
Fall 2003 Qualifier Exam:
OPTIMIZATION

September, 2003
Instructions: Answer 5 out of 8 questions

1. Consider the following linear program:

min 8x1 − x2

subject to x1 −2x2 ≥ −2,

x1 − x2 ≥ −7,

x1,x2 ≥ 0.

(a) Solve this problem.

(b) Write down the dual of the given problem and the KKT conditions.

(c) Find a dual solution u∗ (by inspection of the KKT conditions).

(d) Suppose that the objective function is replaced by the following quadratic:

ax2
1 +bx2

2 +8x1 − x2,

where a and b are nonnegative parameters. Write down the modified
KKT conditions for the resulting problem.

(e) How large can we make a and b before the solution of the quadratic
problem becomes different from the solution of the original linear pro-
gram?

2. Consider the function

fd(t) = min
x∈Rn

c′x s.t. Ax = b+ td, x ≥ 0,

where A is an m×n matrix, and assume that for t = 0 the corresponding LP
has a unique optimal solution having m positive variables.

(a) Show that for any m-vector d , there exists an α(d) > 0 such that fd(t)
is linear on [0,α(d)] .

(b) State an expression giving fd as a linear function of t on that interval.

(c) Give a counter-example showing that the claim in (a) can be false if
the optimal solution is not unique. (Note that the stated assumptions
do not include linear independence.)
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3. New York City has 10 trash districts and is trying to determine which of the
districts should be sites for trash processing plants. It costs $1000 (annually)
to haul one ton of trash one mile. The central location of each district, the
number of tons of trash produced per year by each district, the annual fixed
cost (in millions of dollars) of operating a trash processing facility in that
district, and the variable cost (in dollars per ton of trash) for processing trash
in that district are shown in the table.

For example, district 3 is located at coordinates (10,8). This district pro-
duces 555 tons of trash per year. If we were to operate a processing plant in
district 3, we would incur a fixed cost of $1,000,000, plus $51 for each ton
of trash processed. District 3’s own trash could be processed at this plant.
If district 3’s plant is operated, trash from other districts could be shipped
to district 3 for processing, at added cost for transportation. For example,
trash from district 2 would incur a shipping cost of $1000 for each of its 874
tons of trash for each of the

√

(10−2)2 +(8−5)2 ≈ 8.54 miles separating
districts 2 and 3. (Of course, it would also incur trash processing costs at
district 3.)

Each plant can handle at most 1500 tons of trash. Each district must send
all its trash to a single site.

Write a model whose solution indicates what trash processing plants should
be used, and the plants to which the trash from each district should be
shipped. Code this model in GAMS or AMPL.

X Y Trash Fixed Cost Variable Cost
District coord coord (tons) ($million) ($ / ton)

1 4 3 49 2 310
2 2 5 874 1 40
3 10 8 555 1 51
4 2 8 352 1 341
5 5 3 381 3 131
6 4 5 428 2 182
7 10 5 985 1 20
8 5 1 105 2 40
9 5 8 258 4 177

10 1 7 210 2 75
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4. Suppose that an integer feasible solution is given for a minimum cost n×n
assignment problem and that the problem is complete in the bipartite sense
(so that the arc set of the problem contains n2 arcs). Suppose that you wish
to check optimality of this solution, and, in conjunction with this goal, you
want a basic feasible solution (BFS) with the same flow values.

(a) Discuss how this BFS can be constructed (that is, indicate how a set
of corresponding basic arcs may be identified).

(b) Assuming the given feasible solution is the unique optimal assign-
ment:

i. Is there only one BFS (set of corresponding basic arcs) associated
with the feasible solution?

ii. Show that, for nodes whose price is non-zero, there is a set of
node prices of the form
∑A+(k) c(i, j)−∑A−(k) c(i, j) (assuming arc costs c(i, j) and appro-
priately chosen arc subsets A+(k) and A−(k), where k is the node
index), such that each arc will price out non-negatively for these
prices.

iii. Are the values of the node prices that prove optimality uniquely
determined ? Explain.

