
Optimization Qualifer Exam University of Wisconsin-Madison

Fall 2012 Qualifier Exam:

OPTIMIZATION

September 24, 2012

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer 4 out of 6 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Consider the following convex quadratic program with a single equality constraint, non-

negativity constraints, and a diagonal Hessian:

min
x∈Rn

1

2
xTQx+ cTx subject to aTx = 1, x ≥ 0, (1)

where a ∈ Rn is a vector with all positive entries, and Q is a diagonal matrix with all

positive diagonal entries.

(a) Suppose we drop the bounds x ≥ 0 from the formulation (1). Write down the KKT

conditions for the resulting simplified problem, and use them to deduce the solution

x in closed form.

(b) Returning to the full problem (1), write down the KKT conditions, denoting the

Lagrange multiplier for the constraint aTx = 1 by λ.

(c) Fixing the value of λ in these KKT conditions, find the value of xi, i = 1, 2, . . . , n

that satisfies these conditions as an explicit function of λ. (Use the notation xi(λ),

i = 1, 2, . . . , n to denote these values.)

(d) Show that the function t : R→ R defined by

t(λ) = aTx(λ)− 1 =
n∑

i=1

aixi(λ)− 1

is a monotonic piecewise linear function of λ, and identify the breakpoints of this

function (the points where the slope changes discontinuously).

2. The Christmas board game “22” involves a board with 13 holes and 13 pegs which fit in

the holes. The pegs are numbered from 1 to 13. Holes are situated at the 12 intersection

points on a six-pointed star and in the center of the star. To play the game, a peg is

inserted in each hole. A winning configuration is one in which the sum of values for each

of the six outer triangles sums to 22. Here, for example, is a winning assignment:

13

5 4

10

7

1 12

6

3 9 2 8

11

Fall 2012 Page 2



Optimization Qualifer Exam University of Wisconsin-Madison

In your solution, use the following indexing scheme to reference the game board holes:

h1

h3 h4

h6

h2

h0 h7

h5

h8 h9 h10 h11

h12

(a) Determine which variables are needed to provide a solution to the game?

(b) Define a mapping H(t) that provides the subset of “holes” used in triangle t and use

this to write down the “22” constraint. Note that t will range from 1 to 6, indicating

each of the “outer” triangles.

(c) Write the full mathematical (or GAMS) model which finds a solution to the game.

(d) Suppose this model is solved for one solution. Determine an additional constraint

that would eliminate just this solution, and enable the model to be rerun to find

another solution.

(e) What techniques could you use to remove “equivalent solutions” from within your

model search? Provide two constraints that remove such “symmetries” from your

search.

(f) Write pseudo-code (GAMS or similar for example) that shows the sequence of model

solves that will find all solutions to the game.

3. In this problem, we will consider the feasible region of a chance-constrained problem:

X = {x ∈ Rn | P[gi(x, ξ) ≥ 0 ∀i = 1, . . . ,m] ≥ 1− ε},

with each constraint function

gi : Rn × Rd → R̄,

and ξ being a random vector on a probability space (Ω,Σ,P).

(a) The set X is in general not convex. Give a simple example of constraints gi(x, ξ) and

probability space (Ω,Σ,P), where X is not a convex set. Prove that your example

set X is not convex.
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(b) Now suppose the feasible region takes the form

X = {x ∈ Rn | P(ξTx ≥ b) ≥ 1− ε},

where ξ ∈ Rn is a normally distributed random vector with mean µ and covariance

matrix Q. Show that X is convex if ε < 0.5.

(c) In this concrete example, we will consider a production/distribution problem with a

set J of customers whose (random) demand dj(ξ) must be met from a set of facilities

I. Let xij be the amount of product shipped from i ∈ I to j ∈ J . Suppose that

the random demand for customer j comes from a discrete distribution; namely, that

the demand of customer j in scenario s ∈ S is djs with probability ps, for a finite

set of scenarios S. We must choose the distribution amounts xij before the demands

djs are known. We would like to impose the constraint that the probability that all

customers get their demand met is at least 1 − ε. Demonstrate how to model this

using binary variables.

4. Let X be the set of (x, y) ∈ {0, 1}n × {0, 1}n(n−1)/2 that satisfy

yij ≤ xi, ∀1 ≤ i < j ≤ n (2)

yij ≤ xj , ∀1 ≤ i < j ≤ n (3)

xi + xj − yij ≤ 1, ∀1 ≤ i < j ≤ n. (4)

(a) Use Gomory-Chvátal rounding to show that the inequality

xi + xj + xk ≤ yij + yjk + yik + 1 (5)

is valid for conv(X) for any 1 ≤ i < j < k ≤ n.

(b) Show that the inequality

yij + yik ≤ xi + yjk (6)

is valid for conv(X) for any 1 ≤ i < j < k ≤ n. (You do not have to use Gomory-

Chvátal rounding for this question, but you may if you wish.)

(c) Now, suppose that n = 3. Prove the specific case of inequality (6),

y12 + y13 ≤ x1 + y23, (7)

is facet-defining for conv(X). You may take as given the fact that dim(conv(X)) = 6,

i.e., conv(X) is full-dimensional.

5. (a) Suppose that f : Rn → R is convex and concave. Show that f must be an affine

function.
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(b) Suppose that f : Rn → R is convex and bounded above. Show that f must be a

constant function.

(c) Suppose f : Rn → R is strongly convex and Lipschitz, meaning that there is a constant

L such that |f(x)− f(y)| ≤ L||x− y|| for all x and y. Show no such f exists.

6. Consider the following optimization problem, which is parametrized by the scalar α:

P (α) : min
x∈Rn

f(x) subject to pTx ≤ α, (8)

where f : Rn → R is a smooth, strongly convex function and p is a nonzero vector in

Rn. We denote the optimal objective value for this problem by φ(α), and note that the

problem (8) has a unique minimizer x(α) for each α ∈ R.

(a) Show that φ is a convex, decreasing function of α.

(b) Show that φ is a continuous function of α.

(c) Show that there is a threshold value ᾱ such that φ(α) = φ(ᾱ) for all α ≥ ᾱ while

φ(α) > φ(ᾱ) for all α < ᾱ. (Hint: Consider the unconstrained global minimizer x∗ of

f(x).)

(d) Consider the following related problem, in which λ ≥ 0 is a parameter:

min
z∈Rn

f(z) + λpT z, (9)

where f and p are the same as in (8). Show that the point z(λ) that solves (9) is

identical to the solution x(α) of (8) if we set α = pT z(λ).
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