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Abstract

Data speculation is used in instruction-level parallel (ILP) processors to allow early execution of
an instruction before a logically preceding instruction on which it may be data dependent. If the
instruction is independent, data speculation succeeds; if not, it fails, and the two instructions must
be synchronized. This paper considers dynamic techniques to improve the accuracy with which
data speculation is carried out. e propose dynamic techniques: (i) to predict if the execution of an
instruction is likely to result in a data misspeculation, and (ii) to provide the synchronization
needed to avoid a misspeculation. Experimental results eval uating the effectiveness of the proposed
techniques are presented within the context of a Multiscalar processor.

1 Introduction

Speculatre execution is an intgral part of modern ILP processors, beytetatically- or dynamically-scheduled
designs. Speculation teg on tvo forms:control speculation anddata speculation. Control speculation implies the
execution of an instruction before its control dependences are eds@le., before thexecution of a preceding
instruction on which it is control dependent). Data speculation impliexégeteon of an instruction before its data
dependences are resedi(i.e., before thexecution of a preceding instruction on whiclndy be data dependent).

The profitability of speculation depends upoiw fiactors: (i) the werhead associated with performing the specula-

tion, and (ii) the costs associated with misspeculation. Védhead associated with speculation includes the hard-
ware and softare means required to wkorrectie action in case of a misspeculation. The cost of misspeculation is

a function of the probability of a misspeculation and the cost ofegicy from a misspeculation. The cost of reco

ering from a misspeculation includes: (i) the inherent cost of restoring the correct machine state and (ii) the incidental
cost of squashing theask of other (possibly correct) instructions.

To date, much attention has been focused on control speculation. This outlook is natural because control speculation
is the first step. Control speculation (or someegent basic block enlgement technique such as if-gersion

with predicated xecution [3, 4]) is required if we awnt to consider instructions from more than one basic block for
possible issue. @en the sizes of naturally-occurring basic blocks, the need toygod@ basic block became

apparent some time ago, angegal techniques to permit control speculatiomehlaeen desloped, both in the con-

text of statically- and dynamically-scheduled machine models [2,4,5,6,7,8,9,10,11].

To improve the accuracof control speculation, branch prediction techniques are used. Vimgptbe accuracof
control speculation (especially dynamic techniques) has been the subject oféntessarch recentlgind a plethora
of papers on dynamic and static branch prediction technigweshean published.

The problem of data speculation has not rebas much attention as the problem of control speculation. While the
problem of ensuring correckecution while carrying out data speculation has vecesome attention [1,12,13,14],

the issue of impndng the accuracof data speculation, especially dynamic techniques to do so, has netdesgi
attention at all.

This paper is concerned with dynamic techniques for impgathe accuracof data speculation. In Secti@nwe
present the problem of data speculation and discwgst ladfects diferent ILP &ecution models. Ne, in
Section3, we discuss the components of a method for accurate and aggmesiory data speculation. In
Sectiond, we present a number offeifent implementations of this method. In SecBowe praide an galuation of
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these implementations within the caoxitef a Multiscalar processor [15, 16, 17, 18]. Finale provide a summary
of this work in Sectior6 and ofer concluding remarks.

2 Data Speculation

As a program>ecutes, dataalues are produced and consumed by instructions of the program atuwes$ are con-
veyed from the producer to the consumer by binding #ieevto a named storagedigter or memory) location. Pro-
grams are written with an implied (sequential or logical or total) ordarlLP (or other parallel) machine, &ka
suitable subset of the instructions (an instruction wirjdaf a program and cearts the total order (within this win-
dow) into a partial orderso that instructions mayecute in parallel. The shape of the partial order (and the parallel-
ism so obtained) is heity influenced by the dependences thésebetween the instructions in the total order
Dependences can bheambiguous (i.e., an instruction consumesauwe that is knan to be created by an instruction
preceding it in the total order) ambiguous (i.e., an instruction consumesauwe thaimay be produced by an
instruction preceding it in the total order)orfexample, an instruction may use @&we bound to a gister that may
or may not be produced by a preceding instruction in the dynaexcigon (the production of thele is goerned
by a control condition).

The problem of dealing with ambiguous data dependences is most acute in the case where the production and con-
sumption of data is through memoryhe primary reason for this distinction betweegisters and memory is that

the «istence of aliases is inherent in the memory name-space, whilgtstereame-space is free of aliases. That

is, registers are directly specified and usually may be analyzed stati€allyhe other hand, memory is indirectly
specified and often may not be analyzed static#llycordingly we restrict our discussion in this paper to the specu-
lation of dependences through memaswy., the speculation of load instructiongge though all the concepts pre-

sented in this paper could easily be applied to the data speculation of dependences tjisteigh re

If a dependence is unambiguous, the producer and consumer reysthoenized, i.e., the consuming instruction
must be delayed until the producing instruction hasigeal the alue [19,20,21]. If the dependence is ambiguous,
data speculation may be used. In otherds, data speculation is the reorderingxafaition of producers and con-
sumers with ambiguous data dependences such that an instruction is schecaedit¢éobefore (logically preced-
ing) instructions that may producelues it consumes. The speculation is erroneous (hésggeculation) if the
resulting éecution violates a true dependence inherent in the original program.

I1: st M(R 12 1d M(R,) 13 : 1d M(Ry)
Cin C )

12 : 1d M(Ry) 11 : st M(R1)> C 11 : st M(Ry)
13 : Id M(Ry) 13 : 1d M(Ry) 12 : 1d M(Ry)
(a) (b) (c)

Figure 1. Load/Store dependence example.

