OPTIMIZATION

Fall 2005 Qualifying Exam

September, 2005
Instructions: Answer 5 out of 8 questions

1. (a) Consider the approximation problem

$$
\min \left\|\left[\begin{array}{l}
x_{1}+2 x_{2}-1 \\
3 x_{1}+x_{2}+3
\end{array}\right]\right\| \text { subject to } x_{1} \geq 0, x_{2} \geq 0 .
$$

Express this problem as a linear program for the cases in which the norm in the objective is an ℓ_{1}-norm or an ℓ_{∞}-norm. (Do not try to solve these problems.)
(b) Consider the problem

$$
\begin{aligned}
\min 3 x_{1}-2 x_{2} & \text { subject to } \\
x_{1}-x_{2} & \geq 7+t, \\
-x_{1} & \geq-5+t \\
x_{1}, x_{2} & \geq 0 .
\end{aligned}
$$

Find a value of t for which this problem is feasible. Starting from this value, find the solutions of this problem for all values of t.
2. Consider the following linear program (LP) for $x \in \mathbb{R}^{n}$:

$$
\min _{x} \quad c x \text { s.t. } A x=b, x \geq 0
$$

Assume that (LP) has an optimal solution. Given any row vector $d \in \mathbb{R}^{n}$, prove that there exists an $\varepsilon>0$ such that if the perturbed problem (LPP) defined by

$$
\min _{x} \quad(c+\rho d) x \text { s.t. } A x=b, x \geq 0,
$$

with $0<\rho<\varepsilon$ has a unique optimal solution \bar{x}, then \bar{x} is also optimal for (LP). For a given d, discuss how ε could be computed by considering the set of all extreme points of the feasible set of (LP).
3. In the game of Sudoku, a nine by nine square is given with some of the 81 squares filled in with digits $(1,2, \ldots, 9)$, for example:

	c 1	c 2	c 3	c 4	c 5	c 6	c 7	c 8	c 9
r1	2			6	7				
r2			6				2		
r3	4						8		1
r4	5					9	3		
r5		3						5	
r6			2	8					7
r7			1						
r8	7		8		5	3			8
r9					5	3			

The game involves simply placing digits in all the remaining squares so that:
(a) In each row, each of the digits $1,2, \ldots, 9$ appears exactly once.
(b) In each column, each of the digits $1,2, \ldots, 9$ appears exactly once.
(c) In each 3 by 3 subblock (as outlined above), each of the digits $1,2, \ldots, 9$ appears exactly once.

So for example, a solution of the above game is:

	c 1	c 2	c 3	c 4	c 5	c 6	c 7	c 8	c 9
r1	2	8	3	6	7	1	5	9	4
r2	1	9	6	5	4	8	2	7	3
r3	4	7	5	3	9	2	8	6	1
r4	5	1	7	4	6	9	3	8	2
r5	8	3	9	2	1	7	4	5	6
r6	6	4	2	8	3	5	9	1	7
r7	3	2	1	9	8	6	7	4	5
r8	7	5	8	1	2	4	6	3	9
r9	9	6	4	7	5	3	1	2	8

Set up a model in AMPL or GAMS whose solution will solve this game.
4. Consider the following n-node network flow problem in which all data are assumed to be integer and u is assumed to be positive:

$$
\min _{x} \quad c x \text { s.t. } A x=s, 0 \leq x \leq u .
$$

Denote by $q(p)$ the dual function given by the optimal value of the relaxed problem:

$$
\min _{x}(c x+p(s-A x)) \text { s.t. } 0 \leq x \leq u .
$$

For a given integer price vector p, derive an expression in terms of the problem data for the directional derivative of q at p in the direction of the $\mathrm{i} t h$ unit vector $d_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ If none of these directional derivatives is positive, is p guaranteed to be optimal for the dual problem max $q(p)$? Explain.
5. Consider the two-variable set

$$
S=\{(x, y): x+y \geq 1.6 ; x, y \geq 0 ; y \in \mathbb{Z}\} .
$$

Let $\operatorname{conv}(S)$ be the convex hull of S, and let $S^{\prime}=\{(x, y): x+y \geq 1.6 ; x, y \geq$ $0\}$; that is, S^{\prime} is the set S with the integrality restriction on y relaxed.
(a) List the extreme points of S^{\prime} and $\operatorname{conv}(S)$.
(b) There is one nontrivial facet-defining inequality for $\operatorname{conv}(S)$. State this inequality, and prove 1) that it is valid for S, and 2) that it is facetdefining for $\operatorname{conv}(S)$.
(c) Consider the generally defined set

$$
T=\{(x, y): x+y \geq b ; x, y \geq 0 ; y \in \mathbb{Z}\}
$$

where $0<\lfloor b\rfloor<b<\lceil b\rceil$. State a nontrivial, facet-defining valid inequality for this set in terms x, y, and b. (Hint: It may help you to define and use $f=b-\lfloor b\rfloor$ in the definition.)
6. Consider the minimization problem:

$$
\begin{equation*}
\min _{x}\{f(x) \mid A x \leq b\} \tag{*}
\end{equation*}
$$

where $f: R^{n} \rightarrow R^{1}$ is convex and differentiable on $R^{n}, A \in R^{m \times n}$ and $b \in R^{m}$. Assume that the feasible region is nonempty and that:
$A x \leq 0$ has no solution $x \neq 0$.
(a) Does $(*)$ have a solution? Prove your claim.
(b) Set up a linear program that will give a lower bound to:

$$
\begin{equation*}
\inf _{x}\{f(x) \mid A x \leq b\} . \tag{***}
\end{equation*}
$$

(c) Prove that your linear program provides a lower bound to $(* * *)$.
7. Suppose f is a function from \mathbb{R}^{n} to $(-\infty,+\infty]$ that is finite at some point. For a real number $\lambda>0$ define the Moreau envelope function e_{λ}^{f} for each $x \in \mathbb{R}^{n}$ by

$$
\begin{equation*}
e_{\lambda}^{f}(x)=\inf _{y \in \mathbb{R}^{n}}\left\{f(y)+(2 \lambda)^{-1}\|y-x\|^{2}\right\} \tag{1}
\end{equation*}
$$

In answering the following questions you may use known theorems if you wish, but you must state what theorem you are using.
(a) Show that e_{λ}^{f} minorizes f; that is, for each $x \in \mathbb{R}^{n} e_{\lambda}^{f}(x) \leq f(x)$.
(b) Is e_{λ}^{f} everywhere finite? Prove, or give a counterexample.

For the rest of this question, assume in addition that f is a closed convex function.
(c) Show that e_{λ}^{f} is convex.
(d) Show that some affine function a minorizes e_{λ}^{f}.
(e) Show that for each $x \in \mathbb{R}^{n}$ the infimum in the definition of $e_{\lambda}^{f}(x)$ is attained.
8. (a) Write down the augmented Lagrangian function (with parameter α) for the nonlinear programming problem

$$
\min f(x) \text { such that } g(x) \leq 0
$$

where f and g are differentiable functions on \mathbf{R}^{n}.
(b) For what values of the parameter α does a stationary point of the augmented Lagrangian satisfy the Karush-Kuhn-Tucker conditions of the original nonlinear programming problem? Prove your claim.
(c) For what reasons would you take a large value of α in your computations?

