OPTIMIZATION

Fall 2005 Qualifying Exam September, 2005 Instructions: Answer 5 out of 8 questions

1. (a) Consider the approximation problem

$$\min \left\| \left[\begin{array}{c} x_1 + 2x_2 - 1 \\ 3x_1 + x_2 + 3 \end{array} \right] \right\| \text{ subject to } x_1 \ge 0, x_2 \ge 0.$$

Express this problem as a linear program for the cases in which the norm in the objective is an ℓ_1 -norm or an ℓ_{∞} -norm. (Do not try to solve these problems.)

(b) Consider the problem

min
$$3x_1 - 2x_2$$
 subject to
 $x_1 - x_2 \ge 7 + t$,
 $-x_1 \ge -5 + t$
 $x_1, x_2 \ge 0$.

Find a value of t for which this problem is feasible. Starting from this value, find the solutions of this problem for *all* values of t.

2. Consider the following linear program (LP) for $x \in \mathbb{R}^n$:

$$\min_{x} \quad cx \text{ s.t. } Ax = b, \ x \ge 0.$$

Assume that (LP) has an optimal solution. Given any row vector $d \in \mathbb{R}^n$, prove that there exists an $\varepsilon > 0$ such that if the perturbed problem (LPP) defined by

$$\min_{x} (c+\rho d)x \text{ s.t. } Ax = b, x \ge 0,$$

with $0 < \rho < \varepsilon$ has a unique optimal solution \bar{x} , then \bar{x} is also optimal for (LP). For a given *d*, discuss how ε could be computed by considering the set of all extreme points of the feasible set of (LP).

3. In the game of Sudoku, a nine by nine square is given with some of the 81 squares filled in with digits (1,2,...,9), for example:

	c1	c2	c3	c4	c5	c6	c7	c8	c9
r1	2			6	7				
r2			6				2		
r3	4						8		1
r4	5					9	3		
r5		3						5	
r6			2	8					7
r7			1						
r8	7		8				6		
r9					5	3			8

The game involves simply placing digits in all the remaining squares so that:

- (a) In each row, each of the digits $1, 2, \ldots, 9$ appears exactly once.
- (b) In each column, each of the digits $1, 2, \ldots, 9$ appears exactly once.
- (c) In each 3 by 3 subblock (as outlined above), each of the digits 1,2,...,9 appears exactly once.

So for example, a solution of the above game is:

	c1	c2	c3	c4	c5	c6	c7	c8	c9	
r1	2	8	3	6	7	1	5	9	4	
r2	1	9	6	5	4	8	2	7	3	
r3	4	7	5	3	9	2	8	6	1	
r4	5	1	7	4	6	9	3	8	2	
r5	8	3	9	2	1	7	4	5	6	
r6	6	4	2	8	3	5	9	1	7	
r7	3	2	1	9	8	6	7	4	5	
r8	7	5	8	1	2	4	6	3	9	
r9	9	6	4	7	5	3	1	2	8	

Set up a model in AMPL or GAMS whose solution will solve this game.

4. Consider the following *n*-node network flow problem in which all data are assumed to be integer and *u* is assumed to be positive:

$$\min_{x} \quad cx \text{ s.t. } Ax = s, \ 0 \le x \le u.$$

Denote by q(p) the dual function given by the optimal value of the relaxed problem:

$$\min_{x} (cx + p(s - Ax)) \text{ s.t. } 0 \le x \le u.$$

For a given integer price vector p, derive an expression in terms of the problem data for the directional derivative of q at p in the direction of the i *th* unit vector $d_i = (0, ..., 0, 1, 0, ..., 0)$ If none of these directional derivatives is positive, is p guaranteed to be optimal for the dual problem max q(p)? Explain.

5. Consider the two-variable set

$$S = \{(x, y) : x + y \ge 1.6; x, y \ge 0; y \in \mathbb{Z}\}.$$

Let conv(*S*) be the convex hull of *S*, and let $S' = \{(x,y) : x + y \ge 1.6; x, y \ge 0\}$; that is, *S'* is the set *S* with the integrality restriction on *y* relaxed.

- (a) List the extreme points of S' and conv(S).
- (b) There is one nontrivial facet-defining inequality for conv(S). State this inequality, and prove 1) that it is valid for S, and 2) that it is facet-defining for conv(S).
- (c) Consider the generally defined set

$$T = \{(x, y) : x + y \ge b; x, y \ge 0; y \in \mathbb{Z}\},\$$

where $0 < \lfloor b \rfloor < b < \lceil b \rceil$. State a nontrivial, facet-defining valid inequality for this set in terms *x*, *y*, and *b*. (*Hint:* It may help you to define and use $f = b - \lfloor b \rfloor$ in the definition.)

6. Consider the minimization problem:

$$\min_{x} \{f(x) \mid Ax \le b\},\tag{(*)}$$

where $f : \mathbb{R}^n \to \mathbb{R}^1$ is convex and differentiable on \mathbb{R}^n , $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Assume that the feasible region is nonempty and that:

$$Ax \le 0 \text{ has } \mathbf{no} \text{ solution } x \ne 0. \tag{**}$$

- (a) Does (*) have a solution? Prove your claim.
- (b) Set up a linear program that will give a lower bound to:

$$\inf_{x} \{f(x) \mid Ax \le b\}. \tag{***}$$

- (c) Prove that your linear program provides a lower bound to (***).
- Suppose *f* is a function from ℝⁿ to (-∞, +∞] that is finite at some point.
 For a real number λ > 0 define the *Moreau envelope function e*^f_λ for each x ∈ ℝⁿ by

$$e_{\lambda}^{f}(x) = \inf_{y \in \mathbb{R}^{n}} \{ f(y) + (2\lambda)^{-1} \| y - x \|^{2} \}.$$
(1)

In answering the following questions you may use known theorems if you wish, but you must state what theorem you are using.

- (a) Show that e_{λ}^{f} minorizes f; that is, for each $x \in \mathbb{R}^{n} e_{\lambda}^{f}(x) \leq f(x)$.
- (b) Is e_{λ}^{f} everywhere finite? Prove, or give a counterexample.

For the rest of this question, assume in addition that f is a closed convex function.

- (c) Show that e_{λ}^{f} is convex.
- (d) Show that some affine function a minorizes e_{λ}^{f} .
- (e) Show that for each $x \in \mathbb{R}^n$ the infimum in the definition of $e_{\lambda}^f(x)$ is attained.

8. (a) Write down the augmented Lagrangian function (with parameter α) for the nonlinear programming problem

 $\min f(x)$ such that $g(x) \le 0$

where f and g are differentiable functions on \mathbf{R}^n .

- (b) For what values of the parameter α does a stationary point of the augmented Lagrangian satisfy the Karush-Kuhn-Tucker conditions of the original nonlinear programming problem? Prove your claim.
- (c) For what reasons would you take a large value of α in your computations?