The example of Figurel illustrates the concept of data speculation. Asvahio part (a), the original program order
specifies a store (11) folleed by two loads (12 and 13). At the time (static or dynamic) instruction scheduling must be
performed, the addresses of the store and the loads arewmkiberefore, ambiguous memory dependenxiss e
between the store and the first load, and between the store and the second load, as indicatedisy thkeactual
memory dependence in thisaanple is between the store and the second load, as indicated by the dgrkarro

actual memory dependencdsts between the store and the first load, as indicated by the light dfithe code
sequence isxecuted as per the original program order (11 12 13) niicdify can arise. Hweever, consider the case
where data speculation has altd the gecution of one of the loads before the store. Asvaho the nev order (12

11 13) of part (b), where the first load is scheduled before the storexéustmn proceeds without mishap, because
no true memory dependencéasts between I1 and 12, and the true memory dependence between I1 and 13 is honored.
In contrast, as sk in the nev order (13 11 12) of part (c), where the second load is scheduled before the store, the
execution violates the program semantics. Precautions mustdrettaknsure that I&ecutes after 11 in gnpar-
tially-ordered &ecution schedule.

The means for detecting erroneous data speculation and ensuring correicr lelpeend upon the processing model.
In a VLIW processaqrsoftware (run-time disambiguation, off R [12,14]) or a combination of sofawe and hard-
ware (the Memory Conflict Bidr [1]) is responsible for detecting the data misspeculation, anderycsoftware is
responsible for reaering from the misspeculatidnln a superscalar processoremory disambiguation hardve is
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responsible for detecting a mispeculation (if the processor carries out data speculation). The precisesstgte reco
hardware (used to reser from a control misspeculation) also g¥he purpose of reeery from a data misspecula-
tion. Likewise, in a Multiscalar processonemory disambiguation hardwe (the Address Resolution Barf or

ARB [15,13]) is responsible for detecting a misspeculation, and the precise-stateyéavdvare is used to rewer

from a data misspeculation.

To minimize the net cost of data misspeculation, we need towmphe accuracof data speculation. A data specu-
lation is erroneous if there is indeed a true dependence between the operations of intargstvd the accuracof
speculation we therefore veto reduce the probability that we (incorrectly) speculate instructions that are truly
dependent upon (not yetecuted) preceding instructions. This goal is tantamount to inmgréhe accuracof
memory disambiguation, i.e., classifying a dependence through memory as a true dependence.

Within the abee contat, VLIW processors ha considered the problem of statically impny the accuracof data
speculation by attempting to reduce the probability that data speculation has to be carried euilatie static
memory dependence analysis technique may be able to unambiguously state that a true degestsiemcthat no
dependencexésts, in which case there is no need to resort to data speculatisrevedcsuch static techniquesvea

not been ery successful: mgrmemory dependences are classified as ambiguous dependences, especially in non-
numeric applications, necessitating the need for data speculation [1,12,14].

Most dynamically-scheduled superscalar processwes tat &ploited data speculation to date, mainly because the
window sizes that modern superscalar processors can establish dynamically is limited ters fef instructions
(mainly due to branch prediction limitations). devif branch prediction aleed lage dynamic windes to be hilt,
hardware resources may not be able to support suchailastruction winde. For example, the MIPS R10000 [22]

is limited to at most 32 ae® instructions or four outstanding conditional branches (whatmomes first). More-
over, as instructions are entered into the dynamic winsequentiallystores are encountered before logically suc-
ceeding loads. Since address calculation typically requires simple arithmetic, addresses of stores can be computed
very soon (assuming the basgister is free). Thus, when it comes time to issue a load, the addressesoofspre
stores are knen; data speculation is not needed in this casevelr, as the instruction windosize increases, the
need for data speculation becomes more acuteeaspdified by recent dynamically-scheduled superscalar proces-
sors which implement data speculation of memory references (albeit withamd fer the accurgoof this data spec-
ulation) [23,24].

In a dynamically-scheduled processing model with multiple (dynamic) program counters, such as the Multiscalar
model [15,16,17,18], the problem of data speculation is especially important. In the Multiscalar model, multiple pro-
gram counters are used to sequence through the static (sequential) program in parallelynithehafacontrol and

data speculation. Here, a load may be issued beforevénsaavn if ary logically preceding storexists, in which

case the addresses of thevjpas store operations (if ghare irrel@ant. In other wrds, @ery load is potentially a

data speculate load whose actual dependences are umkndn this situation, imprang the accuracof data spec-

ulation is crucial.

3 Components of a Solution

To improve the accuracof data speculation, we vato dynamically detect that a data dependencedly lik be

violated and covert speculation into on-the-fly synchronization. That is, when a load is readsctde predict

whether it is lilely to violate a true data dependence, and if so, delay it until a point when the loalgt (®fikertain)

not to do so. & example, delay the load until the logically preceding store on which it depends has finished or is

likely to hae finished. There are three parts to this problem: (i) dynamically identify the store-load pairs that are

likely to be data dependent, (ii) assign a synchronization mechanism to dynamic instances of these dependences, and
(i) use this mechanism to synchronize the store and the load instructions.

Dynamically tracking all possible ambiguous store-load pairs (analogous to what has to be done statically), is not an
option that we consider desirable, gee practical. Brtunately our experimental obseations suggest that the fol-

lowing phenomenaxésts: the static store-load instruction pairs that cause most of the dynamic data misspeculations

are relatively few and exhibit temporal Iocalityz. That is, at angiven time, diferent dynamic instances of afe

1. Some combination of the architecture, haadsy and softare is also responsible for dealing with another issue: the correct handlktgpf e
tions. Since this aspect is orthogonal to the subject of this paper and is handled as a matter of course in a dynamically-scheduled processors [1,
2], we do not discuss it griurther
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static store-load pairs, either operating repeatedly on the same memory location gsieddk) \or operating on dif-

ferent memory locations, account for the majority of the misspeculations. Thisailsesuggests that we may use

past history to dynamically identify and track such store-load pairs, and cache this information (in a storage structure
of reasonable size). The remaining issue is by what means to synchronize the store-load pair

An apt method of pnading the required synchronization dynamically is tiddan association between the store-
load instruction pair Suppose this (dynamic) association is a conditaialle [25] on which only tevoperations
are definedwait andsignal, which test and set the conditioariable respeactely. These operations may be logically
incorporated into the dynamic actions of the (dependent) load and store tee dlbbiaecessary synchronization.

