
elization

i

Master/Slave Speculative Parall
and Approximate Code

Craig Zilles and Guri Soh

October 7, 2002

Computer Sciences Department
University of Wisconsin - Madison

2

Overview

ion
onsiderations

rogram

x arallelization
G

C

E

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

oal: faster single-threaded program execut
• minding complexity & communication c

oncept: Code Approximation
• generate faster, but imperfect copy of p

ecution Model: Master/Slave Speculative P
• performance of approximate code
• correctness of original program

3

Motivation

erformance

!

P

P

P

P

P

P

P

P

P

M

C

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

oore’s Law:
• many transistors → potential for higher p
• serious design challenges

- physical constraints
- design/verification effort

hip Multiprocessor (CMP):
• replicate medium-sized processor

+ shorter wires
+ replication reduces design effort

• software challenges
- must find something for processors to do

4

Need Thread-level Parallelism

o arallelism

..
nough
tional effort

ra ly applicable
rallel version

e ecks

)

S

.

T

R

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

me workloads have existing thread-level p
• server, scientific, batch/throughput

 but, writing parallel programs is hard!!
• correct sequential programs are hard e
• most programmers can’t justify the addi

ditional automatic parallelization not wide
• analyze code, prove equivalency of pa
• proving difficult in most code

lax analysis requirements with dynamic ch

Speculative Parallelization (SP

5

Speculative Parallelization

tasks”

te processors

❸
❷

P P P

ask
sspeculation)

K

OK
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

1) break program’s execution into “
❶

❶
❸

❸
❷

❷ 2) execute in parallel on separa

tim
e

P P P
tim

e

3) verify speculation ❶

tim
e
4) commit results, or squash t

(task mi

O

6

... but, Speculation is not a Panacea

r

n
 serialized by

❷

❸

latency
P

I

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ograms are rife with true dependences

 previous SP models:
• inter-processor communication latency

exposed inter-task dependences

❶ ❶ ❶

❸

❸

❷
❷

short latency longer
task boundary

true dependence

7

Avoiding Serializing Latency

r
n be built

cluding PC)
dently

e
ed state
 ISCA 1997)
P

V

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

edict inter-task communication
• assume: an accurate value predictor ca
• predict all values at task boundaries (in
• execute each task completely indepen

rify predictions
• compare predicted live-ins to architect

O basically, the re-use test (i.e., Sodani & Sohi

• buffer live-ins, live-outs during execution
• when head:

O check live-ins, commit live-outs

8

Overlap Communication Latency

f accuracy:
ation latency

cution rate

ger latency

va
lu

e
 p

re
d

ic
to

r

❷
❸

I

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

infinite # of processors & perfect prediction
• performance independent of communic
• value predictor & verifier determine exe

short latency lon

va
lu

e
 p

re
d

ic
to

r

c
e

nt
ra

l v
e

rifi
e

r

c
e

nt
ra

l v
e

rifi
e

r

predictions

live-ins and live-outs

❶

❸

❷
❶

❶
❷

❸

9

What is needed for this execution model?

a

e

nce

rmance
V

V

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

lue Predictor:
• accurate
• high coverage
• fast

rification/Commitment Mechanism:
• fast

} gives latency tolera

determines perfo

10

Outline

or”
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

• Overview
• Motivation
• Code Approximation

“building a better value predict
O the big idea
O approximation example

• Distilled Programs
• Master/Slave Speculative Parallelization
• Evaluation
• Summary of Thesis Contributions

11

Building a Decent Value Predictor

a

n
he necessary

❶

❷

❸

gram
H

I

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

rdware value predictors have
• mediocre accuracy, coverage, or both

sight #1/tautology:
Execution of program correctly computes t

program values

va
lu

e
 p

re
d

ic
to

r

c
e

nt
ra

l v
e

rifi
e

r

❶

❷
❸

c
e

nt
ra

l v
e

rifi
e

r

❶

❷

❸

problem: execution no faster than pro

12

Building a Decent Value Predictor

n l of the time

❶

❷

❸

ginal code

ximate code

allelization)

proximation)
I

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

sight #2: Predictions need not be correct al

Approximate Code

va
lu

e
 p

re
d

ic
to

r

c
e

nt
ra

l v
e

rifi
e

r

❶

❷

❸

c
e

nt
ra

l v
e

rifi
e

r

❶

❷

❸

❶

❷

❸

ori

appro

(fast by par

(fast by ap

13

Approximate Code - The Big Idea

n n

r

o
han static
I

P

P

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

 most programs large discrepancy betwee
• what could happen
• what does happen

ogram Paths: [Ball & Larus]

• >232 potential acyclic paths
• <1000 paths cover >90% execution

inter Analysis: [Mock, et al.]

