
	 1	

University of Wisconsin-Madison
Computer Sciences Department

Database Qualifying Exam

Fall 2012

GENERAL INSTRUCTIONS

Answer each question in a separate book.

Indicate on the cover of each book the area of the exam, your code number, and the
question answered in that book. On one of your books list the numbers of all the
questions answered. Return all answer books in the folder provided. Additional answer
books are available if needed.

Do not write your name on any answer book.

SPECIFIC INSTRUCTIONS

You must answer four (4) of five (5) questions.

Before beginning to answer a question make sure that you read it carefully. If you are
confused about what the question means, state any assumptions that you have made in
formulating your answer. Good luck!

The grade you will receive for each question will depend on both the correctness of your
answer and the quality of the writing of your answer.

Policy on misprints and ambiguities:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,
the exam sometimes contains misprints and ambiguities. If you are convinced a problem
has been stated incorrectly, mention this to the proctor. If necessary, the proctor can
contact a representative of the area to resolve problems during the first hour of the exam.
In any case, you should indicate your interpretation of the problem in your written answer.
Your interpretation should be such that the problem is nontrivial.

	 2	

1: HIGH PERFORMANCE CONCURRENCY CONTROL
Consider a high-performance main memory database that runs on a modern multicore
machine. So, the entire database is resident in main memory and there are multiple cores
that access the database using a shared-memory architecture. Design a high-performance
optimistic concurrency protocol for accessing B-Trees in this environment. Also, design a
high-performance pessimistic (i.e. locking-based) scheme for this environment. Then, list
at least one workload for each scheme where that scheme works better on that workload
as compared to the other scheme.

2: MODERN BUFFER MANAGER
Traditional hard disk drives are rapidly being replaced by flash storage where the cost of
random access is nearly the same as that of sequential access. Assume you have a
database management system that is designed purely to work on flash-only storage
systems (i.e. there is no need to optimize any part of the system for rotating disks).
Design a high performance buffer manager for this system.

Now, traditional buffer mangers (for rotating disk systems) generally use an LRU-based
replacement policy and often scan the buffer pool to find victim pages for eviction that
are sequentially laid out on disk. Traditional buffer managers also use prefetching to fetch
a small set of sequential pages (e.g. 8 pages) when servicing a buffer miss on a read
access. Explain how your scheme above compares to a traditional buffer manager design.

3: ENTITY LINKING
Let Persons(first-name, last-name, street-address, city, state, zip-code, phone) be a table
with 10 million tuples. Each tuple describes a person and may contain typos, mistakes,
variations, and missing data. For example, the last name "Richard" may be misspelled as
"Rihard" or shortened into "Rick", or may be missing from the tuple.

Now suppose you want to find all pairs of tuples that match, that is, pairs that refer to the
same real-world person. This problem is known as entity matching or record linkage,
among other names, in the literature.

1. Describe an algorithm that runs on a single machine (e.g., a PC) to find all matching
pairs from Table Persons. Your algorithm should try to maximize the matching accuracy
and minimize the matching time.

2. Describe how you measure the matching accuracy. Give the exact definitions of the
accuracy measures that you use.

3. Describe an algorithm that runs on a cluster of machines to find all matching pairs
from Table Persons, in a distributed and parallel fashion.

	 3	

4: THEORY
In	 this	 question,	 you	 will	 be	 asked	 to	 prove	 some	 facts	 about	 conjunctive	 queries.	 	 If	
you	 cannot	 prove	 a	 statement	 formally,	 don’t	 fret	 too	 much:	 you	 will	 get	 close	 to	 full	
credit	 by	 identifying	 the	 key	 issue	 informally.	 Recall	 the	 containment	 problem:
	
Given	 as	 input	 two	 inputs	 q	 and	 q’	 in	 some	 language	 (relational	 algebra	 or	
conjunctive	 queries).	 We	 denote	 by	 q(I)	 the	 set	 of	 answers	 returned	 by	 q	 when	
applied	 to	 I.	 We	 say	 that	 q	 is	 contained	 in	 q’	 if	 for	 all	 instances	 I	 q(I)	 <=	 q’(I).	 	
	
