
July 30,2008 1PhD. Oral Examination

Over-provisioned Multicore Systems

Koushik Chakraborty
Computer Sciences Department

Koushik Chakraborty 2PhD. Oral Examination

Technology Scaling: Classical View

• Classical Scaling: successive generations

– Device size is halved: same area offers 2X resources

• Opportunity: performance and concurrency

Generation 1 Generation 2 Generation 3Generation N

Koushik Chakraborty 3PhD. Oral Examination

Technology Scaling: Power

• Scaling Challenge: Power

– Power improvement lags capacity improvement

Generation 1 Generation 2 Generation 3Generation N

18 W 27 W 89 W610 W

Koushik Chakraborty 4PhD. Oral Examination

Why power is a problem?

* Warning: Do not attempt this on your system

Koushik Chakraborty 5PhD. Oral Examination

Power and Cooling
Power Supply and Cooling
– Hard limit on cost-effective cooling solution
– Difficult to supply (large) power in small enclosure
– Cost components are substantial

Limited room for increasing processor power
consumption
– Constant Thermal Design Power (TDP)
– Performance and energy efficiency must improve

Koushik Chakraborty 6PhD. Oral Examination

Thesis Contributions
Simultaneously Active Fraction
– Model for power constraint
– Application in multicore design

Over-provisioned Multicore Systems (OPMS)
– Over-provisioning core resources
– Design consideration and implementation

Computation Spreading
– Classic application for an OPMS
– Selectively employs on-chip processing cores to reduce power

consumption but improve compute efficiency

Koushik Chakraborty 7PhD. Oral Examination

Outline
Motivation
Simultaneously Active Fraction
– Area perspective of power constraint
– SAF Trends
– Application of SAF in Multicore Design

Over-provisioned Multicore System
Computation Spreading
Results
Conclusion

Koushik Chakraborty 8PhD. Oral Examination

Area and Power constraints
Area constraint
– Aggregation of on-chip device area
– Statically satisfied

– Each technology generation defines the minimum device
area

Power constraint
– Aggregation of individual device power
– Dynamically satisfied

– Devices operate at a wide range of power levels
– Different subsets of devices can account for chip power

– Hard to accurately estimate chip power at an early design phase

Koushik Chakraborty 9PhD. Oral Examination

Power constraint: An Area Perspective

Current systems are power limited
– A shift from area limited designs of the past

– Many architectural intuitions deal well with area
– Connecting theme: managing resources

Transformation: Power constraint to Area constraint

Area Budget
SAF

Simultaneously Active Fraction (SAF): Fractional area consuming target power

Power Budget

Koushik Chakraborty 10PhD. Oral Examination

SAF: First order model
Power = Individual Device Power * SAF * ND

ND: Number of devices

– 2X increase from Device scaling

Power: remains constant

Individual Device Power

– Dynamic power from switching

– Key parameters: voltage, capacitance, frequency

– Small improvement due to limited voltage scaling

– Static power from leakage

– Manufacturing process and circuit design style

SAF will shrink with technology scaling

SAF = Power / (Individual Device Power * ND)

Koushik Chakraborty 11PhD. Oral Examination

SAF Trend

* Assuming only dynamic power

Koushik Chakraborty 12PhD. Oral Examination

Technology Scaling: SAF View

Opportunity: SAF-aware multicore design

Paradigm shift: Can’t use all resources simultaneously

– what if 64 cores, but can use only 32 at a time?

Generation 1 Generation X

P P

Koushik Chakraborty 13PhD. Oral Examination

Application of SAF
Impact of power constraint at the early design phase
Dissertation illustrates two examples
– Hill-Marty model extension
– Multithreaded Workloads

Koushik Chakraborty 14PhD. Oral Examination

Hill-Marty model: Multicore Speedup
Based on Amdahl’s Law
– Workload: sequential and infinitely parallel phase

Resources: n unit cores
– r cores can be combined, sequential performance: perf(r)

Multicore Configurations
– Symmetric: all on-chip cores look alike
– Asymmetric: structurally distinct on-chip cores
– Dynamic: dynamic re-configuration (e.g., combine r unit cores

dynamically to boost sequential performance)

Speedup: Dynamic > Asymmetric > Symmetric

What if Multicores are only power limited?

