
Optimization Qualifer Exam University of Wisconsin-Madison

Fall 2014 Qualifier Exam:

OPTIMIZATION

September 15, 2014

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer 4 of 5 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Let ai ∈ Rn and bi ∈ R, i = 1, . . . ,m, d > 0, and c ∈ Rn.

(a) Formulate the problem

max
{
c>x :

m∑
i=1

max{a>i x− bi, 0} ≤ d, x ≥ 0
}

(1)

as a compact linear program. (Compact here means that the number of decision

variables and constraints is polynomial in n and m.)

(b) Now write down an (exponential) number of linear inequalities just involving x that

would be equivalent to the original nonlinear inequality in (1), and show this equiva-

lence. (Hints: (i) To build intuition on what the form of this formulation will be, you

may find it helpful to consider a special case with n = 1, and also start with m = 1

and m = 2. (ii) Alternatively, it may help to think about how you would check if a

given solution x̂ is feasible to (1).)

(c) Explain how you would use a cutting plane approach for solving the formulation

defined using the inequalities in part (b).

2. Consider the following data describing hydrological characteristics of a small hydroelectric

power station.

m denotes month

fm Water inflow in month m (million cubic meters)

p̄m Market price of electricity in month m

Lmax Maximum water level the dam can store (million cubic meters)

Lmin Minimum water level the dam can store (million cubic meters)

Rmax Maximum water which can be released per month

κ Energy per amount of water (megawatt hours per million cubic meters)

In any given month, water may be spilled to respect the maximum reservior level. When

water is spilled, it leaves the reservoir without producing energy.
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(a) Formulate a steady-state monthly linear programming (LP) model which maximizes

annual profit, taking market prices as given.

Use the following notation:

Lm Reservior level at the start of month m

Rm Water released during month m to generate electricity

Sm Water spilled during month m

(b) Write out key elements of the GAMS code for this model.

(c) Suppose that monthly demand as a function of price (pm) is given by:

Dm = αm − βmpm

where pm is the market price, and αm and βm are both positive constants. Formu-

late a quadratic programming (QP) model to determine the production profile which

maximizes profit.

3. Let n ∈ Z with n ≥ 2, and for all 1 ≤ i < j ≤ n consider the following sets of constraints:

xi + xj − yij ≤ 1, (2)

−xi + yij ≤ 0, (3)

−xj + yij ≤ 0, (4)

−yij ≤ 0, (5)

xi integer, yij integer, (6)

We denote by QPn
LP the polyhedron defined by (2), . . . , (5):

QPn
LP = {(x, y) ∈ Rn(n+1)/2 : (x, y) satisfies (2), . . . , (5)},

and by QPn the integer hull of QPn
LP :

QPn = conv{(x, y) ∈ Rn(n+1)/2 : (x, y) satisfies (2), . . . , (6)}.

(a) Show that if (x, y) ∈ QPn
LP , then 0 ≤ xi ≤ 1 and yij ≤ 1 for all 1 ≤ i < j ≤ n.

(b) What is the dimension of QPn?

(c) Prove or disprove that QP 2 = QP 2
LP .

(d) Show that QP 3 6= QP 3
LP by giving a fractional vertex of QP 3

LP . Give a Gomory-

Chvátal Rounding inequality that cuts off such fractional vertex.
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4. Let C = {(x1, x2) : −x1 + 2x2 ≤ 0,−x1 − 2x2 ≤ 0}, i.e. 2 |x2| ≤ x1.

(a) Define the normal cone to C at x (in the general case for a convex set C) and determine

NC(x) for every x ∈ R2 in this specific example.

(b) Consider the problem

min
x∈C

1

2
(x21 − x22)− px1

Show that for p = 0 the origin is a strict local minimizer of this problem. (If you use

the second order sufficient conditions, be careful to define these precisely and define

the sets that are used in its statement).

(c) Now let p assume small positive values. How many stationary points (points satisfying

the first order necessary conditions) are there near the origin? What are they? What

kinds of points are they (local minimizers, saddle points, local maximizers)?

(d) Suppose we change C to {(x1, x2) : 2x22 ≤ x1}. How does the answer to (b) change?

5. (a) Consider the following constrained optimization problem:

min
x∈Rn

f(x) subject to ci(x) = 0, i = 1, 2, . . . ,m, hj(x) ≥ 0, j = 1, 2, . . . , r,

where the functions f , ci, i = 1, 2, . . . ,m, and hj , j = 1, 2, . . . , r are all continuously

differentiable. Write down KKT necessary conditions for optimality of a point x∗.

(b) Write down the linear independence constraint qualification (LICQ) and Mangasarian-

Fromovitz constraint qualification (MFCQ) for the problem in (a) at the point x∗.

(c) Consider the Lagrange multipliers which, along with the point x∗, satisfies the KKT

conditions for the problem in part (a). Denote these multipliers by λ∗i , i = 1, 2, . . . ,m

for the equality constraints and µ∗j , j = 1, 2, . . . , r for the inequality constraints. Show

that when LICQ holds, the set of multipliers satisfying the KKT conditions contains

a single point.

(d) Consider the problem with inequality constraints only (that is, m = 0), and let µ∗j , j =

1, 2, . . . , r be optimal Lagrange multipliers for the inequality constraints, as in part (c).

Show that when MFCQ holds, this set of multipliers is bounded. (Hint: Assume for

contradiction that {µk}k=1,2,... = {(µk1, µk2, . . . , µkr )T }k=1,2,... is a sequence such that

each µk is a vector of optimal Lagrange multipliers for the inequality-constrained

problem such that limk ‖µk‖ = ∞. Consider limit points µ̄ of the sequence of unit

vectors {µk/‖µk‖}.)
(e) Consider the following nonlinear program with complementarity constraint:

min
x∈Rn

f(x) subject to g1(x) ≥ 0, g2(x) ≥ 0, g1(x)g2(x) = 0,

where f , g1, and g2 are all continuously differentiable functions that map Rn to R.

Show that the LICQ and MFCQ cannot be satisfied at any feasible point of this

problem.
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