
FALL 2007
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN–MADISON
PH.D. QUALIFYING EXAMINATION

Programming Languages and Compilers
Qualifying Examimation

Monday, September 17, 2007
3:00 PM - 7:00 PM

Room 1263, Computer Sciences Building

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. On the cover ofeachbook indicate the area of the exam, your code number, and the question
answered in that book. Ononeof your books list the numbers ofall questions answered.Do
not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if
needed.

SPECIFIC INSTRUCTIONS:

Answer 4 of 6 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you are convinced a problem has been stated
incorrectly, mention this to the proctor. If necessary, the proctor can contact a representative of the
area to resolve problems during thefirst hour of the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Your interpretation should be such that the
problem is nontrivial.

Page 1 of 7

Question 1: Array and Function Subtyping

Let τ represent some type. For any typeτ, let τ[] represent the type of arrays whose elements all
have typeτ. For any pair of typesτ1,τ2, let τ1 → τ2 represent the type of functions fromτ1 to τ2.
Let int be the type of integers.

Let @ be a binary relation representing strict subtyping, withv as its reflexive closure.

Part (a): Array Subtyping Gone Bad

Java and C# extend subtyping across array elements. That is,τ v τ′ =⇒ τ[] v τ′[]. Write a
fragment of Java or C# code which type checks according to this rule, but which will fail at run
time due to an incorrectly-typed element appearing in an array.

Part (b): Elimination of Run-Time Checks

Java and C# add run-time checks to every array-element assignment in order to trap this sort of
error and throw an exception instead. Propose a static program analysis and optimization that could
safely eliminate some of these run-time checks. Describe your analysis in detail, including placing
it in context with respect to well-known families of analysis techniques.

Part (c): Function Subtyping

What are the most flexible subtyping relations that can safely be permitted among function types?
That is, what are the weakest conditions onτ1, τ2, τ′1, andτ′2 for which we can safely treatτ1→ τ2

as a subtype ofτ′1 → τ′2?
Justify the correctness of your answer. It may be useful in your arguments to treat types as

mathematical sets with subtyping as subsetting.

Part (d): Arrays as Functions

Suppose we model array operations as a pair of functions: one for getting the value of an array
element and one for setting the value of an array element. These functions must work for arrays
of all types, and therefore are actually a polymorphic family of functions parameterized by array
element type:

get: ∀τ . τ[]→ int → τ
set: ∀τ . τ[]→ int → τ→ τ[]

Note thatsetis treated as purely functional: it returns the updated array as its result.
Using the function subtyping relation developed in (c), explain why Java and C# array subtyp-

ing is safe for immutable arrays but may be unsafe for mutable arrays.

Page 2 of 7

Question 2: Evaluation Strategies

Part (a): Basic Terms

Several evaluation strategies have been used to pass arguments into function calls. Briefly describe
the following strategies, clearly identifying how they differ from each other:

• Call by value

• Call by value-result

• Call by reference

• Call by name

Part (b): Behavioral Differences

Write a small program which produces different behavior depending on whether it is evaluated
using call by value, value-result, reference, or name. You may use any reasonable syntax, including
pseudo-code, provided that your intent is clear. Give both the code and the expected behavior for
each of the four evaluation strategies.

The four possibilities must be clearly, easily, and unambiguously distinguished: do not rely on
minuscule timing differences.

Part (c): Functional Programming

In a purely functional programming language without destructive assignment, is it possible to
distinguish call by value from call by name? Briefly justify your answer.

Part (d): Call by Need Versus Call by Name

Call by needis similar to call by name, but uses memoization to avoid evaluating any argument
more than once. Under what circumstances would call by need performfasterthan call by name?
Under what circumstances would call by need performslowerthan call by name?

Part (e): Implementing Call by Need

Propose an efficient implementation strategy for call by need. Describe how function arguments
will be represented at run time. Identify key events during function evaluation and describe what
your implementation does at these events.

“Efficient” can mean several things, depending on the resource to be conserved. Discuss what
resources you have considered in your interpretation of “efficient” and explain what makes your
proposal efficient with respect to these resources.

