
Programming Languages and Compilers
Qualifying Examination

Fall 2012

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover ofeachbook the area of the exam, your code number, and the question
answered in that book. Ononeof your books list the numbers ofall the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if
needed.

POLICY ON MISPRINTS AND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you are convinced that a problem has been stated
incorrectly, mention this to the proctor. If necessary, the proctor will contact a representative of the
area to resolve problems during thefirst hour of the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Your interpretation should be such that the
problem is nontrivial.

1



Question 1.
This question concerns interprocedural dataflow-analysis algorithms that use the “call-strings” ap-
proach to obtain a degree of context sensitivity. In such algorithms, each dataflow fact is tagged
with a call-stack suffix (also known as a “call-string”) to form (call-string, dataflow fact) pairs; the
call-string is used at the exit node of each procedure to determine which call-site to propagate a
(call-string, dataflow fact) pair to. For instance, if Main calls A at main-to-a, and A calls C twice, at
a-to-c1 and a-to-c2, a tagged dataflow fact of the form ([main-to-a, a-to-c1, C], d) at the exit node
of C would be propagated back to call-site a-to-c1 in A (where it would have the form ([main-to-a,
A], d)), and not to call-site a-to-c2 in A.

Part (a)
In many program analyses, all instances of a given local scalar variablex of a procedureP are rep-
resented by a single abstract variablex#. Such a strategy can cause a loss of precision whenP is
recursive, either directly or through a chain of calls: whenP is recursive, in generalx# represents
multiple instances ofx that occur in different activation records. However, a given assignment
“x := exp ” only modifiesoneoccurrence ofx . To be sound, program-analysis algorithms per-
form weak updateson abstract variables likex# that represent more than one instance of a local
variable. For example, in a forward analysis,exp is abstractly evaluated with respect to the cur-
rent abstract stateS#

in to obtain some abstract valuev#, and the post-state value ofx# is set to the
pre-state value ofx# joined withv#:

S#
out := S#

in [x# ← S#
in (x#) t v#].

In other words, the abstract values obtained forx areaccumulated.
In contrast, astrong updatecorresponds to a “kill” of a scalar variable: it represents a definite

change in value toall concrete variables that the abstract variable represents. Strong updates cannot
generally be performed on summary variables likex# because a (concrete) update only affectsone
of the summarized concrete variables.

Describe howunbounded-lengthcall-strings can be used to determine situations whenx# is
definitelynot a summary variable, and how this information can be used to improve precision by
having the analysis perform a strong update instead of a weak update in such situations.

Illustrate your answer with an example, and indicate the calling contexts in your example in
whichx# is a summary variable and those in which it is not.

Part (b)
To prevent call-strings from growing to unbounded lengths, a finite boundk on their length is
generally imposed: a call-string that would grow longer thank (if represented fully precisely) is
truncated to lengthk; it is said to havesaturated. Each call-string has information saying whether
or not it is saturated. For instance, if the call-string lengthk is 2, then [main-to-a, a-to-c1, C] would
be represented by the saturated call-string *[a-to-c1, C], where * indicates that the call-string is a
saturated call-string.

Describe how the call-string component of a tagged dataflow fact should be propagated at

(i) a call-site

2



(ii) the exit of a procedure

Your answer should explain what manipulations are performed both for saturated and unsaturated
call-strings.

Part (c)
A call multi-graph is a graph in which the nodes represent procedures and each edge is of the
form (P→c Q), which represents the fact that P calls Q at call-site c. Given a call-string CS, call
multi-graph CG, and procedure P, give an algorithm to determine whether, in a calling context
described by CS, there could be 0, 1, or more-than-1 pending invocations of P. (If P is the cur-
rently active procedure, P is considered to be pending.) Stated another way, the algorithm should
indicate whether an activation record for P can appear 0, 1, or more-than-1 times in some stack in
the concretizationγ(CS) of call-string CS. (The answer reported by the algorithm should be the
greatest value for some stack in the concretization of CS. For example, if different stacks in the
concretization of CS could have 0, 1, and more-than-1 pending calls on P, the answer reported by
the algorithm should be “more-than-1”.)

