
Optimization

Fall 2007 Qualifying Exam

September 17, 2007

Instructions: Answer any 5 of the following 8 questions.

1. Consider the following linear program:

max 4x1 − x2

subject to 7x1 − x2 ≤ 14

x2 ≤ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

(a) Find a primal optimal solution and a dual optimal solution. You
may use any method you choose.

(b) Is the primal optimal solution unique? Justify your response.

(c) Is the dual optimal solution unique? Justify your response.

(d) Assuming that no other data change and that the objective coeffi-
cient of x2 changes from -1 to 0, will the primal solution that you
identified remain optimal? If not, how do you know?

(e) Under the same assumptions as in the previous questions, will the
dual solution that you identified remain optimal? How do you
know?



2. Consider the following linear program, with bounds and a single linear
equality constraint:

max

100∑

i=1

cixi subject to

100∑

i=1

aixi = b, 0 ≤ xi ≤ ui, i = 1, 2, . . . , 100.

(a) Write down the KKT optimality conditions for this problem.

(b) Assume that ai > 0 and ui > 0 for all i, and that the variables
are ordered such that

c1

a1

≥
c2

a2

≥ . . . ≥
c100

a100

.

Suppose further that

50∑

i=1

aiui +
1

2
a51u51 = b.

Using this information, find the primal solution x and the La-
grange multiplier vectors that satisfy the KKT conditions.

3. A manufacturing company has a permit to operate for T seasons, after
which (in season T +1) it is only allowed to sell any leftover products. It
is able to manufacture m different products, each requiring n different
types of processing. Product i (for i = 1, . . . , m) costs ci dollars/liter
to make and requires hij hours/liter of processing of type j (for j =
1, . . . , n). Due to equipment limitations, the total time available for
type j processing of all products during season t is Hjt hours (for t =
1, . . . , T ). (Potential complications about the order of processing are
being ignored here.)



All the processing of an amount of product i must be completed in one
season (it’s not possible to start with some of the types of processing
in one season and then finish with the others in the next), and that
product can then be sold from the next season onward. To sell a liter
of product i in season t requires eit hours of marketing effort (labor).
This labor can be hired in season t at the cost of dt dollars/hour at the
ordinary rate, up to a total of at hours. For additional labor beyond
that, a higher rate of Dt dollars/hour must be paid. (There is no
limit on the amount of hours at this higher rate or on the amounts
of sales, which are regarded as a sure consequence of the marketing
effort.) The selling price for product i in season t is pit dollars/liter. If
a quantity of product i is available for sale during a season, but is not
sold then, the manufacturer has to pay qi dollars/liter to store it and
keep it in shape for possible sale in the next season. An alternative to
marketing or storing is to donate quantities to charity. For this there
is no monetary cost or reward. All products must be disposed of by
the end of period T + 1. Write a GAMS or AMPL model to determine
what the manufacturer should do to maximize net profit over the entire
period?

4. Let N be a directed network with two distinguished nodes s and t.
Assume that there is a positive capacity on each arc and that there is
at least one directed path from s to t as well as a return arc of unlimited
capacity from t to s. Formulate the dual of the s-t max flow problem
and show that it has an optimal solution in which all node prices have
value 0 or 1. Discuss how this solution information can be used to
obtain the min cut.



5. Let G = (V, E) be an undirected graph with costs cij for each edge
(i, j) ∈ E, and let |V | = n. Consider the following formulation of the
symmetric traveling salesman problem:

min
∑

(i,j)∈E

cijxij (1)

subject to
∑

j∈V :(i,j)∈E

xij = 2, ∀ i ∈ V (2)

∑

(i,j)∈E:i∈S,j∈S

xij ≤ |S| − 1, ∀ S ⊂ V, |S| ≥ 3 (3)

xij ∈ {0, 1}, ∀(i, j) ∈ E (4)

Constraints (2) are the degree constraints; constraints (3) are the sub-
tour elimination constraints.

(a) Consider the formulation in which we replace (2) by

∑

(i,j)∈E

xij = n. (5)

Does this this formulation have the same set of feasible solutions
as the original? Either give a short proof that the set of feasible
solutions is the same, or give a counterexample.

(b) Is it possible that the LP relaxation of the formulation (2), (5),
(3), (4) might have extreme points that are fractional? How do
you know?

(c) Now consider the LP relaxation of (2)–(4) and the LP relaxation
of (2), (5), (3), (4). Do the two LP relaxations have the same set
of feasible solutions?

6. (a) Prove that all isolated local minimizers of a function f are strict

local minimizers.

(b) Suppose that we wish to form a quadratic model of a function
f : R2 → R by interpolating at six points. That is, we find the
quadratic model q by enforcing the conditions q(yi) = f(yi) for
i = 1, 2, 3, 4, 5, 6. Show that if these six points are collinear, then
q is not uniquely determined by the interpolation conditions.



7. Let f be a closed proper convex function on R
n and assume that inf f

is finite.

(a) Does this information imply that f attains a minimum on R
n? If

so, give a proof. If not, give a counterexample.

(b) If you thought that the information above was insufficient to show
that f attained a minimum, then explain the weakest additional
assumption that you could make so that you could then prove
attainment of the minimum, and give the proof using that as-
sumption.

You may use standard theorems of convex analysis, but if you do so
then you must state the theorem you are using.

8. Suppose F : Rn 7→ R is a convex function and X is a nonempty closed
convex set. Let

X∗ = {x∗ ∈ X | F (x∗) ≤ F (x), ∀x ∈ X}.

(a) Show that for every y ∈ Rn and c > 0 the minimum of F (x) +
(1/2c) ‖x − y‖2

2 over x ∈ X is attained at a unique point denoted
by x(y, c).

(b) Show that the function Φc : Rn 7→ R defined by

Φc(y) = min
x∈X

{F (x) +
1

2c
‖x − y‖2

2

is convex and that x∗ minimizes Φc(y) over y ∈ Rn if and only if
x∗ minimizes F (x) over x ∈ X, that is

X∗ = {x∗ | Φc(x
∗) = min

y∈Rn

Φc(y)}, ∀c > 0.

Hint: you may assume that Φc is continuously differentiable and
that its gradient is given by

∇Φc(y) =
y − x(y, c)

c
.