@ Load Load _@Test
oW
@Stgre oM i Load | Store ) Wait
Ns‘pecu ation Continué
Condition Variable
(a) (b) (c)

Figure 2. Synchronization example

The aboe concept is illustrated in th&ample of Figure. Assume, as shm in part (a), a misspeculation has led to
the (dynamic) association of a conditicariable with the dénding load and store instructions.ithiMhe condition
variable in place, consider the sequencevefits in the tw possible gecution sequences of the load and store
instructions. In part (b), the order ofezution is a store folleed by a load. After the storeseeutes, it sets the con-
dition variable and records a signal for the load. Before the kexlites, it tests the conditioanable; since the test
of the condition ariable succeeds, the load continuesxecation as shen (the condition &riable is reset at this
point). In part (c), the order okecution is a load follwed by a store. Before the loaxkeutes, it tests the condition
variable; since the test of the conditicariable &ils, the load \&its until the store sets the conditicariable. After

the storesxecutes, it sets the conditioanable and signals theaiting load, which subsequently continues Xsai-
tion as shan.

One approach to assigning a conditi@aniable uses the data address of the memory location accessed by the mis-
speculated store-load pair as a handle. This methe@psoan indirect means of identifying the store and load
instructions that are to be synchronized. Unless the storage location is accessed only by the corresponding store-load
pair, the synchronization may not occur as planned. This subtle probleidéstebecause the misspeculation

(resulting from data speculation) is not a product of the storage location (the site of the misspeculation); instead, it is

a product of the edge between the producing store and the consuming load instructions (the source of the misspecula-
tion).

Accordingly, an alternate approach is to use the dependence edge as a handle. The dependence edge may be specified
using the instruction addresses (PCs) of the store-load pair in question. Unfortasagggnplified by the code

sequence of Figurg part (b), just specifying the edge is noffisignt to capture the actual befar of the depen-

dence duringxecution. A static dependence betweenvamystore-load pair may correspond to multiple dynamic
dependences, which need to be tetkimultaneously

To distinguish between the fiifent dynamic instances of the same static dependence edge, a tag (preferably unique)
could be assigned to each instance. This tag, in addition to the instruction addresses of the storeckratigair

used to specify the dynamic dependence edge. In order to be of practical use, the tag mustifeodeinforma-

tion available during gecution of the corresponding instructions. A possible source of the tag for the dependent store
and load instructions is the data address of the memory location to be accessed) &s Bigure3 part (¢). An

alternate ey of generating instance tags iswhan Figure3 part (d) where dynamic store and load instruction
instances are numbered (based on their PCs). Tieeedife in the instance numbers of the instructions which are
dependent, referred to as tependence distance, may be used to tag dynamic instances of the static dependence
edge (as may be seen for txample code, a dependence edge betweear8ITLD, yistancelS tagged with thealue,

2. As we sha in the eperimentation section by remembering up to 64 store-load pairs from those that conflicted in the past we are able to detect
and remee the majority of the memory conflicts.
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iteration instance #

0 STajes01 STajc+0] 1 STy
for (.| =0;i <_n; i++) 1 o STapert] 7 STapee1] |24 2 STy |
afi+c] = afi] + k c LDa[c+0] 7 LDa[c+0] alo+] c+l I-Da[c+0] c+2
c+1l LDa[c+1] LDa[C+1] c+2 LDa[C+1]
(a) (b) (c) (d)

Figure 3. Example code sequence that illustrates that multiple instances of the same static dependence can

be active in the current instruction window.
i+distance). Though both tagging schemes\atrio pravide unique tags, each mallfshort of this goal under some

circumstances.

4 Implementation Aspects

In this section, we describe possible implementations of the techniques to dynamically synchronize instruction pairs
whose out-of-ordenecution is lilely to result in a data misspeculatione Yartition the support structures intatw
interdependent tablesnamory dependence violation prediction table (MDVPT) and amemory dependence synchro-

nization table (MDST). The MDVPT is used to identify instruction pairs that ought to be synchronized. The MDST
provides a dynamic pool of conditiomrables and the mechanisms necessary to associate them with dynamic store-
load instruction pairs to be synchronized. e(jpartition the support structures in this discussiahttere is no rea-

son wly a single structure could not be used if preferred.) As mentioned eadigzstrict out discussion to memory
dependences, though the structures described could easily be usgisfer dependences.

4.1 MDVPT

An entry of the MI¥PT identifies a static dependence andsjoles a prediction as to whether or not subsequent

dynamic instances of the corresponding static store-load pair result in a misspeculation (i.e., should the store and load
instructions be synchronized). In particukeach entry of the MIPT consists of the follwing fields: (1) alid flag

(V), (2) load instruction address (LDPC), (3) store instruction address (STPC), and (4) optional predictiomvfnot sho

in ary of the working examples). The alid flag indicates if the entry is currently in use. The load and store instruc-

tion address fields hold the program counsdues of a pair of load and store instructions. This combination of fields
uniquely identifies the static instruction pair for which it has been allocated. The purpose of the prediction field is to
capture in a reasonableawthe past bel#r of misspeculations for the instruction pair (in order to aidrscing

future misspeculations). Though nyawptions are possible for the prediction field, a discussion is postponed until

later in this section.

