in either order).
- (b) State corresponding conditions for the <u>dual</u> variable updates associated with x_1 and x_2 .
- (c) Give a <u>numerical</u> example in which the conditions of part (a) are satisfied and the conditions of part (b) are violated.
- 4. Let k(s) be a "separation counter" defined by

$$k(s) = \begin{cases} 0 & \text{if } s < \delta \\ 1 & \text{if } s \ge \delta \end{cases}$$

where δ is a given <u>positive</u> constant. Formulate as a <u>mixed integer</u> linear program the following pattern separation problem:

$$\max_{\substack{c,\alpha,s,t\\c,\alpha,s,t}} \sum_{i=1}^{p} k(s_i) + \sum_{i=1}^{p} k(t_i)$$

s.t. $cx_i - \alpha \ge s_i$ $(i = 1, \dots, p)$
 $cy_i - \alpha \le -t_i$ $(i = 1, \dots, p)$
 $\|c\|_{\infty} \le 1$

where x_1, \ldots, x_p and y_1, \ldots, y_p are given sets of points in \mathbb{R}^n ; and c (a row vector), α , $s = (s_1, \ldots, s_p)$, and $t = (t_1, \ldots, t_p)$ are unknowns. Be sure to define any constants (which may depend on the x_i and y_i) used in the formulation. (Note: Without loss of generality assume: $s_i \leq \delta$, $t_i \leq \delta$, $i = 1, \ldots, p$.)

- 5. Consider the problem $\min_{x\geq 0} f(x)$ where $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable and convex on \mathbb{R}^n . Assume that a solution \bar{x} exists. For $z \in \mathbb{R}^n$ define $((z)_+)_i = \max\{z_i, 0\}, i = 1, \ldots, n$.
 - (a) Suppose that for some $\hat{x} \ge 0$, $\nabla f(\hat{x}) > 0$. Find an upper bound on $\|\bar{x}\|_1$ in terms of \hat{x} and $\nabla f(\hat{x})$, where $\|\cdot\|_1$ denotes the 1-norm.
 - (b) Suppose, in addition, that f has a Lipschitz-continuous gradient, from which you can assume that for some number L > 0:

$$L \|y - x\|^{2} \ge \left(\nabla f(y) - \nabla f(x)\right)(y - x) \ge \frac{1}{L} \|\nabla f(y) - \nabla f(x)\|^{2}$$

where $\|\cdot\|$ denotes the 2-norm. Obtain for any $x \ge 0$ in \mathbb{R}^n , an upper bound on $\|\nabla f(x) - \nabla f(\bar{x})\|$ in terms of L, \hat{x} and the quantities, $x\nabla f(x)$, $(-\nabla f(x))_+$. (The last 2 quantities measure the violations by $x \ge 0$ of the Karush-Kuhn-Tucker conditions for the problem).

6. Consider the proximal point algorithm defined by

$$x^{k+1} = \arg\min_{x \in X} \left(f(x) + \frac{\gamma}{2} \|x - x^k\|^2 \right)$$

where $\|\cdot\|$ denotes the 2-norm, $\gamma > 0$, f is differentiable and convex on \mathbb{R}^n , X is a convex subset of \mathbb{R}^n .

Define

$$\bar{X} := \arg\min_{x \in X} f(x) := \text{ set of minimizers of } f \text{ on } X$$

Suppose that for some $k, x^k \in \overline{X}$. Prove that $x^k = P(x^{k-1}|\overline{X})$ where $P(x|\overline{X}) = \arg\min_{y\in\overline{X}} ||x-y||$.

Hint: You may want to use the fact that:

$$z = P(x|\bar{X}) \Leftrightarrow \langle x - z, \ y - z \rangle \le 0 \quad \forall y \in \bar{X}$$

- 7. Let the function $f : \mathbb{R}^n \to \mathbb{R}$ have a Lipschitz continuous gradient on \mathbb{R}^n with constant L. You are given a point $x \in \mathbb{R}^n$ and a direction vector $p \in \mathbb{R}^n$ such that $\nabla f(x)p < 0$ and $\|p\| = 1$, where $\|\cdot\|$ denotes the 2-norm.
 - (a) For what interval of λ can you guarantee that $f(x + \lambda p) < f(x)$? Establish your claim.
 - (b) What specific value of λ will give you the biggest guaranteed decrease in f? Establish your claim.
 - (c) Suppose $p = -\nabla f(x)/||\nabla f(x)||$. What can you say about each accumulation point \bar{x} of the sequence $\{x^i\}$ where $x^{i+1} = x^i + \lambda^i p^i$, and λ^i is chosen according to part (b)? Establish your claim assuming that $\nabla f(x^i) \neq 0$ for all i.

Hint: Assume $f(x + \lambda p) - f(x) - \lambda \nabla f(x)p \leq \frac{L\lambda^2}{2} \|p\|^2$

8. Suppose f is a closed proper convex function on \mathbb{R}^n , and ρ is a fixed positive number. Let

$$f_{\rho}(x) = \inf_{y} g(x, y),$$

where

$$g(x,y) = f(y) + (2\rho)^{-1} ||y - x||^2.$$

- (a) Show that f_{ρ} is a convex function.
- (b) Show that the infimum in y of g(x, y) is attained at a unique point of \mathbb{R}^n .
- Suggestion: As part of your answer for (b), consider establishing the following intermediate facts: (i) $g(x, \cdot)$ is lower semicontinuous; (ii) $g(x, \cdot)$ has bounded level sets; (iii) $g(x, \cdot)$ is strictly convex.