YOU SHOULD ATTEMPT ALL 4 PROBLEMS

1. A positive number n is called squarefree if no square divides it except for 1. Give an $O(n)$ algorithm that lists all the squarefree numbers in $\{1, \ldots, n\}$. You can treat arithmetic operations such as addition or subtraction or multiplication or integer division as operations with unit cost.
2. Suppose there exists a randomized polynomial-time algorithm with the following behavior: On input an unsatisfiable Boolean formula, it outputs "no" with probability at least $3 / 4$; on input a Boolean formula with exactly one satisfying assignment, it outputs "yes" with probability at least $3 / 4$; on any other input, the behavior of the algorithm is unspecified. Prove that the existence of such an algorithm implies that the polynomial-time hierarchy collapses. To which level can you prove the PH collapses to?
3. A pair of vertices s and t in a graph G is called 2-connected if there are at least two edge-disjoint paths between s and t in the graph. Given a connected graph $G=(V, E)$ with weights w_{e} on edges and vertices s and t, a 2-route s-t cut is a set of edges $E^{\prime} \subset E$ such that upon removing E^{\prime} from the graph, s and t are not 2-connected. The weight of a cut E^{\prime} is given by $w\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} w_{e}$.
a. Prove that s and t are 2 -connected if and only if every s - t cut in the graph contains at least 2 edges.
b. Use part (a) to give a polynomial time algorithm for finding the minimum weight 2 -route $s-t$ cut in a given graph.
4. In honor of the upcoming election, consider the problem of apportioning seats in a legislature. Suppose there are m states, with populations p_{1}, \ldots, p_{m}, and the legislature has n seats. (Currently for the U.S. Congress, $m=50$ and $n=435$.) If the numbers

$$
q_{i}:=n \frac{p_{i}}{\sum_{i} p_{i}}
$$

were all integers, we would give the i-th state q_{i} seats. However, they usually are not, so some adjustment is necessary.

Alexander Hamilton suggested the following rule: round each q_{i} down to the closest integer, and provisionally give the i-th state a number of seats equal to this integer. The remaining seats are to be assigned, one each, to the states with the largest values of q_{i}.
a. Explain why this problem can be solved in $O(m)$ steps. For this problem, a "step" means an arithmetic operation (addition, subtraction, multiplication, division with remainder), or a comparison, on integers.
b. What problems (such as unfairness from certain perspective, or other undesirable features) might arise by the use of Hamilton's rule?

Please be concise.

