

University of Wisconsin-Madison
Computer Sciences Department

Database Qualifying Exam

Fall 2013

GENERAL INSTRUCTIONS

Answer each question in a separate book.

Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the

questions answered. Return all answer books in the folder provided. Additional answer

books are available if needed.

Do not write your name on any answer book.

SPECIFIC INSTRUCTIONS

Answer all four (4) questions. Before beginning to answer a question make sure that

you read it carefully. If you are confused about what the question means, state any

assumptions that you have made in formulating your answer. Good luck!

The grade you will receive for each question will depend on both the correctness of your

answer and the quality of the writing of your answer.

Policy on misprints and ambiguities:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,

the exam sometimes contains misprints and ambiguities. If you are convinced a problem

has been stated incorrectly, mention this to the proctor. If necessary, the proctor can

contact a representative of the area to resolve problems during the first hour of the exam.

In any case, you should indicate your interpretation of the problem in your written

answer. Your interpretation should be such that the problem is nontrivial.

1. Join Algorithm

Consider the equijoin of two relations R and S, as in the SQL query:

Select *

From R, S

Where R.A = S.B

Furthermore, suppose that R is sorted on the A attribute, and S is sorted on the B

attribute. You may find that that some of the following is under-specified; please

explicitly list any assumptions you think you need to make in your answer.

a. Give the merge-join algorithm for such a problem (the equijoin of two relations

sorted on their join attribute.)

b. While the merge algorithm in part a. is generally fast, it is somehow not satisfying

when there are large “gaps” in the matching tuples. So, for example, suppose the

ith tuple in R is r_i, and the jth tuple in S is s_j. Suppose that ri does not match

s_(j+1), and furthermore r_(i+1) does not match any tuple in S until s_k, where k

is substantially larger than j+1. Then the merge join from part a will compare

r_(i+1) with many many S tuples with no output. It would be nice if the algorithm

could skip to the next match. Fortunately, there is a data structure that lets you do

this: a B+ tree index. So suppose there are indexes on R.A and S.B, modify your

algorithm from part a. to “skip” to the next match. Note that the opportunities for

skipping can be symmetric and your algorithm should handle this.

c. How would you expect the performance of your new algorithm to compare with

the performance of hybrid hash join?

d. Now suppose that S has no index on it. You would now have the opportunity to

first build an index on S and then do your new skipping merge join. How would

you expect this index-building algorithm to compare with hybrid hash join?

2. Decision Support

Consider a table Sales(A,B,C,P), where A, B, and C are dimensions and P is a measure.

(a) What is the full “cube” of the sales table with “sum” as the aggregating operator? That

is, what are the aggregates that will be computed for this cube?

(b) In general would it be most efficient to compute the cube “top down” (starting with

the most highly aggregated aggregate) or “bottom-up” (starting with the least highly

aggregated aggregate)? Why? Note: “Group By A” is more highly aggregated than

“Group By AB.”

(c) Suppose that there are n_A distinct values in column A, n_B distinct values in column

B, and n_C distinct values in column C. What is the largest possible number of rows in

the cube of Sales? (Equivalently, what is the largest number of non-null entries in the

cube?) Does this require any bound on n, the number of tuples in the table? What other

conditions can you impose on the values in the tuples in the table so that this bound is

reached?

3. Concurrency Control

(a) In optimistic concurrency control as proposed by Kung and Robinson, one of the

conditions that guarantees serializability can be stated as: if TN(Ti) < TN(Tj),

then Write-Phase(Ti) ends before Write-Phase(Tj) begins and Write-Set(Ti) and

Read-Set(Tj) do not overlap. Suppose that during the execution of a set of

transactions T1, T2, …, Tn, each pair of transactions Ti and Tj in this set satisfy

the condition. Explain why this schedule is serializable (it is not sufficient to just

cite Kung and Robinson).

(b) What is the relationship between the set of schedules allowed by Kung and

Robinson and the set of schedules allowed at degree 3 consistency as defined by

Gray?

(c) Is non-strict 2PL identical to any of the levels of consistency defined by Gray et

al.? Explain your answer.

4. Schema Integration

Let S be a relational database with two tables. The first table is HOUSES, with attributes

location, price, and agent-id. This table has two tuples:

 (“Atlanta, GA”; 360,000; 32)

 (“Raleigh, NC”; 430,000; 15).

The second table is AGENTS, with attributes id, name, city, state, and fee-rate. This

table has two tuples:

 (32; “Mike Brown”; Athens; GA; 0.03)

 (15; “Jean Laup”; Raleigh; NC; 0.04)

Let T be another relational database with a single table LISTINGS. This table has

attributes area, list-price, agent-address, and agent-name. It has two tuples:

 (“Denver, CO”; 550,000; “Boulder, CO”; “Laura Smith”)

 (“Atlanta, GA”; 370,800; “Athens, GA”; “Mike Brown”)

a) Suppose we want to copy all data from database S to database T. Write a single SQL

query that when executed over database S would transform all data of S into the format of

T. That is, the query would create tuples for table LISTINGS of T from the data in S.

b) In practice, writing such SQL queries to copy data from one database to another is

very time consuming. To save time, a user can employ a schema matching tool (such as

those described in the Rahm/Bernstein paper) to find semantic matches between S and

T. Examples of such matches are: location = area and name = agent-name. The user

then employs a tool such as Clio (described in the Rahm/Bernstein paper) to elaborate

these matches into SQL queries (that can then be executed to copy data).

Using these tools, can the above process be completely automated? If yes, why? If not,

why not? In that latter case, discuss at which points in the process the user must be

involved, what the user must do, and why.

c) Suppose the user has copied data from database S to database T, and has also copied

data from database T to another database U. While doing this, the user has established

that attribute x of S matches y of T, and attribute y of T matches z of U. Can the user

conclude that attribute x of S matches z of U? If yes, why? If not, why not?