4.2 MDST

An entry of the MDST supplies a conditioariable and the mechanism necessary to synchronize a dynamic instance

of a static instruction pair (as predicted by the\WHY). In particulareach entry of the MDST consists of the fol-

lowing fields: (1) alid flag (V), (2) load instruction address (LDPC), (3) store instruction address (STPC), (4) load
identifier (LDID), (5) instance tag (IN®NCE), and (6) full/lempty flag (F/E). Thahd flag indicates if the entry is

or is not in use. The load and store instruction address fieldsthersame purpose as in the WHEX. The load

identifier uniquely identifies a dynamic instance of a load instruction. The instance tag field is used to distinguish
between diierent dynamic instances of the same static dependence edge (using the data address of the storage loca-
tion or the dependence distance between dynamic instances of the static store-load instruction pair as described in
section 3). The full/empty flag prides the function of a conditioraxiable.

4.3 Working Examples

The eact function and use of the fields in the VBT and the MDST are best understood by meangahples.
Consider the follewing two working examples whichxplain the operation of the table structures. The fiatrple
(Figure4) uses the data address of the storage location as an instance tag. Thexseggled Eigure) uses the
dependence distance between dynamic instances of the static store-load instruction pairs as an instantteetag. F
working examples, assume thatezution taks place on a processor which: (i) issues multiple memory accesses per
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cycle from a pool of load and store instructions and (iiyjg®s a mechanism to detect and correct misspeculations
due to memory data speculation.

4.3.1 Using Data Addressto Tag Dependence Edges

Consider thexample in Figure!l of a loop with the memory operations of three iterationsestithe pool of load
and store instructions. Each dynamic instance of the load and store instructionsvarewshbered, and the true
dependences are indicated aswasroonnecting the corresponding instructions. The sequeneerdf¢hat leads to
the synchronization of the ST2-LD3 dependence isvahn parts (b) through (d) of the figure.

Initially, both tables are emptyAs soon as a misspeculation (ST1-LD2 dependence) is detected/RT\MIDLry is
allocated and the addresses of the load and the store instructions are recorded (action 1, part (b)). As a result of the
misspeculation, instructions follong the load are squashed and must be re-issued.

MDVPT v mpsT  INSTANCEy pey
LDPC |STPC |1 0
0 0
. . . 0 0
for (i=0;i<n;i++) 0 0
a[i+1] = a[i] * 19
4 » miss-speculation
STi LD; LDPC | STPC
| Correctness mechanism |
LD1 fr LD2 j/v LD3 ’ t ’
ST1 ST2 ST3 LD1 D2
iteration 1 iteration 2 itertion 3 ST1
(a) LD/ST unit 1 LD/ST unit 2 LD/ST unit 3
(b)
MDVPT ' MDST FEV MDVPT v MDST FIEV
LDPC |STPC |1 LDPC|STPC| LDID |a2| 0 |1 LDPC |STPC |1 LDPC|STPC| LDID |a2{ 0|0 |®
® ® release
0 > 0 0 > 0 | entry
0 0 0 0
0 0 0 0
\@ @ wait ® @ signal
[oPC] DD [a2] [ LoiD | STPC a2 LDID
\
| (4] Q ‘ \ ’ ] LCm ’ | t ’ ]
~ LD3 LD3
ST2
unit 1 unit 2 unit 3 unit 1 unit 2 unit 3
MDVPT v € wpst FIE V MDVPT v (@ st FIE V
LDPC |STPC|1 LDPC|STPC| invalidja2| 1 | 1 LDPC |STPC |1 LDPC|STPC| LDID |a2| 0|0
® ® release
0 0 0 entry
0 0 0 0
0 0 0 0
@ @ signal
g
STPC|a2| [LDPC| LDID [a2| | LDID |
\
B N B B T
- LD3
ST2
unit 1 unit 2 unit 3 unit 1 unit 2 unit 3
(e) (f)

Figure 4. Synchronization of memory dependences. using data addresses to distinguish instances of the same
static dependence.
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As execution continues, assume that LD3 becomes ready to issue before ST2. When LD3 is ready to issue and e
cute, its instruction address, the data address of the access, and its assigned load identifier are semMR® the MD
(action 2, part (c)). The instruction address of LD3 is matchaithsighe contents of all load instruction address

fields of the MD/PT (shavn in gregy). Since a match is found, the MBT inspects the entry predictor to determine

if a synchronization is arranted. Assuming the predictor indicates a synchronization, théPWiRllocates an entry

in the MDST using the load instruction address, the store instruction address, and the data address of the access
(action 3, part (c)) from the MZPT. At the same time the full/empty flag of the allocated entry is set to etimpty
MDST returns the load identifier to the load/store pool to indicate that the load eiu&iation 4, part (c)).

When ST2 is ready to issue anaeute, its instruction address and the data address of the access are sent to the
MDVPT (action 5, part (d)). The instruction address of ST2 is matcladsaghe contents of all store instruction

address fields of the MIPT (shavn in grey). Since a match is found, the MBT inspects the contents of the entry

and initiates a synchronization in the MDSAs a result, the MBPT searches the MDST with a combination of the

load instruction address, the store instruction address, and the data address (action 6, part (d)) to find the allocated
synchronization entryAt the same time the full/lempty field is set to full, the MDST returns the load identifier to the
load/store pool to signal theaiting load (action 7, part (d)). At this point, LD3 is free to contingzetion. Fur-

thermore, since the synchronization is complete, the entry in the MDST is not needed and may be freed (action 8, part

(d)).