• dynamic points-to-sets 5 times smaller t

14

Approximate Code - The Big Idea

n n

e

I

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

 most programs large discrepancy betwee
• what could happen
• what does happen

Things that are possible

Things that happen in practic

15

Approximate Code - The Big Idea

p

e

ra
e behaviors
A

T

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

proximate Code
• can focus on common-case behavior
• enables many optimizations

Things that are possible

Things that happen in practic

ditionally compiled code
• must conservatively preserve all possibl
• prevents many optimizations

16

Approximation Example

spec_getc

0)

printf
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

bsR

Example from bzip2 (SpecInt 200
(represents 3% of total execution)

exit
fprintf

fwrite

csEOF

printf

17

Approximation Example

spec_getc

~3M

~3M

~3M

~3M

~3M

printf

~

 code
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

78

6

~3M

~3M

bsR

6

6

exit
fprintf

fwrite

csEOF

printf

~3M

7M

Dominant Path
Infrequent Path
Unused Path

2 dominant paths through the

18

Constructing Approximate Code

spec_getc

~3M

~3M

~3M

~3M

~3M

~

oved paths)
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

bsR

Remove non-dominant paths

~3M

~3M

~3M

7M

(code will be incorrect for rem

19

Constructing Approximate Code, cont.

spec_getc

c blocks

~

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

bsR

Remove branches, unifying basi

~3M

~3M

7M

20

Constructing Approximate Code, cont.

~

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

bsR

Inline function

~3M

~3M

7M

21

Constructing Approximate Code, cont.

 opportunities

~

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

bsR

Apply traditional optimizations
simplified code → additional

~3M

~3M

7M

22

Constructing Approximate Code

o

u fe)
ns

ptimizations:
erature, e.g.,
 elimination

allocation
ndancy elim.

o

aining code
R

S

R

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ot optimizations (speculative/unsafe)
• remove uncommon cases

pporting optimizations (non-speculative/sa
• new benefit enabled by root optimizatio

Supporting O
existing lit

• dead code
• inlining
• register re-
• partial redu
• etc.

ot Optimizations:
• biased branch elimination
• long dependence store elim.
• null operation elim.
• indirect-to-direct call conv.

eliminate instructions transform rem

23

Approximate Code

q racteristics:
inal code

ode

..
MSSP

~3M

~3M

bsR

oximation
e

.

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

uivalent 99.999% of time, better execution cha
• fewer dynamic instructions: ~1/3 of orig
• smaller static size: ~2/5 of original code
• fewer taken branches: ~1/4 of original c
• smaller fraction of loads/stores

 but still, it is incorrect 0.001% of the time.
• use approx. and orig. code together →

78

6

~3M

~3M

bsR

spec_getc

~3M

~3M

~3M

~3M

6

6
~3M

exit

printf

fprintf

fwrite

csEOF

printf

~3M

~7M
~7M

Original Code Appr

24

Outline
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

• Overview
• Motivation
• Code Approximation
• Distilled Programs

“approximate code for MSSP”
O supporting transitions to original program
O distilled program structure

• Master/Slave Speculative Parallelization
• Evaluation
• Summary of Thesis Contributions

25

Using Approximate Code in MSSP

D

tilled program
 misspeculation)
“

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

istilled Program”
• approximate version of program
• serves as the value predictor
• supports forking to/from original code

d
is

til
le

d
 p

ro
g

ra
m

c
e

nt
ra

l v
e

rifi
e

r

forking tasks

restarting the dis
(after a task

26

Supporting Transitions

i
ction bounds

 dry (in thesis)

n

w FORK

TO
ORIG.
CODE

OM
RIG.
ODE

fork

ntry

d
is

til
le

d
p

ro
g

ra
m

d
is

til
le

d
p

ro
g

ra
m

S

E

T

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

mplification
• only support transitions at defined instru
• static task boundaries

O selection method only slightly novel, and

code task bounds in distilled program
• know values needed at transitions
• facilitates optimization (e.g., DCE)

o “requirements”:
• mapping program counters
• mapping program state

FR
O
C

e

27

Mapping Program Counters

i al program

o link (e.g., JAL)

o
anch target)

n

ogram
D

F

F

E

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

stilled program image is distinct from origin
• no implicit mapping between programs
• must create explicit map

ur cases: fork, entry, indirect branches and

rks: (from distilled to original program)
• encode PC in distilled program (e.g., br

tries: (from original to distilled program)
• use table lookup

O want to avoid modifications to original pr
• much like page table/TLB

28

Mapping Program State

led program

s

sed better)

...
use r2
...

ld r1, 68(gp)
ld r2, 0(r11)

ariant
otion
U

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

Goal is to maximize performance of distil

eful to re-map program state
• avoid computing intermediates
• re-allocate registers (limited resource u

...
ld r1, 68(gp)
ld r2, 0(r11)
use r2
...
return

call ...
ld r1, 68(gp)
ld r2, 0(r11)
use r2
...

