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Technology Scaling: Classical View

• Classical Scaling: successive generations

– Device size is halved: same area offers 2X resources

• Opportunity: performance and concurrency

Generation 1 Generation 2 Generation 3Generation N
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Technology Scaling: Power

• Scaling Challenge: Power

– Power improvement lags capacity improvement

Generation 1 Generation 2 Generation 3Generation N

18 W 27 W 89 W610 W
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Why power is a problem?

* Warning: Do not attempt this on your system
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Power and Cooling 
Power Supply and Cooling
– Hard limit on cost-effective cooling solution
– Difficult to supply (large) power in small enclosure
– Cost components are substantial

Limited room for increasing processor power 
consumption
– Constant Thermal Design Power (TDP)
– Performance and energy efficiency must improve
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Thesis Contributions
Simultaneously Active Fraction
– Model for power constraint
– Application in multicore design

Over-provisioned Multicore Systems (OPMS)
– Over-provisioning core resources
– Design consideration and implementation

Computation Spreading
– Classic application for an OPMS
– Selectively employs on-chip processing cores to reduce power 

consumption but improve compute efficiency
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Outline
Motivation
Simultaneously Active Fraction
– Area perspective of power constraint
– SAF Trends
– Application of SAF in Multicore Design

Over-provisioned Multicore System
Computation Spreading
Results
Conclusion
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Area and Power constraints
Area constraint
– Aggregation of on-chip device area
– Statically satisfied 

– Each technology generation defines the minimum device 
area

Power constraint
– Aggregation of individual device power
– Dynamically satisfied

– Devices operate at a wide range of power levels
– Different subsets of devices can account for chip power

– Hard to accurately estimate chip power at an early design phase
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Power constraint: An Area Perspective 

Current systems are power limited
– A shift from area limited designs of the past

– Many architectural intuitions deal well with area
– Connecting theme: managing resources

Transformation: Power constraint to Area constraint

Area Budget
SAF

Simultaneously Active Fraction (SAF): Fractional area consuming target power

Power Budget
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SAF: First order model
Power = Individual Device Power * SAF * ND

ND: Number of devices

– 2X increase from Device scaling

Power: remains constant

Individual Device Power

– Dynamic power from switching

– Key parameters: voltage, capacitance, frequency

– Small improvement due to limited voltage scaling

– Static power from leakage

– Manufacturing process and circuit design style

SAF will shrink with technology scaling

SAF = Power / (Individual Device Power * ND)
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SAF Trend

* Assuming only dynamic power
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Technology Scaling: SAF View

Opportunity: SAF-aware multicore design

Paradigm shift: Can’t use all resources simultaneously

– what if 64 cores, but can use only 32 at a time?

Generation 1 Generation X

P P
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Application of SAF
Impact of power constraint at the early design phase
Dissertation illustrates two examples
– Hill-Marty model extension
– Multithreaded Workloads
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Hill-Marty model: Multicore Speedup
Based on Amdahl’s Law
– Workload: sequential and infinitely parallel phase

Resources: n unit cores
– r cores can be combined, sequential performance: perf(r)

Multicore Configurations
– Symmetric: all on-chip cores look alike
– Asymmetric: structurally distinct on-chip cores
– Dynamic: dynamic re-configuration (e.g., combine r unit cores 

dynamically to boost sequential performance)

Speedup: Dynamic > Asymmetric > Symmetric 

What if Multicores are only power limited?
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Power constraint in Hill-Marty Model
De-couple Area and Power constraint
– Modeling Power constraint using SAF 
– Number active cores limited by 
– Dynamically allocate power budget among on-chip cores

Symmetric Multicore

Dynamic Multicore
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Asymmetric Multicore
Distinct cores: where to assign computation?
– Best fit computation assignment

Hill-Marty Model
– Sequential phase: large core composed of r unit cores
– Parallel phase: all the on-chip cores

SAF aware: available cores > allowable active cores
– Core resources can be over-provisioned
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Asymmetric Multicore