If ST2 issues before LD3, it is unnecessary for LD3 to be delayed when it issues. Accotiténgyychronization
scheme allevs LD3 to issue andkecute without apdelays. Consider the sequence ofvahe e/ents shan in parts

(e) and (f) of Figuré&. When ST2 is ready to issue and@ute, it passes through the MPT as before with a match
found (action 2, part (e)). Since a match is found, th&/FDinspects the contents of the entry and initiates a syn-
chronization in the MDSTHowever, no matching entry is found in the MDST since LD3 has yet to be seenw A ne
entry is allocated, and its full/empty flag is set to full (action 3, part (e)). When LD3 is ready to issxecais &
passes through the MIPT and determines a synchronization &mented as before (action 4, part (f)). The\KFD¥
searches the MDSWhere it finds an allocated entry with the full/empty flag set to full (action 5, part (f)). At this
point, the MDST returns the load identifier to the load/store pool so the load may coréoutom immediately
(action 6, part (f)), and frees the MDST entry (action 7, part (f)).

4.3.2 Using Dependence Distance to Tag Dependence Edges

Consider thexample in Figuré of a loop with the memory operations of three iterationseatithe pool of load

and store instructions.oTuse the dependence distance rather than the data address to tag dependence>ddyes, an e
field is added to the MDPT entry to record thisalue for store-load instruction pairvatved in a data misspecula-

tion. Thus, as soon as a misspeculation is detected, the dependence distance betvieeditigestdre-load pair is
recorded. In general, the synchronization occurs between store and load instructiand, LEY; 4istancel€Spec-

tively. The sequence offents and the steps in the synchronization process are nearly identical for using the depen-
dence distanceevsus using the data address as an instance tag. The only notef#ac#f is that rather than search

the MDST with the data address, the distance field of the®RIDentry is used as indicated (action 6, part (d)) to
search the MDSTFor the sak of breity, this repetitious description is omitted.

4.4 Other Issues

We naw discuss a f& other issues which relate to the implementations described.abo

4.4.1 Intelligent Prediction

Upon matching a MBPT entry a determination must be made as to whether the instruction pair in questiante,
synchronization. The simplest approach is to assume thanatching entry ought to be synchronized.weker,

this approach may lead to unnecessary delays in cases where store-load instruction pairs are usiatycacti

rently, but are misspeculated only some of the time. Instead, a more intelligent approach (perheesl icono

work on control dependence prediction) may lbectif/e; ary of the plethora of knen methods (counterspting
schemes, adapt predictors, etc.) to pvale the intelligent prediction of control dependences may be applied to the
prediction of data dependences, or entirely peediction schemes deloped. Rgardless of the actual choice of
mechanism, the prediction method oughttbileit the quality that it strengthens the prediction when speculation suc-
ceeds and weaks the prediction when speculatiaild.
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MDVPT v DIST MDST  INSTANCE< F/E V

LDPC |STPC| 1] 1 0
0 0
0 0
I 0 Y 0
while (child != NULL) LD
child->father->count++ 2 !
child = child->next ST,
LDPC | STPC | 1 |2 | @ miss-speculation
[Cw — ]
LD1 af->LD2 fVLDS ’ ’
instructi
STI- ST2 ST3 D1 A D2 [instance
f numbers
iteration 1 iteration 2 iteration 3 ST1+
(a) unit 1 unit 2 unit 3
(b)
MDVPT V DIST MDST FEV MDVPT V DIST MDST FIEV
LDPC |STPC| 1] 1 ® »|LDPC|STPC| LDID |3 |0 |1 LDPC |STPC|1]| 1 ® —»|LDPC|STPC| LDID |3 |0 |1 ?elease
0 0 0 @ 0| entry
0 0 0 0
0 0 0 0
®
LDPC| LDID |3 LDID STPC LDID
[cM | |® wait [c™ \ | |@ signal
L 1D3 1 LD3 1
I~ ST2
unit 1 unit 2 unit 3 unit 1 unit 2 unit 3
() (d)
MDVPT V DIST MDST FEV MDVPT V DIST MDST FIEV
LDPC |STPC| 1] 1 @, [iorc[STPC ivaid] 3 | 1] 1 LDPC |STPC| 1] 1 _»|LDPC|STPC| LDID |3 |0 |1
release
® 0 0 0| entry
0 0 0 0
0 0 0 0
@
STPC LDPC| LDID |3 LDID
[CM \ ] (] | |® signal
-LD3
- ST2
unit 1 unit 2 unit 3 unit 1 unit 2 unit 3
(e) (f)

Figure 5. Synchronization of memory dependences: using the distance of instruction instances to distinguish
instances of the same static dependence.

4.4.2 Incomplete Synchronization

So far, it has been assumed thay dmad which vaits on the full/empty flag of an entry in the MDS/Emltually sees
a matching store which signals to complete the synchronization. Since\dARTviEhtry only preides a prediction,
this expectation may not alays be fulfilled. If this situation arises, theotmain considerations are (i) tecéd dead-
lock and (ii) to free the MDST entry allocated for a synchronization that wilrreccur The deadlock problem is
easily soled, as it is reasonable to assume that a load/#s/alfree toxecute once all prior stores are noto hae
executed. Lilkwise, in cases for which loadsezute under the deadlockoddance criteria described earlidre load
identifier may be used to free the MDST entry

Under similar circumstances to those described&le store may allocate an MDST entry for which no matching

load is @er seen. Since storesvee delay their @ecution, there is no deadlock problem in this caseveder, it is

still necessary toventually free the MDST entryUnfortunatelythere is noxecution conditioh, comparable to the
deadlock @oidance criteria for the load that can be associated directly with the store. One possible solution is to free
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entries whose full/empty flag is set to full wheeean entry is needed and no table entries are not in use. Another
possible solution is to allocate entries using random & téplacement, in which case entries are freed as needed.