Koushik Chakraborty 15PhD. Oral Examination

Power constraint in Hill-Marty Model
De-couple Area and Power constraint
– Modeling Power constraint using SAF
– Number active cores limited by
– Dynamically allocate power budget among on-chip cores

Symmetric Multicore

Dynamic Multicore

)10(where, ≤<αα
n∗α

)/()()(
1

1

rnrperf
f

rperf
fSpeedup

∗
+

−
=

)/()()(
1

1

rnαrperf
f

rperf
fSAFSpeedup

∗∗
+

−
=

n
f

nperf
fSpeedup

+
−

=

)(
1

1

n
f

nperf
fSAFSpeedup

∗
+

∗
−

=

αα)(
1

1

Koushik Chakraborty 16PhD. Oral Examination

Asymmetric Multicore
Distinct cores: where to assign computation?
– Best fit computation assignment

Hill-Marty Model
– Sequential phase: large core composed of r unit cores
– Parallel phase: all the on-chip cores

SAF aware: available cores > allowable active cores
– Core resources can be over-provisioned

rnrperf
f

rperf
fSpeedup

−+
+

−
=

)()(
1

1

Koushik Chakraborty 17PhD. Oral Examination

Asymmetric Multicore

Sequential Phase Parallel Phase

Large core Several unit cores

Sequential and parallel phase exploit different cores

– Best case: nrn ≤+∗α

Koushik Chakraborty 18PhD. Oral Examination

SAF-aware Asymmetric Multicore
Sequential and parallel phase exploit different cores
– Best case:
– Otherwise, during parallel phase choose between

– Using sequential core + few unit cores
– Only use unit cores

nrn ≤+∗α

⎪
⎩

⎪
⎨

⎧

=

≤+∗

∗
+

−

>+∗

−−∗+
+

−

nrn

n
f

rperf
f

nrn

rnrnrperf
f

rperf
f

SAFSpeedup
α

α

α

α

 if ,

)(
1

1

 if ,

),)(max()(
1

1

Koushik Chakraborty 19PhD. Oral Examination

Parameters
SAF:
– Speedups shown for

n: 256
r: graph shows speedup for optimal r
– Restriction:

f: degree of parallelism
– Graph shows speedup for five different f

α
0.1 to1.0=α

nr ∗≤α

Koushik Chakraborty 20PhD. Oral Examination

SAF Speedup: Dynamic Multicore

Diminishing performance gap at lower SAF

Koushik Chakraborty 21PhD. Oral Examination

SAF Speedup: Asymmetric Multicore
Performance stability with diminishing SAF

Koushik Chakraborty 22PhD. Oral Examination

Asymmetric versus Dynamic

At SAF=1/2 and lower, core assignments become logically equivalent

Koushik Chakraborty 23PhD. Oral Examination

SAF Summary
SAF: abstract model of power constraint
– SAF expected to shrink with technology scaling

SAF Application: Hill-Marty model extension
– At higher power constraints, power rivals available parallelism

as a major performance bottleneck
– Asymmetric multicore speedup equals dynamic multicore at

higher power constraint
– Over-provisioning core resources is the key

Koushik Chakraborty 24PhD. Oral Examination

Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore Systems
– SAF-aware Multicore design paradigm
– Fundamental Characteristics

Computation Spreading
Results
Conclusion

Koushik Chakraborty 25PhD. Oral Examination

Power Management: SAF reduction
Utilizing more resources requires SAF reduction
Current Approaches
– Clock Gating: save power from unused circuit component

– Dynamic, but fine grain
– L2/L3 Caches: low SAF by design

– Coarse grain, but static
– Performance does not scale with size

New approaches for SAF reduction

Dynamic coarse-grain SAF reduction

Koushik Chakraborty 26PhD. Oral Examination

Over-provisioned Multicore Systems
Consider SAF Reduction at core granularity

– ALU:Uni-processor = core:Multicore

Consider SAF Reduction at core granularity

Application

OS

VMM

OPMS Design Principles

– By design, total cores exceed power budget

– SAF-aware: avoid concurrent computation on all
cores

– Flexible computation assignment on cores

– VMM maintains software transparency

Inactive Active

Koushik Chakraborty 27PhD. Oral Examination

Technology Invariants in OPMS design
Processing Cores
– Area cost is marginal compared to the cost of powering them up

simultaneously

On-chip Communication
– Superior bandwidth between on-chip cores

Koushik Chakraborty 28PhD. Oral Examination

OPMS: Design Considerations
Interfacing with System Software
– Constantly varying pool of computation resources
– Dissertation implements a lightweight VMM component

– Virtualizes processor resources only
– Software transparent Computation Transfer (CT) between

on-chip cores

Managing Inactive Cores
Flexible Computation Assignment

Koushik Chakraborty 29PhD. Oral Examination

Managing Inactive Cores: Cost/Benefit

Benefit
– Retain predictive state

– Speed up computation

– Reduce thermal load on each core
– Avoid hotspots

Cost
– Static Power

Remedy: Use circuit techniques
– Sleep transistors based on MTCMOS removes leakage

