
Theory Qualifying Exam

Fall 2011

Directions. You have four hours. There are 4 problems, please do them all. If you
cannot completely solve a problem, we will award partial credit for work that is correct
and relevant to the question.

1.

We say that a language L ⊆ {0, 1}∗ × {0, 1}∗ admits partial evaluation if there exists
a polynomial-time Turing machine M and a function f : {0, 1}∗ → {0, 1}∗ such that
for all x, y ∈ {0, 1}∗, |f(x)| ≤ |x|O(1) and

〈x, y〉 ∈ L ⇔ M accepts 〈f(x), y〉.

Consider the language L consisting of all pairs 〈x, y〉 such that x is a 3-CNF formula,
y is a clause, and x ⇒ y. (A clause is a disjunction of literals, and the arrow denotes
logical implication.) For example, if p, q, and r are propositional variables, then
〈p ∧ q, q ∨ r〉 ∈ L, but 〈p ∨ q, q ∨ r〉 6∈ L and 〈p ∧ q, p ∧ q〉 6∈ L, because the second
component is not a clause.

a) Show that if NP ⊆ P/poly, then L admits partial evaluation.

b) Show the converse.

Hint: Introduce a new variable pC for each possible 3-clause C on the original
variables, and consider expressions of the form

∧C(C ∨ pC) ⇒ ∨C∈IpC ,

where on the left, C ranges over all possible 3-clauses on the original variables,
and on the right over some subset I of those clauses.
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2.

The purpose of this problem is to derive an approximation algorithm to count the
number of 0-1 solutions to a Knapsack problem.

Let 0 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ b be integers, and consider

S = {x ∈ {0, 1}n |
n∑

i=1

aixi ≤ b}.

Define m to be the largest integer ≤ n such that ai ≤ b/n for all i ≤ m. Let
C = {0, 1}m × {0}n−m. Observe that C ⊆ S. Let ni = ⌊n2ai/b⌋. Let S′ = {x ∈
{0, 1}n |

∑n

i=1 nixi ≤ n2}.

a) Show that |S′|, the cardinality of S′, can be computed exactly in polynomial time.
What is your running time?

b) Show that S ⊆ S′. Show also that for any x ∈ S′ − S, there exists an integer
p > m with xp = 1.

Note that np ≥ n. Now define a map f : S′ → S, as follows:

c) For x ∈ S, let f(x) = x. For x ∈ S′−S, define y = f(x) in such a way that y ∈ S
(prove this is possible). Your y should differ from x by only one bit.

d) Prove that f(S′) = S and that |f−1(y)| ≤ n + 1 for all y ∈ S.

e) Give an approximation algorithm with approximation factor
√

n + 1. It should
be deterministic. What is your running time?

f) Given a uniform sampling algorithm for S. It should sample k uniform points
of S in time polynomial in n and k, with probability 1 − e−Ω(n). By estimating
|S|/|S′|, which is at least 1/(n + 1), give a randomized approximation algorithm
with the following property. Given any ǫ > 0, it estimates |S| to within a factor
1 + ǫ, in time poly(n, 1/ǫ). What’s your running time?
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3.

Let Σ = {0, 1}. A language is a subset of Σ∗. Given a language L, we call two strings
v, w right equivalent if for each x, the strings vx and wx are either both in L or both
out of L. A language has finite index if there are only finitely many right-equivalence
classes. It is regular if it has a regular expression. It is well known that these two
concepts coincide (Myhill-Nerode theorem).

a) For the language
L = {ww : w ∈ Σ∗},

exhibit an infinite number of strings that are all right-inequivalent. Conclude
that L is not regular.

Now consider subsets of M = Σ∗ × Σ∗ (also called languages). Right equivalence is
defined the same way, but using the concatenation operation for M , which is

〈x, x′〉 ◦ 〈y, y′〉 = 〈xy, x′y′〉.

As before, to be recognizable means there are only finitely many right-equivalence
classes. Regular expressions are generated from finite languages (it is enough to start
with the pairs 〈x, y〉 with |x|, |y| ≤ 1) using concatenation, union, and Kleene star.

b) The analog of the Myhill-Nerode theorem fails for M . Prove this by exhibiting a
regular language that does not have finite index.
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4.

One of Shannon’s information theory experiments constructed approximations to En-
glish in which word pairs would occur with the correct frequencies. His method was
the following. Choose some book with English text. Start with some word w1. Now,
for n = 1, 2, . . ., suppose you have generated the string of words

w1w2...wn.

To get the next word wn+1, open the book at random, and read until you see wn. The
next word following is used.

Using this method, he produced the sample

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS

THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN

UNEXPECTED .

We now consider a simplified version of Shannon’s experiment.

There is a list of N distinct words. Assume we have a mechanism (such as an urn
or asymmetric die) that outputs the i-th word in the list with probability pi, for i =
1, . . . , N . When the mechanism is used repeatedly, successive outputs are independent.

As before, we give a process for choosing the next word, assuming we have chosen
w1w2 . . . wn. This process is as follows: Use the mechanism to sample words, until we
get another copy of wn. Then, sample again and call the result wn+1.

a) For the simplified process, compute the expected number of samples (words read)
to produce a sequence of n words. Assume the first word is given.

b) Given a text, how would you pre-process it to make Shannon’s original experiment
more efficient?
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