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oal: faster single-threaded program execut
• minding complexity & communication c

oncept: Code Approximation
• generate faster, but imperfect copy of p

ecution Model: Master/Slave Speculative P
• performance of approximate code
• correctness of original program
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oore’s Law:
• many transistors → potential for higher p
• serious design challenges

-  physical constraints
-  design/verification effort

hip Multiprocessor (CMP):
• replicate medium-sized processor

+ shorter wires
+ replication reduces design effort

• software challenges
-  must find something for processors to do
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Need Thread-level Parallelism
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me workloads have existing thread-level p
• server, scientific, batch/throughput

 but, writing parallel programs is hard!!
• correct sequential programs are hard e
• most programmers can’t justify the addi

ditional automatic parallelization not wide
• analyze code, prove equivalency of pa
• proving difficult in most code

lax analysis requirements with dynamic ch

Speculative Parallelization (SP
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Speculative Parallelization
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... but, Speculation is not a Panacea
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ograms are rife with true dependences

 previous SP models:
• inter-processor communication latency

exposed inter-task dependences

❶ ❶ ❶

❸

❸

❷
❷

short latency longer 
task boundary

true dependence
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Avoiding Serializing Latency
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edict inter-task communication
• assume: an accurate value predictor ca
• predict all values at task boundaries (in
• execute each task completely indepen

rify predictions
• compare predicted live-ins to architect

O basically, the re-use test (i.e., Sodani & Sohi

• buffer live-ins, live-outs during execution
• when head:

O check live-ins, commit live-outs



8

Overlap Communication Latency
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infinite # of processors & perfect prediction
• performance independent of communic
• value predictor & verifier determine exe

short latency lon
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What is needed for this execution model?
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lue Predictor:
• accurate
• high coverage
• fast

rification/Commitment Mechanism:
• fast

} gives latency tolera

determines perfo
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Outline

or”
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• Overview
• Motivation
• Code Approximation

“building a better value predict
O the big idea
O approximation example

• Distilled Programs
• Master/Slave Speculative Parallelization
• Evaluation
• Summary of Thesis Contributions
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Building a Decent Value Predictor
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rdware value predictors have
• mediocre accuracy, coverage, or both

sight #1/tautology:
Execution of program correctly computes t

program values
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Building a Decent Value Predictor
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sight #2: Predictions need not be correct al

Approximate Code
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Approximate Code - The Big Idea
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 most programs large discrepancy betwee
• what could happen
• what does happen

ogram Paths: [Ball & Larus]

• >232 potential acyclic paths
• <1000 paths cover >90% execution

inter Analysis: [Mock, et al.]

• dynamic points-to-sets 5 times smaller t
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Approximate Code - The Big Idea
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 most programs large discrepancy betwee
• what could happen
• what does happen

Things that are possible

Things that happen in practic
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Approximate Code - The Big Idea
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proximate Code
• can focus on common-case behavior
• enables many optimizations

Things that are possible

Things that happen in practic

ditionally compiled code
• must conservatively preserve all possibl
• prevents many optimizations
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Approximation Example

spec_getc

0)

printf
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

bsR

Example from bzip2 (SpecInt 200
(represents 3% of total execution)

exit
fprintf

fwrite

csEOF

printf
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Approximation Example

spec_getc

~3M

~3M

~3M

~3M

~3M

printf

~

 code
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

78

6

~3M

~3M

bsR

6

6

exit
fprintf

fwrite

csEOF

printf

~3M

7M

Dominant Path
Infrequent Path
Unused Path

2 dominant paths through the
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Constructing Approximate Code

spec_getc

~3M

~3M

~3M

~3M

~3M

~

oved paths)
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bsR

Remove non-dominant paths

~3M

~3M

~3M

7M

(code will be incorrect for rem
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Constructing Approximate Code, cont.

spec_getc

c blocks

~
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bsR

Remove branches, unifying basi

~3M

~3M

7M
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Constructing Approximate Code, cont.

~
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bsR

Inline function

~3M

~3M

7M
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Constructing Approximate Code, cont.

 opportunities
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bsR

Apply traditional optimizations
simplified code → additional

~3M

~3M

7M
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Constructing Approximate Code
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ot optimizations (speculative/unsafe)
• remove uncommon cases

pporting optimizations (non-speculative/sa
• new benefit enabled by root optimizatio

Supporting O
existing lit

• dead code
• inlining
• register re-
• partial redu
• etc.

ot Optimizations:
• biased branch elimination
• long dependence store elim.
• null operation elim.
• indirect-to-direct call conv.

eliminate instructions transform rem
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Approximate Code

q racteristics:
inal code

ode
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MSSP
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uivalent 99.999% of time, better execution cha
• fewer dynamic instructions: ~1/3 of orig
• smaller static size: ~2/5 of original code
• fewer taken branches: ~1/4 of original c
• smaller fraction of loads/stores

 but still, it is incorrect 0.001% of the time.
• use approx. and orig. code together → 