Part (d)
Revisit the issue considered in Part (a) in light of your answer to Part (c). That is, describe how
when working with bounded-length (and hence possibly saturated) call-strings, the information
obtained via your answer to Part (c) can be used to determine situations when a local scalar variable
like x is definitely not a summary variable.

Consider again the example you used in Part (a) and explain what would be known—via the
strategy from Part (c)—about whetherx# is or is not a summary variable.

3



Question 2.
This question concerns fixed-point combinators and methods for finding fixed points inλ-calculus.
Parts (a) and (b) concern the following theorem for characterizing fixed-point combinators them-
selves as fixed points:

Let G = λy.λf.f(yf). ThenM is a fixed point combinator if and only ifM = GM . (1)

(Note: Recall that the followingλ-calculus transformation is called theη-reduction rule:

(λx.Mx)→η M,

wherex does not occur as one of the free variables ofM . You are allowed to useη-reduction in
this question.)

Part (a)
Use (1) to show thatY =df λf.((λx.f(xx))(λx.f(xx))) is a fixed-point combinator.

Part (b)
Prove (1). (Note that (1) involves an “if and only if”; consequently, your proof should have two
parts.)

Part (c)
The fixed-point combinator discussed in Part (a) allows us to find aλ-termg that satisfies a single
recursive equation overλ-terms of the formg = . . . g . . . g . . .

Suppose that we are presented with a collection ofk mutually recursive equations:

g1 = . . . g1 . . . gk . . .
...

gk = . . . g1 . . . gk . . .

Explain how to solve forg1, . . . , gk.

4



Question 3.
In Java, recall that anytry statement may optionally include afinally clause. Code in the
finally clause always executes after the maintry code, regardless of whether any exception
was thrown and caught, thrown and not caught, or not thrown at all.

The Java virtual machine includes an unusual pair of instructions,jsr andret . For purposes
of this question, we give these instructions the following, simplified behaviors:

• jsr a pushes the address of the next instruction on a special execution-address stack which
is distinct from the regular stack used to contain regular procedure activation records. It then
continues execution with the instruction at addressa.

• ret pops the most recent value from the special execution-address stack and continues
executing with the instruction at that address.

Note that becausejsr andret manipulate a distinct stack, these instructions do not change
the local variables visible to executing code.

In the question parts that follow, if you do not remember the details of the Java VM’s unusual
operand-stack architecture, feel free to assume a more standard execution environment such as that
found on any modern, real processor. Answers using either machine model are equally acceptable.
Part (a): Code Generation forFinally Clauses
Describe howjsr andret could be used to good effect when generating code for thefinally
clauses oftry blocks.
Part (b): Finally Clauses Without Lightweight Subroutines
Supposejsr andret were not available. Describe an alternative strategy for compilingfinally
blocks which avoids using these but which could cause the compiled machine code (or bytecode)
to be exponentially larger than the source code in some pathological cases.
Part (c): Pathological Expansion
Give an example of source code which exhibits the pathological expansion mentioned above.
Part (d): Trade-Offs
Even if jsr andret are available, perhaps we do not want to use them. Describe a scenario in
which we would prefer to use the second code-generation strategy (from part b) even if the first
(from part a) is available.

5



Question 4.

Part (a): Languages like C that do not guarantee array-bounds checking and that allow pointer
arithmetic can lead to programs that are vulnerable to certain kinds of malicious attacks. Consider
the program shown in Figure 1 (see next page). How could a malicious user cause a buffer over-
run?

Part (b): Explain how a malicious user can exploit buffer overrun vulnerability in a program.

Part (c): We will sketch a static analysis technique to detect buffer overruns. Each bufferbuf (vari-
able of typechar * ) is associated with two range-valued variablesRlen(buf ) andRalloc(buf )
(one for the length and other for the allocated space). A program variablei (of typeint ) is associ-
ated with a single range-valued variableR(i) (representing the possible values ofi). Intuitively, if
Rlen(buf ) = (n, m), then the minimum and maximum length of the bufferbufaren andm respec-
tively. Similarly, Rbuf (buf ) = (n, m) indicates that the minimum and maximum allocated space
for the bufferbuf aren andm respectively. Each program statement generates a subset constraint
on range-valued variables. For example, consider the following statement:

strcpy(a,b)