4.4.3 Multiple Table Entry Matches

Although not illustrated in thexamples, it is possible for a load or a store to match multiple entries of t@WD

and/or of the MDST This case represents multiple memory dependenegsiitg the same static load and/or store
instructions. A straightforard means to accommodate this case is to handle each entigually, one after the

other as described ake. Another viable approach is to ensure that a unique mapping with respect to loads, stores,
or both loads and stores is maintained in the tables. If this situation isalglaticommon, the adapé nature of the
prediction mechanism is iy to discard all bt the most frequent misspeculations. If this situation is velgtcom-

mon, a more aggress approach thatvaluates multiple entries simultaneously may Xgedient.

4.4.4 Centralized Versus Distributed Structures

In our discussion, it has been assumed that theMDand the MDST are centralized structureswéler, as

greater lgels of instruction-leel parallelism arexploited, greater numbers of concurrent memory accesses must be
sustained. Under such conditions, the support structures alsetbiplay a ky role in execution. Accordinglyit is
important to assure that neither structure becomes a bottleneck. The most straghtiago meet this demand is

to multi-port the tables. While such an approaclviges the needed bandwidth, its access Igtand area gw

quickly as the number of ports is increased. It is also possibleite die table entries into banks indd by the

load and store instruction addresses. This solutiondlylik be inadequate since temporal and spatial locality in
instruction reference patterns may causeyrtamflicting bank accesses.

An alternatve approach is to actually distuite the structures, with identical copies of the\WfO and the MDST
provided at each source of memory accesses (assuming multiple load/store queues, multiple load/satiEnreserv
stations, etc.). Each source of memory accesses need only use its lpadltbepwo tables most of the time. As
soon as a misspeculation is detected, #usik broadcast to all copies of the MBI, causing an entry to be allo-
cated in each cgpas needed. A load instruction uses both tables in the same manner as described stolier
instruction, on the other hand, bgbha somehat diferently. In the @ent a match for a store is found in a local
MDVPT, all identifying information for the entry is broadcast to all copies of the MOEach cop of the MDST
searches its entries to findyaallocated synchronization entrfhe outcomes with respect to whether a match is or is
not found are similar to those described earlieraddition, ay prediction update to an entry of a local MIBT must

be broadcast in order to maintain a similakwamong all of the copies of this table.

5 Experimental Evaluation

In this section wewaluate the utility of the mechanisms proposed in theigue section. @ do this, we require a
processing model where dynamic data speculation idlhemsed. As mentioned earljghe superscalar model has
not yet reached a point where data speculation is routinggoroensidered arthwhile). Accordinglywe carry out
our evaluation within the conte of a Multiscalar processor

A Multiscalar processor relies on a combination of hadvwand softare to etract parallelism from ordinary

(sequential) programs. In this model méeution, the control flw graph (CFG) of a sequential program is parti-

tioned into portions called tasks. These tasks may be neither control nor data independent. A Multiscalar processor
sequences through the CFG specuddyj a task at a time, without pausing to inspegt@irthe instructions within a

task. A task is assigned to one of a collection of processing uniteefarten by passing the initial program counter

of the task. Multiple taskscecute in parallel on the processing units, resulting in an gafgrececution rate of mul-

tiple instructions perycle. In this oganization, the instruction windois bounded by the first instruction in the ear-

liest executing task and the last instruction in the latesteting task. More details of the Multiscalar model can be
found in [13, 15, 16, 17, 18].

In a Multiscalar processodependences may be characterizedtaa-task (within a task) ornter-task (between indi-
vidual tasks). The results herein are all simulaiegt@ions in which intra-task memory data dependences are not
speculated, Wt intertask memory data dependences are freely speculated. That is, misspeculations may only occur

3. Note that the MI'DT entry cannot be deallocated as soon as the store is retired since a later load may use it to do synchronization.
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for store-load instruction pairs whose dependence edge crosses dynamic task boundaries. Furthermore, the results
reflect eecution with no compiler supported disambiguation of these memory dependences. This detail implies that
even in cases where an unambiguous memory dependdsts; & is treated no ddrently than an ambiguous mem-

ory dependence duringecution. At first glance, the reader may be tempted to conclude that the results of this sec-
tion are not ery useful since mandependences could be classified as unambiguees véth a rudimentary

compiler However, this conclusion is not necessarily correct, and we elaborate onsthis ne

Like a superscalar processitre goal of a Multiscalar processor is xe@ute asequential program inparallel. In a
sequential program, synchronization between operations is implicit: the specified order of the operato®sstpeo
synchronization. If the program were written with a partial ordekefw@tion in mind, synchronization between
unambiguously-dependent operatiorand be preided by the softare, using signal andait operations on stati-
cally-named synchronizatiorasiables. Hwever, this nev program is not a sequential ong/amore, and all the
problems inolved in the static carersion of a totally-ordered (sequential) program into a partially-ordered (parallel)
program persist. Moreer, the werhead associated with piding this eplicit synchronization can be significant in
terms of the xra named synchronizatiomrables required, in terms of additional operations needed to perform the
necessary synchronizations, as well as in terms of the unnecesging time due to a consextive synchroniza-

tion. If we start with a sequential program (with xpl&it synchronization) anload operation whichxecutes

before a logically-preceding store (whose address is wknmust be classified as an ambiguous, data speulati
operation.

5.1 Methodology

The results presented in this paperenbeen collected on a simulator thaitHfully represents a Multiscalar proces-

sor. The simulator accepts annotated big endian MIPS [26] instruction set binaries (without architected delay slots of
ary kind) produced by the Multiscalar compjlarmodified ersion of GCC 2.5.8. In order to pide results which

reflect reality with as much accuyaas possible, the simulator performs all of the operations of a Multiscalar proces-
sor and recutes all of the program codegcept system calls, on gale-by-g/cle basis. (System calls are handled by
trapping to the OS of the simulation host.)