Loop Inv
Code MInline

29

Mapping Program State, cont.

r dary...
cted locations

o
 to map state
n be wrong)

FROM
ORIG.
CODE

ld r1, 68(gp)
ld r2, 0(r11)

in- transition
code
P

S

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

oblem: If re-mapping crosses the task boun
...values not in expe

lution: Transition Code
• code snippet executed during transition
• reminiscent of VLIW fix-up code (but ca

task boundary

...
use r2
...

ld r1, 68(gp)
ld r2, 0(r11) FROM

ORIG.
CODE

r2 not
expected
value

...
use r2
...

ld r1, 68(gp)
ld r2, 0(r11)

task boundary

30

Distilled Program Structure

FORK

D PROGRAM

OUT
TRANS.
CODE

jmp PC

:

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ORIGINAL PROGRAM DISTILLE

IN
TRANS.
CODE

TASK BOUNDARY AT PC

PC

RESTART MAP

PC:
PC’

31

Outline
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

• Overview
• Motivation
• Code Approximation
• Distilled Programs
• Master/Slave Speculative Parallelization

O hardware organization
O forking tasks
O assembling checkpoints
O verification/commitment

• Evaluation
• Summary of Thesis Contributions

32

Master/Slave Speculative Parallelization

entation

L
ally banked

 for collecting
-out values
O

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

kay, how does MSSP work?
• demonstrate using an example implem

2 Cache & Global Register File
physic

Architected Storage

live-in
values

live-out
values

chkpt
values

proc
L1 $

proc
L1 $

proc
L1 $

hardware
live-in/live

Enhanced CMP

33

MSSP Overview

A

B

chkpt @A

m

 C

verify B

proc
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

B

C

D

chkpt @D

chkpt @C

chkpt @
B’

A’

C’

D’

Slaves:
original progra

verify D

verify

procproc procproc

Master:
distilled program

34

Step Zero

t culation

ster File (GRF)
A

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

 beginning of program, or after task misspe
• all processors idle
• architected memory in L2 (or below)
• architected register state in Global Regi
• all live-in, live-out, chkpt buffers empty

idle idle idle idle

empty empty empty

arch RFarch. memory

35

Step One: Restarting

t

rmal uniproc.)

F, task N
S

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

art Non-speculative Slave:
• select processor
• send PC, copy of register file, task #
• execute task non-speculatively (i.e., no
•

NS

arch RFarch. memory

slave

PC, R

36

Step One: Restarting, cont

t

ask #

, RF, task N

map PC
S

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

art Master:
• map PC using table look-up
• select processor
• send mapped PC, copy of register file, t
• execute in-transition code (if any)
• begin executing distilled program

NS

arch RFarch. memory

slave

map’d PC

Master

37

Step Two: Execution

o

ectly into
 storage
N

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

n-speculative slave execution:
• send live-outs to L2/GRF

O immediately update architected state

NS

arch RFarch. memory

slave
Master

commit dir
architected

38

Step Two: Execution, cont.

it into
int storage
M

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

aster execution:
• bundle up live-outs, send to L2/GRF

O stored as checkpoint values
• encounter a fork instruction

O increment task number
O send a message to GRF with fork PC

NS

arch RFarch. memory

slave
Master comm

checkpo

chkptfork task N+1, forkPC

39

Step Three: Forking Speculative Slaves

t

 chkpt RF,
 N+1
S

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

art Speculative Slave:
• select processor
• send fork PC, reg. file checkpoint, task #

NS

arch RFarch. memory

slave
Master

chkpt

 forkPC,

spec
slave

task

40

Interlude: Assembling Checkpoints

i

an request
lue

s
f task
n demand
S

A

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

milar to the ARB from Multiscalar
• Checkpoint values tagged with task #

• reads get the most recent value older th
O architected state supplied if no chkpt va

sembly performed by the L2/GRF
• register file is assembled at beginning o
• memory assembled a block at a time, o

O cached in the local (L1) caches

ARCHITECTED STATE

TASK N
TASK N-1
TASK N-2

request (task N+1)

41

Step Four: Executing Speculative Slaves

p
ginal code

nd to L2/GRF
s

s & stores
S

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

eculative Slave Execution:
• execute out-transition code, jump to ori
• execute task
• collecting live-in and live-out values, se