– Design issues: length of inactive periods (> ~100 cycles [Borkar
2003]), no state-retention

– Retain state in low leakage drowsy mode [Flautner 2002]

Koushik Chakraborty 30PhD. Oral Examination

Flexible Computation Assignment
Opportunity: More available cores than active
Distribute computation to enhance benefit from
predictive structures
– Improve execution time and reduce energy consumption

Classic Application: Computation Spreading

Koushik Chakraborty 31PhD. Oral Examination

Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore Systems
Computation Spreading
– Multithreaded Server Application
– General Case and specific application
– Implementation

Results
Conclusion

Koushik Chakraborty 32PhD. Oral Examination

CSP: Overview
Multithreaded Server Application
– Extensive code reuse among on-chip processor cores
– Poor utilization of private resources

Computation Spreading (CSP)
– Collocate similar computation fragments from different threads

on the same core
– Distribute dissimilar computation fragments from same thread

onto different cores

Koushik Chakraborty 33PhD. Oral Examination

CSP: Design Considerations
Dynamic Specialization
– Mutually exclusive code fragments

Preserving Data Locality
– Different computation fragments may share data

Fragment Size
– Amortizing computation transfer cost

Core Contention
– Different fragments may be assigned to the same core

Koushik Chakraborty 34PhD. Oral Examination

Implementation

OS and User computation
– Satisfies all fragment selection objectives
– Server apps spend significant time in OS mode

Core provision
– Provision some cores for running user code, rest for OS code
– VMM perform CT on mode transfer
– OPMS mitigates core contention

Assignment Policies
– Thread Assignment Policy (TAP)

– Maintain VCPU to core mapping
– Syscall Assignment Policy (SAP)

– Maintain system call to core mapping for OS computation

Koushik Chakraborty 35PhD. Oral Examination

Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore System
Computation Spreading
Results
Conclusion

Koushik Chakraborty 36PhD. Oral Examination

Methodology
SIMICS based full system simulation
Energy estimation: Wattch and HotSPOT
– Thermal model used to calibrate power estimation
– 32nm technology generation, 0.9V, 3.0GHz

Unmodified Application running on Solaris 9
Out-of-order cores
Performance Comparison
– Baseline System: 8 cores, 16MB shared L2
– OPMS: 12 cores, 12MB shared L2
– Invariants: Power and Area

Koushik Chakraborty 37PhD. Oral Examination

Results
Locality Impact
– Memory references: instruction and data
– Performance impact

Energy Efficiency
– Core utilization, energy savings, energy-delay

Sensitivity Analysis
– 12-core system fully utilized at all times

Koushik Chakraborty 38PhD. Oral Examination

Instruction Latency Improvement

Koushik Chakraborty 39PhD. Oral Examination

Data Latency Improvement

Koushik Chakraborty 40PhD. Oral Examination

Performance

CT Overhead: percentage runtime spent in performing CT

Koushik Chakraborty 41PhD. Oral Examination

Energy Efficiency
OPMS employs 12 cores instead of 8
– Cores engaged in computation largely determine SAF/power
– Partial reduction in active cores can allow several inactive cores

to subsist within the same power envelope

Impact of better compute efficiency
– Runtime reduction will save leakage energy
– Lesser access in shared L2 saves active energy
– Energy-delay improvements from savings in energy and delay

Koushik Chakraborty 42PhD. Oral Examination

Active Cores

Koushik Chakraborty 43PhD. Oral Examination

Total Core Logic Energy Comparison

Koushik Chakraborty 44PhD. Oral Examination

Cache Energy

Koushik Chakraborty 45PhD. Oral Examination

Comparative Study with 12-core
Improvements in performance and energy efficiency in
OPMS
– But, OPMS employs different micro-arch (12 cores)
– What if the same micro-arch exploits more threads?

Exploiting app. concurrency on 12-core system
– Will exceed the baseline power budget

Apply frequency scaling to reduce power
– Voltage scaling is unlikely at this design point, but results will

show its impact

Methodological challenge from differing system configs
– Longer simulation runs to alleviate transient effects

Koushik Chakraborty 46PhD. Oral Examination

Power Comparison

Koushik Chakraborty 47PhD. Oral Examination

Energy Delay Improvement

Koushik Chakraborty 48PhD. Oral Examination

Outline
Motivation
Simultaneously Active Fraction
Over-provisioned Multicore System
Computation Spreading
Results
Conclusion
– Related and Summary

Koushik Chakraborty 49PhD. Oral Examination

Related Work
OPMS
– Power Reduction [several]