The programs studied in thioovk are takn from the SPECint92 benchmark suite (with inputs indicated in parenthe-
ses):compress (in), espresso (ti.in), gec (integrate.i),sc (loadal), analisp (7 queens). dblel presents the dynamic
(useful) instruction counts for the corresponding Multiscatacetion. (Only one ersion of a Multiscalar binary is
created; the same Multiscalar binary is used for all the Multiscalar configurations inbesments.) All bench-
marks hae been run to completion for the indicated input.

Benchmark Useful Integer Latency Floating point Latency

Program Instructions Add/Sub 1 SP Add/Sub 2

compress 73.38 M Shift/Logic 1 SP Multiply 4

espresso 595.88 M Multiply 4 SP Divide 12

gce 72.99 M Divide 12 DP Add/Sub

sc 440.23 M Memory Sore 1 DP Multiply

xlisp 247.56 M Memory Load 2 DP Divide 18

Table 1. Dynamic Instruction Count Branch 1

per Benchmark Table II. Latencies of functional units

5.2 Configuration

This work evaluates Multiscalar processor configurations of 4 and 8 processing units with a global sequencer to
orchestrate task assignment. The sequencer maintains a 1024 eajrg@tassociate cache of task descriptors.
The control flev predictor of the sequencer uses a path based scheme which selects fgats peaprediction and
maintains 7 path histories XOR-folded into a 15 bit path histgigtex The predictor storage is composed of both a
task taget table and a task address table, each with 32k entriegihbg the path history géster Each teget table
entry consists of a 2 bit counter and a 2 bigear Each address table entry consists of a 2 bit counter and a 32 bit
address. The control flopredictor includes a 64 entry return address stack.
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The pipeline structure of a processing unit is a traditional 5 stage pipeline (IF/ID/EX/MEM/WB) which is configured
with 2-way, out-of-order issue characteristics. (Thus the pra&wgion rate of a 4-unit configuration is 8 instructions

per g/cle). The instructions arexecuted by a collection of pipelined functional units (2 simplegent&U, 1 com-

plex integer FU, 1 floating point FU, 1 branch FU, and 1 memory FU) according to the class of the particular instruc-
tion with the latencies indicated irmfilell. A unidirectional, point-to-point ring connects the processing units to
provide a communication path, with a 2m width and 1ycle lateng between adjacent processing units. All mem-

ory requests are handled by a singleatahsplit transaction memoryb. Each memory access requires ayblec

access laternycfor the first 4 vords and 1ycle for each additional 4avds, plus ay bus contention.

Each processing unit is configured with 32 kilobytes ofa8~get associaf instruction cache in 64 byte blocks. (An
instruction cache access returnsaras in a hit time of 1ycle, with an additional penalty of 10+8ates, plus an

bus contention, on a miss.) A crossbar interconnects the processing units to twicg asarlasved data banks.

Each data bank is configured as 8 kilobytes of direct mapped data cache in 64 byte blocks with a 32 entry address res-
olution kuffer, for a total of 64 kilobytes and 128 kilobytes of bedikiata storage as well as 256 and 512 address res-
olution entries for 4-unit and 8-unit Multiscalar processors resgdgeti(A data bank access returns dravin a hit

time of 2 gcles, with an additional penalty of 10&tes, plus apbus contention, on a miss.) Both loads and stores

are non-blocking.

5.3 Results

For all results presented herein, we use thetdble structures, MZPT and MSDT detailed in Sectiod. Each

table is fully associate and contains 64 entridslt is assumed that each table is a centralized structure which pro-
vides as manports as need for a particular Multiscalar processor configuratampré&diction purposes, an entry of
the MDVPT contains a 3-bit up-@m saturating counter which ta& on alues 0 through 7. The predictor uses a
threshold ®lue of 3 for prediction;alues less than the threshold predict no misspeculationaareb\greater than or
equal predict misspeculation (and consequent synchronization). Each table mainthinfokiRation for purposes

of replacement. An entry within a table may be allocated spaaiiafivithout cleanup if bogus)ubupdates to the
prediction mechanism within an entry only occur non-speeelsti All simulation runs are performed with the Mul-
tiscalar processor configurations described earlier

Tablelll gives the alues of useful instructions pegrate for simulation runs that use no prediction/synchronization
(NONE) and perfect prediction/synchronizatid?ERF), as well as &lues for runs that use thedwersions of the
prediction/synchronization scheme described eadliigh the data addres8DDR) or the dependence distance

(DIST) to provide instance tags. &\see that there isvedys a diference between no and perfect prediction/synchro-
nization, sometimes significant (as in the cases of espresso, sc, and xlisp). Furthermoffey¢hisedifecomes
greater as we nve from the 4 processing unit to the 8 processing unit configurations, since the instructiom windo
which may be supported becomes greatére tvwo versions of the proposed scheme perform quite well, with the data
address approach slightly superior to the dependence distance approsmthelsss, there is muctork to be done

to close the gp between such heuristics and perfect (more so for an aggrpssiessor configuration). (The poor
shaving for compress is lidy attritutable to loads upon which the prediction/synchronization mechanism imposes
unnecessary delays. At this point, this bédrais still under inestigation.)