That	 is	 the	 answers	 of	 q	 are	 always	 a	 subset	 q’	 no	 matter	 what	 input	 database	 they	
are	 applied	 to.	 For	 example,	 consider	 q	 and	 q’	

	
q(x)	 :-‐	 R(x),S(x)	 and	 q’(x)	 :-‐	 R(x)	

	
Here,	 q	 is	 contained	 in	 q’,	 and	 q’	 is	 not	 contained	 in	 q.	
	
Let	 CQ	 denote	 the	 set	 of	 conjunctive	 queries	 without	 constants	 or	 inequalities.	
	

a. Suppose	 someone	 gives	 you	 a	 function	 F	 that	 correctly	 decides	 containment,	
i.e.,	 given	 a	 pair	 (q,q’)	 it	 returns	 true	 if	 q	 is	 contained	 in	 q’	 and	 false	 otherwise.	
How	 would	 you	 use	 the	 function	 F	 to	 decide	 if	 q	 is	 equivalent	 to	 q’?	

	
b. This	 question	 deals	 with	 containment	 with	 constraints.	 Suppose	 you	 have	

three	 queries	 q1,	 q2,	 and	 q3	 such	 that	 q1	 is	 contained	 in	 q2,	 but	 q1	 is	 not	
contained	 in	 q3.	

	
Fix	 a	 relation	 T(x,y)	 and	 let	 IFD	 be	 the	 set	 of	 instances	 I	 such	 that	 T	 satisfies	
the	 functional	 (key)	 dependency	 x	 	 y.	 Which	 of	 the	 statements	 can	 you	
conclude	 (and	 why	 or	 why	 not):	

(i)	 for	 all	 I	 in	 IFD	 q1(I)	 	 <=	 q2(I)?	 	
(ii)	 there	 exist	 an	 I	 in	 IFD	 such	 that	 q2(I)	 is	 not	 a	 subset	 of	 q3(I)?

	
c. For	 q,q’	 in	 CQ,	 recall	 from	 Aho,	 Sagiv,	 and	 Ullman	 paper	 that	 it	 is	 NP-‐

Complete	 to	 decide	 whether	 q	 is	 contained	 in	 q’	 -‐-‐	 even	 if	 q	 and	 q’	 are	
Boolean	 queries	 (with	 no	 variables	 in	 the	 head	 of	 the	 query).	 One	 proof	 of	
this	 statement	 uses	 the	 idea	 of	 a	 canonical	 database,	 where	 we	 construct	 a	
database	 D	 from	 the	 query	 q	 such	 that	 if	 q’	 is	 true	 on	 D,	 then	 q	 is	 contained	 in	
q’.	 This	 suggests	 that	 answering	 a	 query	 on	 a	 database	 is	 NP-‐Complete.	 On	
the	 other	 hand,	 every	 day	 relational	 databases	 across	 the	 globe	 efficiently	
answer	 conjunctive	 queries	 (and	 more!).	 Explain	 this	 seeming	 contradiction.

	 4	

5: PARALLEL RDBMS
Suppose you have been given the task of building a parallel relational DBMS, but instead
of using a traditional storage manager on a shared-nothing cluster upon which to build the
system, you are given a distributed key-value store on a cluster. This key-value store does
what the name implies: you give it pairs (key, value), and it will store them; you can
retrieve or modify or delete the value by presenting the key to the key-value store. This
key-value store is distributed so any (key, value) pair can be read from any node (there is
no explicit notion of the “location” of the pair in the system.) For reliability, this key
value store saves three copies of each (key, value) stored in the system, and makes sure
they are all stored at different nodes in a cluster. For updates it provides “eventual
consistency”, meaning that if no new updates arrive, eventually the three replicas will
converge to the same value.

Your task in this question is to speculate on tradeoffs between a traditional parallel
RDBMS (like GAMMA) and this new “parallel RDBMS on top of a key-value
store.” You can pick an area to focus on – e.g., query evaluation, concurrency control,
etc. If you feel you need to make additional assumptions for your answer, feel free to do
so, but make your assumptions explicit.

Note that this is a very open-ended question, and it is only one of five questions on this
exam. So watch your time, and try to focus on the tradeoffs that best illustrate the
differences in the two approaches to building a parallel relational database management
system.