Sequential Phase Parallel Phase

Large core Several unit cores

Sequential and parallel phase exploit different cores

– Best case: nrn ≤+∗α
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SAF-aware Asymmetric Multicore 
Sequential and parallel phase exploit different cores
– Best case: 
– Otherwise, during parallel phase choose between

– Using sequential core + few unit cores
– Only use unit cores

nrn ≤+∗α
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Parameters
SAF:
– Speedups shown for 

n: 256
r: graph shows speedup for optimal r
– Restriction: 

f: degree of parallelism
– Graph shows speedup for five different f

α
0.1  to1.0=α

nr ∗≤α
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SAF Speedup: Dynamic Multicore

Diminishing performance gap at lower SAF
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SAF Speedup: Asymmetric Multicore
Performance stability with diminishing SAF
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Asymmetric versus Dynamic

At SAF=1/2 and lower, core assignments become logically equivalent
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SAF Summary
SAF: abstract model of power constraint
– SAF expected to shrink with technology scaling

SAF Application: Hill-Marty model extension
– At higher power constraints, power rivals available parallelism 

as a major performance bottleneck
– Asymmetric multicore speedup equals dynamic multicore at 

higher power constraint
– Over-provisioning core resources is the key
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Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore Systems
– SAF-aware Multicore design paradigm
– Fundamental Characteristics

Computation Spreading
Results
Conclusion
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Power Management: SAF reduction
Utilizing more resources requires SAF reduction
Current Approaches
– Clock Gating: save power from unused circuit component

– Dynamic, but fine grain
– L2/L3 Caches: low SAF by design

– Coarse grain, but static
– Performance does not scale with size

New approaches for SAF reduction

Dynamic coarse-grain SAF reduction
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Over-provisioned Multicore Systems
Consider SAF Reduction at core granularity

– ALU:Uni-processor = core:Multicore

Consider SAF Reduction at core granularity

Application

OS

VMM

OPMS Design Principles

– By design, total cores exceed power budget 

– SAF-aware: avoid concurrent computation on all 
cores

– Flexible computation assignment on cores

– VMM maintains software transparency

Inactive Active
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Technology Invariants in OPMS design
Processing Cores
– Area cost is marginal compared to the cost of powering them up 

simultaneously

On-chip Communication
– Superior bandwidth between on-chip cores
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OPMS: Design Considerations
Interfacing with System Software
– Constantly varying pool of computation resources
– Dissertation implements a lightweight VMM component

– Virtualizes processor resources only
– Software transparent Computation Transfer (CT) between 

on-chip cores

Managing Inactive Cores
Flexible Computation Assignment
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Managing Inactive Cores: Cost/Benefit

Benefit
– Retain predictive state

– Speed up computation 

– Reduce thermal load on each core
– Avoid hotspots

Cost
– Static Power

Remedy: Use circuit techniques
– Sleep transistors based on MTCMOS removes leakage

– Design issues: length of inactive periods (> ~100 cycles [Borkar
2003]), no state-retention

– Retain state in low leakage drowsy mode [Flautner 2002]
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Flexible Computation Assignment
Opportunity: More available cores than active
Distribute computation to enhance benefit from 
predictive structures
– Improve execution time and reduce energy consumption

Classic Application: Computation Spreading
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Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore Systems
Computation Spreading
– Multithreaded Server Application
– General Case and specific application
– Implementation

Results
Conclusion
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CSP: Overview
Multithreaded Server Application
– Extensive code reuse among on-chip processor cores
– Poor utilization of private resources

Computation Spreading (CSP)
– Collocate similar computation fragments from different threads 

on the same core
– Distribute dissimilar computation fragments from same thread 

onto different cores
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CSP: Design Considerations
Dynamic Specialization
– Mutually exclusive code fragments

Preserving Data Locality
– Different computation fragments may share data

Fragment Size
– Amortizing computation transfer cost

Core Contention
– Different fragments may be assigned to the same core
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Implementation 

OS and User computation
– Satisfies all fragment selection objectives
– Server apps spend significant time in OS mode

Core provision
– Provision some cores for running user code, rest for OS code
– VMM perform CT on mode transfer
– OPMS mitigates core contention