78

6

~3M

~3M

bsR

spec_getc

~3M

~3M

~3M

~3M

6

6
~3M

exit

printf

fprintf

fwrite

csEOF

printf

~3M

~7M
~7M

Original Code Appr
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Outline
Master/Slave Speculative Parallelization and Approximate Code
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• Overview
• Motivation
• Code Approximation
• Distilled Programs

“approximate code for MSSP”
O supporting transitions to original program
O distilled program structure

• Master/Slave Speculative Parallelization
• Evaluation
• Summary of Thesis Contributions
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Using Approximate Code in MSSP

D
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istilled Program”
• approximate version of program
• serves as the value predictor
• supports forking to/from original code

d
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forking tasks

restarting the dis
(after a task
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Supporting Transitions
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 dry (in thesis)
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mplification
• only support transitions at defined instru
• static task boundaries

O selection method only slightly novel, and

code task bounds in distilled program
• know values needed at transitions
• facilitates optimization (e.g., DCE)

o “requirements”:
• mapping program counters
• mapping program state

FR
O
C

e
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Mapping Program Counters

i al program

o link (e.g., JAL)

o
anch target)
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stilled program image is distinct from origin
• no implicit mapping between programs
• must create explicit map

ur cases: fork, entry, indirect branches and

rks: (from distilled to original program)
• encode PC in distilled program (e.g., br

tries: (from original to distilled program)
• use table lookup

O want to avoid modifications to original pr
• much like page table/TLB
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Mapping Program State

led program

s

sed better)

...
use r2
...

ld r1, 68(gp)
ld r2, 0(r11)

ariant
otion
U
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Goal is to maximize performance of distil

eful to re-map program state
• avoid computing intermediates
• re-allocate registers (limited resource u

...
ld r1, 68(gp)
ld r2, 0(r11)
use r2
...
return

call ...
ld r1, 68(gp)
ld r2, 0(r11)
use r2
...

Loop Inv
Code MInline
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Mapping Program State, cont.

r dary...
cted locations

o
 to map state
n be wrong)

FROM
ORIG.
CODE

ld r1, 68(gp)
ld r2, 0(r11)

in- transition
code
P

S
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oblem: If re-mapping crosses the task boun
...values not in expe

lution: Transition Code
• code snippet executed during transition
• reminiscent of VLIW fix-up code (but ca

task boundary

...
use r2
...

ld r1, 68(gp)
ld r2, 0(r11) FROM

ORIG.
CODE

r2 not
expected
value

...
use r2
...

ld r1, 68(gp)
ld r2, 0(r11)

task boundary
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Distilled Program Structure

FORK

D PROGRAM

OUT
TRANS.
CODE

jmp PC

:

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ORIGINAL PROGRAM DISTILLE

IN
TRANS.
CODE

TASK BOUNDARY AT PC

PC

RESTART MAP

PC:
PC’
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Outline
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• Overview
• Motivation
• Code Approximation
• Distilled Programs
• Master/Slave Speculative Parallelization

O hardware organization
O forking tasks
O assembling checkpoints
O verification/commitment

• Evaluation
• Summary of Thesis Contributions
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Master/Slave Speculative Parallelization

entation

L
ally banked

 for collecting
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kay, how does MSSP work?
• demonstrate using an example implem

2 Cache & Global Register File
physic

Architected Storage

live-in
values

live-out
values

chkpt
values

proc
L1 $

proc
L1 $

proc
L1 $

hardware
live-in/live

Enhanced CMP
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MSSP Overview

A

B

chkpt @A

m

 C

verify B

proc
Master/Slave Speculative Parallelization and Approximate Code
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B

C

D

chkpt @D

chkpt @C

chkpt @
B’

A’

C’

D’

Slaves:
original progra

verify D

verify

procproc procproc

Master:
distilled program
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Step Zero

t culation

ster File (GRF)
A
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 beginning of program, or after task misspe
• all processors idle
• architected memory in L2 (or below)
• architected register state in Global Regi
• all live-in, live-out, chkpt buffers empty

idle idle idle idle

empty empty empty

arch RFarch. memory
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Step One: Restarting

t

rmal uniproc.)

F, task N
S
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art Non-speculative Slave:
• select processor
• send PC, copy of register file, task #
• execute task non-speculatively (i.e., no
•

NS

arch RFarch. memory

slave

PC, R
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Step One: Restarting, cont

t

ask #

, RF, task N

map PC
S
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art Master:
• map PC using table look-up
• select processor
• send mapped PC, copy of register file, t
• execute in-transition code (if any)
• begin executing distilled program

NS

arch RFarch. memory

slave

map’d PC

Master
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Step Two: Execution

o

ectly into
 storage
N
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n-speculative slave execution:
• send live-outs to L2/GRF

O immediately update architected state

NS

arch RFarch. memory

slave
Master

commit dir
architected
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Step Two: Execution, cont.

it into
int storage
M
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aster execution:
• bundle up live-outs, send to L2/GRF