O buffer as speculative live-ins and live-out

NS

arch RFarch. memory

slave
Master

chkpt

spec
slave

live-ins live-outs

live-in regs & loads
live-out reg

42

Step Five: Verification & Commitment

e

ted state

lues

outs
V

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

rification/Commitment:
• compare live-ins to architected state
• if matches, commit live-outs to architec
• process should appear atomic

O avoid memory ordering violations
• de-allocate task’s live-ins and chkpt va

arch RFarch. memory

Master spec
slave

live-ins live-outs

done done

compare live-ins to
architected state

commit live-

43

Step Five: Verification & Commitment, cont.

f

ve)

w
ted L2
I

T

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

live-ins do not match?
• task misspeculation!
• purge live-ins, live-outs, chkpts
• squash all executing tasks (master & sla
• restart

o notes:
• process more complicated with distribu

O two-phase commit
• process can be pipelined

O overlaps communication latency

44

Outline
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

• Overview
• Motivation
• Code Approximation
• Distilled Programs
• Master/Slave Speculative Parallelization
• Evaluation

O goal
O methodology
O results

• Summary of Thesis Contributions

45

Evaluation

ig picture

s?

mance
G

Q

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

oal:
Develop first-cut infrastructure to see b

uestions to be answered:
• is the architecture latency tolerant?
• what optimizations are important?
• how much hardware is required?
• can you get performance improvement

O i.e., should I bother continue studying it?

goal is not to exactly quantify perfor

46

Methodology: Distiller

i

ore elimination

re-allocation,
nt folding,
D

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

stiller prototype:
• binary-to-binary “translator”

O Alpha architecture memory images
• static, off-line for simplicity
• approximate run-time optimization

O accurate profile info by self training

• root optimizations:
O biased branch, null op, long dep/silent st

• supporting optimizations:
O dead code elimination, inlining, register

save/restore elimination, simple consta
simple loop unrolling, code layout

O many more possible

47

Methodology: Simulator

x

 window)
line

ation latency
lled
)

E

M

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ecution-driven simulator:
• derived from SimpleScalar toolkit
• not de-coupled functional/timing

O gives me some confidence of the results

odel: CMP of 8 Alpha 21264 processors
• 4-way OOO superscalar core (128 entry
• 64kB L1 2-way SA caches, 13 cycle pipe
• 2MB L2 cache, banked 8 ways
• 10 cycle min. inter-processor communic

O point-to-point: network contention mode
• 100 cycle memory access (after L2 miss

48

Results Summary

i
ns (or better)

p enchmark

u
pporting

a ts
→ 20 cycles)

state
D

S

S

L

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

stilled programs can be accurate:
• 1 task misprediction per 10,000 instructio

eedup depends on distillation: varies by b
• 1.25 h-mean (ranges from 1.0 to 1.75)

pporting optimizations are important
• speedup: 1/3 root, 1/3 DCE, 1/3 other su

tency tolerant, modest storage requiremen
• 10% performance lost (comm. latency 5
• 24kB storage at L2 for non-architectural

49

Distilled Program Accuracy

urate

av
g.

 m
is

p.
 d

is
ta

nc
e

twolf vortex vpr

eculations
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

distilled programs can be very acc

1000

10000

100000

bzip2 crafty eon gap gcc gzip mcf parser perl

average distance between task missp

50

Distillation ratio

arks

twolf vortex vpr

rogram)
rogram)
unting nops)
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

large variance between benchm

0.0

0.2

0.4

0.6

0.8

1.0

di
st

ill
at

io
n

ra
tio

bzip2 crafty eon gap gcc gzip mcf parser perl

instructions executed by master (dist. p
instructions executed by slave (orig. p

(not co

51

Performance

tion ratio
twolf vortex vpr

av
g.