Page 3 of 7

Question 3: Static Single Assignment

Part (a): Basics

What is Static Single Assignment (SSA) form?
Explain how a program involving only scalar variables can be placed in SSA form. Illustrate

your technique on the following simple program.

a = b + 1;
while (a > 0) {

if (b > 0)
a = a + b;

else
a = a - b;

}
print(a, b);

Part (b): Copy Propagation

One of the advantages of SSA form is that it greatly simplifies the analysis necessary to implement
various optimizations.

Explain what copy propagation is. If a program is not in SSA form, what analyses are necessary
to determine whether copy propagation may be applied?

If a program is in SSA form, how are the rules of validity for copy propagation simplified?
Illustrate your answer using the following code fragment, copy propagating the initial assignment
to a:

a = b;
if (a > 0)

a = a + 1;
else

b = a + 1;
c = a;

Page 4 of 7

Question 4: Garbage Collection

This question concerns the design and use of a garbage collector as part of a program’s run-time
system.

Part (a): With Strong Typing

Assume you have a language like Java, in which all pointers (references) are strongly typed (known
at compile-time to reference a single fixed type). Outline the design of a garbage collector that
may be run while the application program (the mutator) is stopped. Your collector should (of
course) have the property that all objects marked as garbage (and deleted) really are garbage. Does
the collector you present also have the property that all inaccessible objects are recognized and
deleted?

Part (b): Without Strong Typing

Languages like C and C++ complicate garbage collection in that pointers may be difficult to rec-
ognize because of casting and type unions. What changes are needed in the garbage collector you
proposed in (a) to support languages like C and C++?

Part (c): Concurrency

Some languages, like Java, allow simultaneous execution of multiple threads. On processors that
can execute more than one thread simultaneously, it may be important to make a garbage collector
exhibit a degree of concurrency; i.e., if there is more than one thread, at least one should continue
to run during garbage collection. What changes are needed for your garbage collector to make it
concurrent?

Page 5 of 7

Question 5: Security Policies and Monitors

Part (a): Policy Automata

A security policyis a finite-state automaton with calls and their arguments as the alphabet. Assume
that there is a global Boolean semaphoreL and the calllock(L) setsL = 1 andunlock(L) sets
L = 0. Describe a finite-state automaton with alphabet{lock(L),unlock(L)} that corresponds to
the following policy (assume that the initial value ofL = 0):

Call lock(L) should only be allowed ifL = 0.

Part (b): Reference Monitors

A reference monitorinterposes a security policy between the application and the operating system.
A system call is allowed if it satisfies the security policy. Assuming that the security policy is
expressed as a finite-state automaton with system calls and their arguments as the alphabet, explain
the operation of a reference monitor in detail.

Part (c): Static Analysis

Let the security policy be given as a finite-state automatonA. Describe a static-analysis technique
that given a programP determines whether executingP can result in a sequence of system calls
that violates the security policy.

Page 6 of 7

Question 6: Function Fixed Points

Let Sbe a finite set of sizen. Let F : 2S→ 2S be a function.1 A setX ∈ 2S is called a fixed point
of a functionF iff F(X) = X. DefineµX.F(X) as the least fixed point ofF andνX.F(X) as the
greatest fixed point ofF .

Part (a): Existence

What conditions shouldF satisfy so thatµX.F(X) exists? What conditions shouldF satisfy so that
νX.F(X) exists?

Part (b): Relationships

Assume thatµX.F(X). DefineG(X) as¬F(¬X). Recall that given a setX ⊆ S, ¬X is equal to
S−X. What is the relationship betweenµX.F(X) andνX.G(X).

Part (c): Computation

Give an iterative algorithm to computeµX.F(X). Analyze the time complexity of your algorithm.

1Recall that 2S is the power-set ofS.

Page 7 of 7

	Front Matter
	General Instructions
	Specific Instructions
	Policy on Misprints and Ambiguities

	Array and Function Subtyping
	Array Subtyping Gone Bad
	Elimination of Run-Time Checks
	Function Subtyping
	Arrays as Functions

	Evaluation Strategies
	Basic Terms
	Behavioral Differences
	Functional Programming
	Call by Need Versus Call by Name
	Implementing Call by Need

	Static Single Assignment
	Basics
	Copy Propagation

	Garbage Collection
	With Strong Typing
	Without Strong Typing
	Concurrency

	Security Policies and Monitors
	Policy Automata
	Reference Monitors
	Static Analysis

	Function Fixed Points
	Existence
	Relationships
	Computation