Assignment Policies
– Thread Assignment Policy (TAP)

– Maintain VCPU to core mapping
– Syscall Assignment Policy (SAP)

– Maintain system call to core mapping for OS computation
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Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore System
Computation Spreading
Results
Conclusion
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Methodology
SIMICS based full system simulation
Energy estimation: Wattch and HotSPOT
– Thermal model used to calibrate power estimation 
– 32nm technology generation, 0.9V, 3.0GHz

Unmodified Application running on Solaris 9
Out-of-order cores
Performance Comparison
– Baseline System: 8 cores, 16MB shared L2
– OPMS: 12 cores, 12MB shared L2
– Invariants: Power and Area
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Results
Locality Impact
– Memory references: instruction and data
– Performance impact

Energy Efficiency
– Core utilization, energy savings, energy-delay

Sensitivity Analysis
– 12-core system fully utilized at all times
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Instruction Latency Improvement
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Data Latency Improvement
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Performance

CT Overhead: percentage runtime spent in performing CT
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Energy Efficiency
OPMS employs 12 cores instead of 8
– Cores engaged in computation largely determine SAF/power
– Partial reduction in active cores can allow several inactive cores 

to subsist within the same power envelope

Impact of better compute efficiency
– Runtime reduction will save leakage energy 
– Lesser access in shared L2 saves active energy
– Energy-delay improvements from savings in energy and delay
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Active Cores
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Total Core Logic Energy Comparison
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Cache Energy
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Comparative Study with 12-core
Improvements in performance and energy efficiency in 
OPMS
– But, OPMS employs different micro-arch (12 cores)
– What if the same micro-arch exploits more threads?

Exploiting app. concurrency on 12-core system
– Will exceed the baseline power budget

Apply frequency scaling to reduce power
– Voltage scaling is unlikely at this design point, but results will 

show its impact 

Methodological challenge from differing system configs
– Longer simulation runs to alleviate transient effects



Koushik Chakraborty 46PhD. Oral Examination

Power Comparison
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Energy Delay Improvement
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Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore System
Computation Spreading
Results
Conclusion
– Related and Summary
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Related Work
OPMS
– Power Reduction [several]

– Dynamic voltage frequency scaling 
– Activity Migration

– Heat and Run [Powell 2004], AM [Barr 2003]

Computation Spreading
– Software re-design: staged execution

– Cohort Scheduling [Larus and Parkes 01], STEPS [Ailamaki
04], SEDA [Welsh 01], LARD [Pai 98]

– OS and User Interference [several]
– Structural separation to avoid interference
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Summary of Contributions
Simultaneously Active Fraction
– Models first order impact of power constraint in architectural 

design
– Technology trends indicate diminishing SAF in future chips
– Demonstrates reasoning with SAF in multicore designs

Over-provisioned Multicore Systems
– SAF-aware paradigm of multicore designs
– Versatile framework enabling flexible computation assignments

Computation Spreading
– Dynamic specialization of on-chip cores in an OPMS
– Energy-efficiency and performance without demanding more 

power
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Thank You!

http://www.cs.wisc.edu/~kchak
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Contention Overhead
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Inactive Periods

Long inactive periods allow very efficient leakage reduction
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Interconnect Bandwidth
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Runtime
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Multicore Evolution

Improvement

Percentage Improvement

Widening Gap
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SAF

Today (Tulsa: Intel Xeon)

5-10 years

SAF will shrink with technology scaling

Core Logic contributes 75% of power

– 30% area: 75% powerSAF

Current Multicore

?

Technology Trend:

– Improvement in power lagging improvement in effective area
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OPMS: The Next Step Ahead

ApplicationApplication

Operating System

Multicore SystemOPMS

VMM

OPMS Design: What, How and Why ?