 m
is

p.
 d

is
ta

nc
e

twolf vortex vpr

twolf vortex vpr
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

performance benefits scale with distilla

1.0

1.2

1.4

1.6

sp
ee

du
p

bzip2 crafty eon gap gcc gzip mcf parser perl

1000

10000

100000

bzip2 crafty eon gap gcc gzip mcf parser perl

0.0

0.2

0.4

0.6

0.8

1.0

di
st

ill
at

io
n

ra
tio

bzip2 crafty eon gap gcc gzip mcf parser perl

52

Importance of Supporting Optimizations

speedup

R D A

twolf

R D A

vortex

R D A
twolf

R D A
vortex

R D A
twolf

R D A
vortex

ode elimination
Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

supporting opts. provide much of the

100

1000

10000

100000
m

is
sp

ec
ul

at
io

n
di

st
an

ce

R D A

bzip2

R D A

crafty

R D A

eon

R D A

gcc

R D A

gzip

R D A

parser

R D A

perl

0.0

0.2

0.4

0.6

0.8

1.0

di
st

ill
at

io
n

ra
tio

R D A
bzip2

R D A
crafty

R D A
eon

R D A
gcc

R D A
gzip

R D A
parser

R D A
perl

1.0

1.5

2.0

sp
ee

cu
p

R D A
bzip2

R D A
crafty

R D A
eon

R D A
gcc

R D A
gzip

R D A
parser

R D A
perl

Root
root + Dead c
All

53

Inter-processor Communication Latency Sensitivity

a

 latency

SML
twolf

SML
vortex

SML
vpr
V

M

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ry the communication latency:
• S: 5 cycles, M: 10 cycles, L: 20 cycles

ost benchmarks ~10% slower w/4x latency

Largely insensitive to communication

1

2

Sp
ee

du
p

SML
bzip2

SML
crafty

SML
eon

SML
gap

SML
gcc

SML
gzip

SML
mcf

SML
parser

SML
perl

54

Hardware Storage Requirements

ra
-out stores

4

fering

CL S
twolf

CL S
vortex

CL S
vpr
T

2

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

ck non-architectural storage used
• C: checkpoint, L: memory live-ins, S: live

kB storage (total at L2) seems sufficient
• About 1% of the bits of a 2MB L2 cache

Modest amount of speculation buf

0

50

100

150

200

R
eq

ui
re

d
St

or
ag

e(
8B

 w
or

ds
)

CL S
bzip2

CL S
crafty

CL S
eon

CL S
gap

CL S
gcc

CL S
gzip

CL S
mcf

CL S
parser

CL S
perl

55

Conclusion

r :

e

ffort

earch
A

P

Master/Slave Speculative Parallelization and Approximate Code
Craig Zilles and Guri Sohi

chitecture displays desired characteristics
• latency tolerance
• modest hardware requirements
• support for legacy binaries
• distilled program need not be verified

rformance could be better
• accuracy is good
• distillation will improve with additional e

Promising avenue for continued res

	MainTitle -
	Author - Master/Slave Speculative Parallelization and Approximate�Code
	Author - Craig Zilles and Guri Sohi
	Affiliation - October 7, 2002
	Affiliation -
	Affiliation - Computer Sciences Department
	Affiliation - University of Wisconsin - Madison
	Affiliation -

	Title - Overview
	Body -
	Body -
	Body - Goal: faster single-threaded program execution
	Level1 - • minding complexity & communication considerations

	Body -
	Body - Concept: Code Approximation
	Level1 - • generate faster, but imperfect copy of program

	Body -
	Body - Execution Model: Master/Slave Speculative Parallelization
	Level1 - • performance of approximate code
	Level1 - • correctness of original program

	Title - Motivation
	Body -
	Body - Moore’s Law:
	Level1 - • many transistors Æ potential for higher performance
	Level1 - • serious design challenges
	Level2- - - physical constraints
	Level2- - - design/verification effort

	Body -
	Body - Chip Multiprocessor (CMP):
	Level1 - • replicate medium-sized processor
	Level2+ - + shorter wires
	Level2+ - + replication reduces design effort

	Level1 - • software challenges
	Level2- - - must find something for processors to do!

	Body -

	Title - Need Thread-level Parallelism
	Body -
	Body - Some workloads have existing thread-level parallelism
	Level1 - • server, scientific, batch/throughput

	Body -
	Body - ... but, writing parallel programs is hard!!
	Level1 - • correct sequential programs are hard enough
	Level1 - • most programmers can’t justify the additional effort

	Body -
	Body - Traditional automatic parallelization not widely applicable
	Level1 - • analyze code, prove equivalency of parallel version
	Level1 - • proving difficult in most code

	Body -
	Body - Relax analysis requirements with dynamic checks
	Key -
	Key - Speculative Parallelization (SP)

	Title - Speculative Parallelization
	Title - ... but, Speculation is not a Panacea
	Body -
	Body - Programs are rife with true dependences
	Body -
	Body - In previous SP models:
	Level1 - • inter-processor communication latency serialized by exposed inter-task dependences

	Body -

	Title - Avoiding Serializing Latency
	Body -
	Body - Predict inter-task communication
	Level1 - • assume: an accurate value predictor can be built
	Level1 - • predict all values at task boundaries (including PC)
	Level1 - • execute each task completely independently

	Body -
	Body - Verify predictions
	Level1 - • compare predicted live-ins to architected state
	Level2 - O basically, the re-use test (i.e., Sodani & Sohi ISCA 1997)