Sinceb is copied intoa, the following constraint is generated:

Rlen(b) ⊆ Rlen(a)

Show the range constraints generated by the program given in Figure 1.
Note: You will have to use sets of constraints that model the library functionsfgets andstrcpy .
I am assuming you know the semantics ofstrcpy . Description ofstrlen andfgets is given
below:

strlen() returns the number of characters upto, but not including
till the nearest ’\0’

char * fgets(char * s, int size, FILE * stream);
fgets() reads in at most size-1 characters
from stream and stores them into the buffer pointed to by s.
Reading stops after an EOF or a newline. If a newline is read,
it is stored into the buffer. A ’\0’ is stored
after the last character in the buffer.

Part (d): Solvinga systemS of range constraints means finding the “tightest” possible ranges that
respect the constraints inS. For example, consider the following systemS1 of range constraints:

(4, 4) ⊆ R(a)
(8, 8) ⊆ R(b)
R(b) ⊆ R(a)

The following assignment of ranges is the “tightest” that respects constraints inS1:

R(a) = (4, 8)

R(b) = (8, 8)

6



(1) main(int argc, char * argv[]){
(2) char header[2048], buf[1024],

* cc1, * cc2, * ptr;
(3) int counter;
(4) FILE * fp;
(5) ...
(6) ptr = fgets(header, 2048, fp);
(7) cc1 = copy_buffer(header);
(8) ptr = fgets (buf, 1024, fp);
(9) cc2 = copy_buffer(buf);

(10) }
(11)
(12) char * copy_buffer(char * buffer){
(13) char * copy;
(14) copy = (char * ) malloc(strlen(buffer));
(15) strcpy(copy, buffer);
(16) return copy;
(17) }

Figure 1: Example Program

Notice that the following assignment of ranges also respects the constraints inS1, but does not
assign the “tightest” possible ranges.

R(a) = (1, 9)

R(b) = (5, 8)

Suppose there is procedureP for solving a system of range constraints, i.e., procedureP returns the
“tightest” possible ranges that respect the constraints in a systemS. How will you use procedure
P to discover buffer overruns?

Part (e): Consider the range constraints from part(c). Give a graph algorithm to solve the range
constrains generated in part(c). You need only explain your algorithm with respect to the specific
set of constraints generated in part (c).

7



Question 5.

Part (a):
What is SSA form and what properties does it have? What (source-level) language constructs
complicate the use of SSA form, and how are those constructs usually handled? Give examples to
illustrate your answers.
Part (b):
Assume that a program has been translated to 3-address form and that a control-flow graph (in
which nodes are basic blocks) has been built.

How can this representation be transformed to SSA form? (You don’t have to give the best
algorithm, but if you know that your algorithm is not the best, explain what it might do that is
sub-optimal.)

Give a small example to illustrate your approach.
Part (c):
Why would anyone want to use SSA form?

8



assert (x > 0)
y = f(x); // assertion checked before assign

assert (x == y && g(y))
for (k=0; k<y; k++) { ... } // assertion checked once before loop

assert (! f(x)) {
a = ...;
b = ...;
c = ...;

} // assertion checked before EACH assignment

while (q)
assert (x != 0)
A[j++] = f(x); // assertion checked before assign each time around loop

Figure 2: Four examples of uses of assertion blocks.

Question 6.
Consider adding assertion blocks to the C language. An assertion block is a Boolean expression
P and a statement S. S can be a single statement (e.g., an assignment, an if-then-else, a loop) or
a block (a sequence of statements inside curly braces). If S is a single statement, expression P is
tested before S. If S is a block, P is tested before each statement in the block. If P evaluates to
false, execution terminates with an error message.

Four examples of uses of assertion blocks are shown in Figure 2.
Part(a):
Describe how a compiler could implement assertions in a straightforward manner.
Part(b):
A straightforward implementation can sometimes be improved by avoiding evaluation of P (or
parts of P). What could a compiler do to implement this kind of improvement?
Part(c):
A compiler can sometimes make use of assertions to do a better job of optimization. Give at least
3 (different) examples to illustrate this idea.

9