Useful Instructions/ Cycles

Benchmark 4-Unit 8-Unit

NONE | ADDR | DIST | PERF | NONE | ADDR | DIST | PERF
compress 1.42 144 | 1.44| 1.47 1.73 1.61| 161| 1.90
espresso 2.15 2.67| 2.68| 2.69 2.61 3.68| 3.67| 3.77
gce 1.67 169| 1.69| 1.71 181 1.87| 1.86| 1.99
sc 2.12 221| 214| 222 2.43 2.70| 255| 276
xlisp 1.70 190| 1.90| 1.92 1.93 236 | 2.36| 240

Tablelll. IPC with real control prediction

4. The results of this section are intended to be in support aff @orecept, and are not intended to kkaeistve. W& male no attempt toary
the parameters of the MIPT and MSDT these will be the subject of futureouk.
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TablelV gives the alues of misspeculations per useful load for the same scenariaklaBlTWe see that the rela-

tive differences betweedONE andPERF are significantly greater withgard to this metric,\&n in cases where the

relative differences of useful instructions pgicte are meagerSpecifically the relatve differences in useful instruc-

tions per gcle are of the order of avie(tens) of percent, whereas the refatiifferences in misspeculations per use-

ful load are in the range of one ormwrders of magnitude. The proposed prediction/synchronization scheme reduces
the number of misspeculations to less than 1% of useful loads in nearly all caseserdecrease in such mis-
speculations does not translate directly into a proportionate increase in performance. The main cHoke [Sitst,

the synchronized instructions may only represent a shiftadéés from loss time to stall time in theesall picture of
execution. Second, as the synchronization is only a prediction, it is possible that unnecessary delays are imposed on
instructions which otherwise ¥\ no memory data dependence and/or incur no misspeculations.

Misspeculations/ Useful L oads
Benchmark 4-Unit 8-Unit
NONE | ADDR | DIST | NONE | ADDR | DIST

compress .0712| .0091| .0091| .1317| .0085| .0090
espresso .0226| .0005| .0003| .0268| .0041| .0031
gcc .0194| .0079| .0074| .0307| .0174| .0168
sc .0210| .0023| .0031| .0417| .0074| .0081
xlisp .0359| .0008| .0004| .0437| .0007| .0008

Table V. Misspeculations with real control prediction

In Tables V and VI, we present results for the same Multiscalar processor configuratiave shibstitute perfect

control flav prediction for the real control floprediction. Though the results are similar to those presentgd abo

and may not be realizable in practice, the purpose of including them is to demonstrate that the problem of data mis-
speculation persistven in the presence of more accurate dynamic wisddn some cases, a more accurate

dynamic windav aggraates the problem, especially in going from the 4 processing unit to the 8 processing unit con-
figuration. The trends in useful instructions pgle and misspeculations per useful load are analogous to those with
real control flev prediction. Havever, the gp between theersions of the prediction/synchronization scheme pro-
posed in this wrk and perfect prediction/synchronization widens with perfect contmldtediction, indicating

room for impraement in the configurations studied, as othetdrs contriliting to performance loss are tackled.

Useful Instructions/ Cycles
Benchmark 4-Unit 8-Unit
NONE | ADDR | DIST | PERF | NONE | ADDR | DIST | PERF

compress 1.79 1.84 1.84 1.87 2.30 2.37 2.37 2.78
espresso 2.24 2.88 2.90 2.90 2.79 4.13 4.15 4.23
gce 2.03 2.05 2.05 2.06 2.55 2.63 2.63 2.70
sc 2.38 2.50 2.43 2,51 2.83 3.27 3.13 3.30
xlisp 1.94 2.12 2.12 2.12 2.48 2.84 2.85 2.86

Table V. IPC with ideal control prediction

Misspeculations/ Useful L oads
Benchmark 4-Unit 8-Unit
NONE | ADDR | DIST | NONE | ADDR | DIST

compress .0561| .0079| .0079| .1138| .0184| .0184
espresso .0233| .0005| .0001| .0267| .0038| .0027
gcc .0160| .0055| .0044| .0262| .0128| .0110
sc .0178| .0013| .0011| .0392| .0044| .0036
xlisp .0280| .0007| .0003| .0384| .0008| .0007

Table V1. Misspeculations with ideal control prediction

A Dynamic Approach to Improve the Accuracy of Data Speculation, A. |. Moshovos, S. E. Breach, T. N. Vijaykumar, G. S. Sohi 12



6 Summary and Concluding Remarks

This paper proposed andaduated dynamic techniques to impedhe accuracof data speculation. While much
research by academia and industry has been (and continues to be) focused on thechammaol speculation,

none up to this point has considered the acgushdata speculation. This lack of concern iglikdue to thedct

that establishing a wingoof instructions via control speculation logically precedes scheduling the instructions of the
window via data speculation. As ILP processors continue to become more aggnesdieel that the use of data
speculation will becomeven more widespread, and techniques (especially dynamic ones) toentimeaccuracof
speculation will becomeery important.

We proposed the concept of dynamic prediction/synchronization toxmpgne accuracof data speculation and

applied this approach to the problem of handling data dependences through mémprgposed a scheme that
monitors the past betiar of misspeculations, uses this information to predict if a future data speculation ought to
take place, and adaptly synchronizes an instruction pair when out-of-ordercation might result in a misspecula-

tion. In our @aluation of ersions of this scheme, we were able to eliminate considerable numbers of data misspecu-
lations, in the range of one ordwrders of magnitude. &found this reduction resulted in a significant performance
boost in manp cases.

In our opinion, this wrk represents only a first stepvirds impreing the accuracof data speculation. Though we

have worked with the data speculation of memory dependences, these techniques are general and applicable (with
minor modifications) to a range of other uses of data speculation (sugfister ependences). khaintain that the
accurag of data speculation will become ary important issue in future processor designs. Inwbetehis belief

turns into a realitywe look forvard to seeing futureavk in the area of data speculation accyraarried out with as

much rigor as has been the case in the area of control speculationyaccurac
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