	Level1 - • buffer live-ins, live-outs during execution
	Level1 - • when head:
	Level2 - O check live-ins, commit live-outs

	Title - Overlap Communication Latency
	Title -
	Body -
	Body - If infinite # of processors & perfect prediction accuracy:
	Level1 - • performance independent of communication latency
	Level1 - • value predictor & verifier determine execution rate

	Title - What is needed for this execution model?
	Body -
	Body - Value Predictor:
	Level1 - • accurate
	Level1 - • high coverage
	Level1 - • fast

	Body -
	Body - Verification/Commitment Mechanism:
	Level1 - • fast

	Body -

	Title - Outline
	Level1 - • Overview
	Level1 - • Motivation
	Level1 - • Code Approximation
	Key - “building a better value predictor”
	Level2 - O the big idea
	Level2 - O approximation example
	Level1 - • Distilled Programs
	Level1 - • Master/Slave Speculative Parallelization
	Level1 - • Evaluation
	Level1 - • Summary of Thesis Contributions

	Title - Building a Decent Value Predictor
	Body - Hardware value predictors have
	Level1 - • mediocre accuracy, coverage, or both

	Body -
	Body - Insight #1/tautology:
	Key - Execution of program correctly computes the necessary program values

	Title - Building a Decent Value Predictor
	Body -
	Body - Insight #2: Predictions need not be correct all of the time
	Key -
	Key - Approximate Code

	Title - Approximate Code - The Big Idea
	Body - In most programs large discrepancy between
	Level1 - • what could happen
	Level1 - • what does happen

	Body -
	Body - Program Paths: [Ball & Larus]
	Level1 - • >232 potential acyclic paths
	Level1 - • <1000 paths cover >90% execution

	Body -
	Body - Pointer Analysis: [Mock, et al.]
	Level1 - • dynamic points-to-sets 5 times smaller than static

	Body -
	Body -

	Title - Approximate Code - The Big Idea
	Key -

	Title - Approximate Code - The Big Idea
	Body - Approximate Code
	Level1 - • can focus on common-case behavior
	Level1 - • enables many optimizations

	Title - Approximation Example
	Body -
	Body -

	Title - Approximation Example
	Body -

	Title - Constructing Approximate Code
	Body -

	Title - Constructing Approximate Code, cont.
	Body -

	Title - Constructing Approximate Code, cont.
	Body -

	Title - Constructing Approximate Code, cont.
	Body -

	Title - Constructing Approximate Code
	Title -
	Body - Root optimizations (speculative/unsafe)
	Level1 - • remove uncommon cases

	Body -
	Body - Supporting optimizations (non-speculative/safe)
	Level1 - • new benefit enabled by root optimizations

	Body - Supporting Optimizations:
	Key - existing literature, e.g.,
	Level1 - • dead code elimination
	Level1 - • inlining
	Level1 - • register re-allocation
	Level1 - • partial redundancy elim.
	Level1 - • etc.

	Title - Approximate Code
	Body - equivalent 99.999% of time, better execution characteristics:
	Level1 - • fewer dynamic instructions: ~1/3 of original code
	Level1 - • smaller static size: ~2/5 of original code
	Level1 - • fewer taken branches: ~1/4 of original code
	Level1 - • smaller fraction of loads/stores

	Body -
	Body - ... but still, it is incorrect 0.001% of the time.
	Level1 - • use approx. and orig. code together Æ MSSP

	Title - Outline
	Level1 - • Overview
	Level1 - • Motivation
	Level1 - • Code Approximation
	Level1 - • Distilled Programs
	Key - “approximate code for MSSP”
	Level2 - O supporting transitions to original program
	Level2 - O distilled program structure
	Level1 - • Master/Slave Speculative Parallelization
	Level1 - • Evaluation
	Level1 - • Summary of Thesis Contributions

	Title - Using Approximate Code in MSSP
	Body -
	Body - “Distilled Program”
	Level1 - • approximate version of program
	Level1 - • serves as the value predictor
	Level1 - • supports forking to/from original code

	Body - Supporting Transitions
	Body -
	Body - Simplification
	Level1 - • only support transitions at defined instruction bounds
	Level1 - • static task boundaries
	Level2 - O selection method only slightly novel, and dry (in thesis)

	Body -
	Body - Encode task bounds in distilled program
	Level1 - • know values needed at transitions
	Level1 - • facilitates optimization (e.g., DCE)

	Body -
	Body - Two “requirements”:
	Level1 - • mapping program counters
	Level1 - • mapping program state