Conventional Multicore aims simultaneous 
computation on all cores

OPMS Design Principles

– By Design, total cores exceed power budget 

– Forgo concurrent computation on all cores

– Flexible computation assignment on cores

– VMM maintains software transparency

Inactive Active
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Implementation

VMM

T1        T2VC1        VC2

P1       P2        P3

– OS assigns two threads T1, T2 
on virtual cores VC1, VC2

– VMM provisions physical cores 
P1, P2 for user computation and 
P3 for OS computation

– Each core maintains a VC wait 
queue and a base address offset 
table for register state

Computation Transfer

– save reg. state in memory

– restore state via coherence

– resume computation

ID Base

1 0xaa..7

2 0xab..2

.. …

N 0xcd..1

ID Base

1 0xaa..7

2 0xab..2

.. …

N 0xcd..1

Mode transfers:

– User to OS: system calls, traps

– OS to User: returns 

VC1

WQ

Contention

– two computation assigned to same core

– Wait Queue is populated

– Resumes computation when available
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OS-User Data Communication

Apache OLTP

OS-User Communication is limited
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CSP: Longer 
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Multithreaded Server Application

Important class of multicore applications
Memory stalls are #1 performance bottleneck
– Memory stall = instruction stall + data stall
– Substantial instruction stalls from large code footprint

Software architecture
– Each server thread services one client request
– Individual thread assigned to individual core

Extensive code reuse
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Multicore Code Reuse
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Exploiting Code Reuse
Lack of instruction stream specialization
– Redundancy in predictive state and poor capacity utilization
– Destructive interference

No synergy among multiple cores
– Lost opportunity for co-operation

Computation Spreading (CSP)
– Collocate similar computation fragments from multiple threads
– Distribute dissimilar computation fragments from a single thread
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P1     P2    P3

Example

T1

T1

T2 T3

T1    T2    T3

T3

T3T2

T1 T2T2

Conventional Multicore

P1    P2    P3    P4    
CSP
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CSP: Design Considerations
Dynamic Specialization
– Mutually exclusive code fragments

Preserving Data Locality
– Different computation fragments may share data

Fragment Size
– Amortizing computation transfer cost

Core Contention
– Different fragments may be assigned to the same core
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OS and User Computations
Coarse grain computation fragments
Exercise mutually exclusive code 
Limited data communication
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OS-User Data Communication

Apache OLTP

OS-User Communication is limited



Koushik Chakraborty 69PhD. Oral Examination

Implementation 

OS and User computation
– Satisfies all fragment selection objectives
– Server apps spend significant time in OS mode

Core provision
– Provision some cores for running user code, rest for OS code
– VMM perform CT on mode transfer

Assignment Policies
– Thread Assignment Policy (TAP)

– Maintain VCPU to core mapping
– Syscall Assignment Policy (SAP)

– Maintain system call to core mapping for OS computation
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CSP: Key Aspects

P1    P2    P3    P4    

T1

T1

T2 T3

T3

T3T2

T1 T2T2

Dynamic Specialization and Heterogeneity

– Computation fragments are localized

– Heterogeneity derived from structurally 
identical cores

Computation Transfer (CT)

– Enabling mechanism: transfer 
necessary state between on-chip cores

Inactive cores maintain predictive state

Moving Computation to Data

Selecting Fragments: key objectives

– Mutually exclusive code fragment

– Relatively coarse to amortize CT

– Independent data footprint as much as 
possible
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Performance Comparison
Invariants: Area and power budget

16MB L2 12MB L2 

Baseline * OPMS *

OPMS Schemes: Core Hopping (CHP) and Computation Spreading (CSP)

Full System simulation using SIMICS

– Unmodified server apps running on Solaris

* Figures do no represent floorplan
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Branch Prediction Improvements
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Future Work
Managing Heterogeneity
– Need for energy efficiency push towards specialization
– Both static and dynamic heterogeneity will co-exist
– How can we engage application developers and compilers?

– Abstract model and interface

Bridging general purpose and mobile architecture
– Mobile: sophisticated software with diverse requirements
– Holistic approach breaks the separation of s/w and h/w

– Managing complexity will become infeasible
– Requires abstraction for developing complex software 
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Memory Latency Improvements
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L1 Instruction Miss Comparison
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L1 Load Miss Breakdown
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SAF Speedup: Symmetric and Dynamic

Symmetric Multicore Dynamic Multicore

Diminishing perfomance gap at higher power constraint
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