Theory Qual

Fall 2005

Please answer all 4 questions below.

1. Show that the following problem is NP-complete: Given a 3 -CNF formula, does there exist an assignment that satisfies exactly one literal of every clause?
Hint: Use 3-colorability.
2. Recall that a path in a directed graph G is a sequence of $\ell \geq 0$ vertices $v_{1}, v_{2}, \ldots, v_{\ell}$ such that $\left(v_{i}, v_{i+1}\right)$ is an edge of G for $1 \leq i<\ell$.
You are given a directed acyclic graph and want to partition the vertices into as few paths as possible. More precisely, you would like to construct paths $P_{1}, P_{2}, \ldots, P_{k}$ with k as small as possible such that every vertex appears in exactly one $P_{j}, 1 \leq j \leq k$.
Give a polynomial-time algorithm for this problem.
3. Let χ denote the characteristic sequence of a language L over $\{0,1\}$, i.e., the i-th bit of χ indicates whether the i th string over $\{0,1\}$ in the lexicographic order belongs to L.
Show that if the number $\cdot \chi$ (a period followed by the binary sequence χ) is rational then L is regular.
Hint: The implication also holds for the alphabet $\{0\}$ instead of $\{0,1\}$. Think about that case first. A proof for that case will give you partial credit.
4. Let L denote a language over the alphabet Σ. Recall that $L \in$ MA iff there exists an integer c and a probabilistic polynomial-time machine M such that for any nonnegative integer n and any $x \in \Sigma^{n}$,

$$
\begin{aligned}
& x \in L \Rightarrow\left(\exists y \in \Sigma^{n^{c}}\right) \operatorname{Pr}[M(x, y) \text { accepts }]>2 / 3 \\
& x \notin L \Rightarrow\left(\forall y \in \Sigma^{n^{c}}\right) \operatorname{Pr}[M(x, y) \text { accepts }]<1 / 3,
\end{aligned}
$$

and that $L \in \mathrm{PP}$ iff there exists a probabilistic polynomial-time machine N such that for any nonnegative integer n and any $x \in \Sigma^{n}$,

$$
\begin{aligned}
x \in L & \Rightarrow \operatorname{Pr}[N(x) \text { accepts }]>1 / 2 \\
x \notin L & \Rightarrow \operatorname{Pr}[N(x) \text { accepts }]<1 / 2 .
\end{aligned}
$$

Show that MA is contained in PP.
G O O D L U C K! !