	Title - Mapping Program Counters
	Body -
	Body - Distilled program image is distinct from original program
	Level1 - • no implicit mapping between programs
	Level1 - • must create explicit map

	Body -
	Body - Four cases: fork, entry, indirect branches and link (e.g., JAL)
	Body -
	Body - Forks: (from distilled to original program)
	Level1 - • encode PC in distilled program (e.g., branch target)

	Body -
	Body - Entries: (from original to distilled program)
	Level1 - • use table lookup
	Level2 - O want to avoid modifications to original program

	Level1 - • much like page table/TLB

	Title - Mapping Program State
	Body -
	Key - Goal is to maximize performance of distilled program
	Body -
	Body - Useful to re-map program state
	Level1 - • avoid computing intermediates
	Level1 - • re-allocate registers (limited resource used better)
	Code - ...
	Code - ld r1, 68(gp)
	Code - ld r2, 0(r11)
	Code - use r2
	Code - ...
	Code - return

	Title - Mapping Program State, cont.
	Body - Problem: If re-mapping crosses the task boundary...
	Body - ...values not in expected locations
	Body -
	Body - Solution: Transition Code
	Level1 - • code snippet executed during transition to map state
	Level1 - • reminiscent of VLIW fix-up code (but can be wrong)
	Code - task boundary

	Title - Distilled Program Structure
	Body -

	Title - Outline
	Level1 - • Overview
	Level1 - • Motivation
	Level1 - • Code Approximation
	Level1 - • Distilled Programs
	Level1 - • Master/Slave Speculative Parallelization
	Level2 - O hardware organization
	Level2 - O forking tasks
	Level2 - O assembling checkpoints
	Level2 - O verification/commitment

	Level1 - • Evaluation
	Level1 - • Summary of Thesis Contributions

	Title - Master/Slave Speculative Parallelization
	Body -
	Body - Okay, how does MSSP work?
	Level1 - • demonstrate using an example implementation

	Body - L2 Cache & Global Register File

	Title - MSSP Overview
	Body - Slaves:
	Body - original program
	Body -

	Title - Step Zero
	Body -
	Body - At beginning of program, or after task misspeculation
	Level1 - • all processors idle
	Level1 - • architected memory in L2 (or below)
	Level1 - • architected register state in Global Register File (GRF)
	Level1 - • all live-in, live-out, chkpt buffers empty

	Title - Step One: Restarting
	Body -
	Body - Start Non-speculative Slave:
	Level1 - • select processor
	Level1 - • send PC, copy of register file, task #
	Level1 - • execute task non-speculatively (i.e., normal uniproc.)
	Level1 -

	Title - Step One: Restarting, cont
	Body - Start Master:
	Level1 - • map PC using table look-up
	Level1 - • select processor
	Level1 - • send mapped PC, copy of register file, task #
	Level1 - • execute in-transition code (if any)
	Level1 - • begin executing distilled program

	Title - Step Two: Execution
	Body -
	Body - Non-speculative slave execution:
	Level1 - • send live-outs to L2/GRF
	Level2 - O immediately update architected state

	Body -
	Body -

	Title - Step Two: Execution, cont.
	Body - Master execution:
	Level1 - • bundle up live-outs, send to L2/GRF
	Level2 - O stored as checkpoint values

	Level1 - • encounter a fork instruction
	Level2 - O increment task number
	Level2 - O send a message to GRF with fork PC

	Title - Step Three: Forking Speculative Slaves
	Body -
	Body - Start Speculative Slave:
	Level1 - • select processor
	Level1 - • send fork PC, reg. file checkpoint, task #

	Title - Interlude: Assembling Checkpoints
	Body -
	Body - Similar to the ARB from Multiscalar
	Level1 - • Checkpoint values tagged with task #
	Level1 - • reads get the most recent value older than request
	Level2 - O architected state supplied if no chkpt value

	Body -
	Body - Assembly performed by the L2/GRF
	Level1 - • register file is assembled at beginning of task
	Level1 - • memory assembled a block at a time, on demand
	Level2 - O cached in the local (L1) caches

	Title - Step Four: Executing Speculative Slaves
	Body -
	Body - Speculative Slave Execution:
	Level1 - • execute out-transition code, jump to original code
	Level1 - • execute task
	Level1 - • collecting live-in and live-out values, send to L2/GRF
	Level2 - O buffer as speculative live-ins and live-outs

	Title - Step Five: Verification & Commitment
	Body - Verification/Commitment:
	Level1 - • compare live-ins to architected state
	Level1 - • if matches, commit live-outs to architected state
	Level1 - • process should appear atomic
	Level2 - O avoid memory ordering violations