5. Let G = (V,E) be an undirected graph with costs ci j for each edge (i, j) ∈
E, and let |V | = n. Consider the following formulation of the symmetric
traveling salesman problem:

min ∑
(i, j)∈E

ci jxi j (1)

subject to ∑
j∈V :(i, j)∈E

xi j = 2,∀ i ∈V (2)

∑
(i, j)∈E:i∈S, j∈S

xi j ≤ |S|−1,∀ S ⊂V, |S| ≥ 3 (3)

xi j ∈ {0,1},∀(i, j) ∈ E (4)

Constraints (2) are the degree constraints; constraints (3) are the subtour
elimination constraints.
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First notice that we can add the redundant constraint

∑
(i, j)∈E

xi j = n (5)

without changing the problem.

Choose any node and designate it to be node 1. We can include subtour
elimination constraints for only those subsets S that do not contain 1 and
still ensure that the vector x defines a tour. Thus adding (5) and replacing
(3) by

∑
(i, j)∈E:i∈S, j∈S

xi j ≤ |S|−1,∀ S ⊂V, |S| ≥ 3, 1 6∈ S, (6)

yields a valid formulation of the TSP.

(a) Apply Lagrangian relaxation to the formulation (1), (2), (5), (6), (4)
by relaxing all the degree constraints (2) except the degreee constraint
for node 1. Write down the Lagrangian function thus obtained, using
ui, i = 2, ...,n, to denote the Lagrangian dual variables.

(b) For a given dual vector u, describe how to evaluate the Lagrangian
function L(u) in polynomial time.
(Hint: First observe that the solution to the Lagrangian subproblem
must choose n− 2 edges that have both of their endpoints in 2, ...,n,
and that these n−2 edges cannot contain a cycle.)

6. Let ( x̄, ū) be a KKT point for the problem:

min f (x) s.t. g(x) ≤ b,

where f : Rn −→ R and g : Rn −→ Rm, are differentiable convex functions
on Rn.

Give a lower bound in terms of ( x̄, ū) to the possibly infeasible problem:

inf f (x) s.t. g(x) ≤ c,

where there is no relation between b and c other than both being points in
Rm.
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7. This question has three parts, all of which have to be answered.

(a) You are considering operating a system in an environment of varying
costs for the activities that make up the system. The state of the system
is described by a vector x ∈

� n , but operational constraints require this
state to satisfy conditions of the form

gi(x) ≤ 0, i = 1, . . . ,m, (7)

where each gi is a closed proper convex function on
� n . There is a

state x0 for which gi(x0) ≤ 0 for i = 1, . . . ,m.

The cost of operating the system for one period in a feasible state x
(that is, a state x satisfying (7)) when the cost parameters are

c∗ = (c1, . . . ,cn)

is γ(c∗,x) := 〈c∗,x〉. You are given that for each vector c∗ ∈
� n the

cost γ(c∗,x) is bounded above on the set of feasible state vectors x.

Is the set of feasible state vectors bounded? If so, prove it; if not, give
a counterexample.

(b) The cost in (a) depends on the vector c∗. Suppose we let v(c∗) be the
supremum of γ(c∗,x) over all feasible x. From the information given
in (a), you know that v(c∗) is finite for each c∗ ∈

� n .

What can you say about continuity of the function v? Justify your
answer.

(c) You have learned that it is possible to change some of the constraints
on x, possibly at a cost. The result of this would be to change the
right-hand sides of the inequalities (7) from 0 to bi, where the bi are
the components of some resource vector b ∈

� m . Now the function
v(c∗) used in (b) depends on b too, so we can write it as w(c∗,b),
where the v(c∗) of (b) is now w(c∗,0).

For a given c∗, what can you say about the finiteness of w(c∗,b) for
resource vectors b ≥ 0? Justify your answer.
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8. Consider the real-valued function defined by

θ(x) :=
1
2

x2 + sin(x)

for x ∈ R. Prove that θ has a unique global minimizer, exhibit an interval in
which this minimizer lies, and give an algorithm and (if your algorithm re-
quires it) a starting point from which the algorithm will produce a sequence
converging to the minimizer, as well as a stopping criterion that will guar-
antee that the the approximate solution obtained is within 10−5 of the actual
minimizer. Prove your statements.
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