O stored as checkpoint values
• encounter a fork instruction

O increment task number
O send a message to GRF with fork PC

NS

arch RFarch. memory

slave
Master comm

checkpo

chkptfork task N+1, forkPC
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Step Three: Forking Speculative Slaves

t

 chkpt RF,
 N+1
S
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art Speculative Slave:
• select processor
• send fork PC, reg. file checkpoint, task #

NS

arch RFarch. memory

slave
Master

chkpt

 forkPC,

spec
slave

task
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Interlude: Assembling Checkpoints

i

an request
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milar to the ARB from Multiscalar
• Checkpoint values tagged with task #

• reads get the most recent value older th
O architected state supplied if no chkpt va

sembly performed by the L2/GRF
• register file is assembled at beginning o
• memory assembled a block at a time, o

O cached in the local (L1) caches

ARCHITECTED STATE

TASK N
TASK N-1
TASK N-2

request (task N+1)



41

Step Four: Executing Speculative Slaves

p
ginal code

nd to L2/GRF
s

s & stores
S
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eculative Slave Execution:
• execute out-transition code, jump to ori
• execute task
• collecting live-in and live-out values, se

O buffer as speculative live-ins and live-out

NS

arch RFarch. memory

slave
Master

chkpt

spec
slave

live-ins live-outs

live-in regs & loads
live-out reg
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Step Five: Verification & Commitment

e

ted state

lues

outs
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rification/Commitment:
• compare live-ins to architected state
• if matches, commit live-outs to architec
• process should appear atomic

O avoid memory ordering violations
• de-allocate task’s live-ins and chkpt va

arch RFarch. memory

Master spec
slave

live-ins live-outs

done done

compare live-ins to
architected state

commit live-
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Step Five: Verification & Commitment, cont.

f 

ve)

w
ted L2
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live-ins do not match?
• task misspeculation!
• purge live-ins, live-outs, chkpts
• squash all executing tasks (master & sla
• restart

o notes:
• process more complicated with distribu

O two-phase commit
• process can be pipelined

O overlaps communication latency
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Outline
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

• Overview
• Motivation
• Code Approximation
• Distilled Programs
• Master/Slave Speculative Parallelization
• Evaluation

O goal
O methodology
O results

• Summary of Thesis Contributions
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Evaluation

ig picture

s?

mance
G

Q

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

oal:
Develop first-cut infrastructure to see b

uestions to be answered:
• is the architecture latency tolerant?
• what optimizations are important?
• how much hardware is required?
• can you get performance improvement

O i.e., should I bother continue studying it?

goal is not to exactly quantify perfor
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Methodology: Distiller

i
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D
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stiller prototype:
• binary-to-binary “translator”

O Alpha architecture memory images
• static, off-line for simplicity
• approximate run-time optimization

O accurate profile info by self training

• root optimizations:
O biased branch, null op, long dep/silent st

• supporting optimizations:
O dead code elimination, inlining, register 

save/restore elimination, simple consta
simple loop unrolling, code layout

O many more possible
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Methodology: Simulator

x

 window)
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ecution-driven simulator:
• derived from SimpleScalar toolkit
• not de-coupled functional/timing

O gives me some confidence of the results

odel: CMP of 8 Alpha 21264 processors
• 4-way OOO superscalar core (128 entry
• 64kB L1 2-way SA caches, 13 cycle pipe
• 2MB L2 cache, banked 8 ways
• 10 cycle min. inter-processor communic

O point-to-point: network contention mode
• 100 cycle memory access (after L2 miss
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Results Summary

i
ns (or better)
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u
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a ts
→ 20 cycles)

state
D
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stilled programs can be accurate:
• 1 task misprediction per 10,000 instructio

eedup depends on distillation: varies by b
• 1.25 h-mean (ranges from 1.0 to 1.75)

pporting optimizations are important
• speedup: 1/3 root, 1/3 DCE, 1/3 other su

tency tolerant, modest storage requiremen
• 10% performance lost (comm. latency 5
• 24kB storage at L2 for non-architectural 
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Distilled Program Accuracy
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distilled programs can be very acc

1000
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100000

bzip2 crafty eon gap gcc gzip mcf parser perl

average distance between task missp
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Distillation ratio

arks

twolf vortex vpr
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large variance between benchm
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Performance

tion ratio
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performance benefits scale with distilla
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Importance of Supporting Optimizations

speedup
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supporting opts. provide much of the 
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Inter-processor Communication Latency Sensitivity

a

 latency

SML
twolf
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SML
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V
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ry the communication latency:
• S: 5 cycles, M: 10 cycles, L: 20 cycles

ost benchmarks ~10% slower w/4x latency

Largely insensitive to communication

1

2

Sp
ee

du
p

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl
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Hardware Storage Requirements
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ck non-architectural storage used
• C: checkpoint, L: memory live-ins, S: live

kB storage (total at L2) seems sufficient
• About 1% of the bits of a 2MB L2 cache

Modest amount of speculation buf
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Conclusion
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chitecture displays desired characteristics
• latency tolerance
• modest hardware requirements
• support for legacy binaries
• distilled program need not be verified

rformance could be better
• accuracy is good
• distillation will improve with additional e

Promising avenue for continued res
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