	Level1 - • de-allocate task’s live-ins and chkpt values

	Title - Step Five: Verification & Commitment, cont.
	Body -
	Body - If live-ins do not match?
	Level1 - • task misspeculation!
	Level1 - • purge live-ins, live-outs, chkpts
	Level1 - • squash all executing tasks (master & slave)
	Level1 - • restart

	Body -
	Body - Two notes:
	Level1 - • process more complicated with distributed L2
	Level2 - O two-phase commit

	Level1 - • process can be pipelined
	Level2 - O overlaps communication latency

	Title - Outline
	Level1 - • Overview
	Level1 - • Motivation
	Level1 - • Code Approximation
	Level1 - • Distilled Programs
	Level1 - • Master/Slave Speculative Parallelization
	Level1 - • Evaluation
	Level2 - O goal
	Level2 - O methodology
	Level2 - O results

	Level1 - • Summary of Thesis Contributions

	Title - Evaluation
	Body -
	Body - Goal:
	Key - Develop first-cut infrastructure to see big picture
	Body -
	Body - Questions to be answered:
	Level1 - • is the architecture latency tolerant?
	Level1 - • what optimizations are important?
	Level1 - • how much hardware is required?
	Level1 - • can you get performance improvements?
	Level2 - O i.e., should I bother continue studying it?

	Body -

	Key - goal is not to exactly quantify performance

	Title - Methodology: Distiller
	Body -
	Body - Distiller prototype:
	Level1 - • binary-to-binary “translator”
	Level2 - O Alpha architecture memory images

	Level1 - • static, off-line for simplicity
	Level1 - • approximate run-time optimization
	Level2 - O accurate profile info by self training

	Body -
	Level1 - • root optimizations:
	Level2 - O biased branch, null op, long dep/silent store elimination

	Level1 - • supporting optimizations:
	Level2 - O dead code elimination, inlining, register re-allocation, save/restore elimination, sim...
	Level2 - O many more possible

	Title - Methodology: Simulator
	Body -
	Body - Execution-driven simulator:
	Level1 - • derived from SimpleScalar toolkit
	Level1 - • not de-coupled functional/timing
	Level2 - O gives me some confidence of the results

	Body -
	Body - Model: CMP of 8 Alpha 21264 processors
	Level1 - • 4-way OOO superscalar core (128 entry window)
	Level1 - • 64kB L1 2-way SA caches, 13 cycle pipeline
	Level1 - • 2MB L2 cache, banked 8 ways
	Level1 - • 10 cycle min. inter-processor communication latency
	Level2 - O point-to-point: network contention modelled

	Level1 - • 100 cycle memory access (after L2 miss)

	Title - Results Summary
	Body -
	Body - Distilled programs can be accurate:
	Level1 - • 1 task misprediction per 10,000 instructions (or better)

	Body -
	Body - Speedup depends on distillation: varies by benchmark
	Level1 - • 1.25 h-mean (ranges from 1.0 to 1.75)

	Body -
	Body - Supporting optimizations are important
	Level1 - • speedup: 1/3 root, 1/3 DCE, 1/3 other supporting

	Body -
	Body - Latency tolerant, modest storage requirements
	Level1 - • 10% performance lost (comm. latency 5 Æ 20 cycles)
	Level1 - • 24kB storage at L2 for non-architectural state

	Title - Distilled Program Accuracy
	Key - distilled programs can be very accurate

	Title - Distillation ratio
	Key - large variance between benchmarks

	Title - Performance
	Key - performance benefits scale with distillation ratio

	Title - Importance of Supporting Optimizations
	Key - supporting opts. provide much of the speedup

	Title - Inter-processor Communication Latency Sensitivity
	Body - Vary the communication latency:
	Level1 - • S: 5 cycles, M: 10 cycles, L: 20 cycles

	Body -
	Body -
	Body - Most benchmarks ~10% slower w/4x latency
	Body -
	Key - Largely insensitive to communication latency

	Title - Hardware Storage Requirements
	Body - Track non-architectural storage used
	Level1 - • C: checkpoint, L: memory live-ins, S: live-out stores

	Body -
	Body - 24kB storage (total at L2) seems sufficient
	Level1 - • About 1% of the bits of a 2MB L2 cache

	Key -
	Key - Modest amount of speculation buffering

	Title - Conclusion
	Body -
	Body -
	Body - Architecture displays desired characteristics:
	Level1 - • latency tolerance
	Level1 - • modest hardware requirements
	Level1 - • support for legacy binaries
	Level1 - • distilled program need not be verified

	Body -
	Body - Performance could be better
	Level1 - • accuracy is good
	Level1 - • distillation will improve with additional effort

	Body -
	Key - Promising avenue for continued research