– Dynamic voltage frequency scaling
– Activity Migration

– Heat and Run [Powell 2004], AM [Barr 2003]

Computation Spreading
– Software re-design: staged execution

– Cohort Scheduling [Larus and Parkes 01], STEPS [Ailamaki
04], SEDA [Welsh 01], LARD [Pai 98]

– OS and User Interference [several]
– Structural separation to avoid interference

Koushik Chakraborty 50PhD. Oral Examination

Summary of Contributions
Simultaneously Active Fraction
– Models first order impact of power constraint in architectural

design
– Technology trends indicate diminishing SAF in future chips
– Demonstrates reasoning with SAF in multicore designs

Over-provisioned Multicore Systems
– SAF-aware paradigm of multicore designs
– Versatile framework enabling flexible computation assignments

Computation Spreading
– Dynamic specialization of on-chip cores in an OPMS
– Energy-efficiency and performance without demanding more

power

July 30,2008 51PhD. Oral Examination

Thank You!

http://www.cs.wisc.edu/~kchak

Koushik Chakraborty 52PhD. Oral Examination

Contention Overhead

Koushik Chakraborty 53PhD. Oral Examination

Inactive Periods

Long inactive periods allow very efficient leakage reduction

Koushik Chakraborty 54PhD. Oral Examination

Interconnect Bandwidth

Koushik Chakraborty 55PhD. Oral Examination

Runtime

Koushik Chakraborty 56PhD. Oral Examination

Multicore Evolution

Improvement

Percentage Improvement

Widening Gap

Koushik Chakraborty 57PhD. Oral Examination

SAF

Today (Tulsa: Intel Xeon)

5-10 years

SAF will shrink with technology scaling

Core Logic contributes 75% of power

– 30% area: 75% powerSAF

Current Multicore

?

Technology Trend:

– Improvement in power lagging improvement in effective area

Koushik Chakraborty 58PhD. Oral Examination

OPMS: The Next Step Ahead

ApplicationApplication

Operating System

Multicore SystemOPMS

VMM

OPMS Design: What, How and Why ?

Conventional Multicore aims simultaneous
computation on all cores

OPMS Design Principles

– By Design, total cores exceed power budget

– Forgo concurrent computation on all cores

– Flexible computation assignment on cores

– VMM maintains software transparency

Inactive Active

Koushik Chakraborty 59PhD. Oral Examination

Implementation

VMM

T1 T2VC1 VC2

P1 P2 P3

– OS assigns two threads T1, T2
on virtual cores VC1, VC2

– VMM provisions physical cores
P1, P2 for user computation and
P3 for OS computation

– Each core maintains a VC wait
queue and a base address offset
table for register state

Computation Transfer

– save reg. state in memory

– restore state via coherence

– resume computation

ID Base

1 0xaa..7

2 0xab..2

.. …

N 0xcd..1

ID Base

1 0xaa..7

2 0xab..2

.. …

N 0xcd..1

Mode transfers:

– User to OS: system calls, traps

– OS to User: returns

VC1

WQ

Contention

– two computation assigned to same core

– Wait Queue is populated

– Resumes computation when available

Koushik Chakraborty 60PhD. Oral Examination

OS-User Data Communication

Apache OLTP

OS-User Communication is limited

Koushik Chakraborty 61PhD. Oral Examination

CSP: Longer

Koushik Chakraborty 62PhD. Oral Examination

Multithreaded Server Application

Important class of multicore applications
Memory stalls are #1 performance bottleneck
– Memory stall = instruction stall + data stall
– Substantial instruction stalls from large code footprint

Software architecture
– Each server thread services one client request
– Individual thread assigned to individual core

Extensive code reuse

Koushik Chakraborty 63PhD. Oral Examination

Multicore Code Reuse

Koushik Chakraborty 64PhD. Oral Examination

Exploiting Code Reuse
Lack of instruction stream specialization
– Redundancy in predictive state and poor capacity utilization
– Destructive interference

No synergy among multiple cores
– Lost opportunity for co-operation

Computation Spreading (CSP)
– Collocate similar computation fragments from multiple threads
– Distribute dissimilar computation fragments from a single thread

Koushik Chakraborty 65PhD. Oral Examination

P1 P2 P3

Example

T1

T1

T2 T3

T1 T2 T3

T3

T3T2

T1 T2T2

Conventional Multicore

P1 P2 P3 P4
CSP

Koushik Chakraborty 66PhD. Oral Examination

CSP: Design Considerations
Dynamic Specialization
– Mutually exclusive code fragments

Preserving Data Locality
– Different computation fragments may share data

Fragment Size
– Amortizing computation transfer cost

Core Contention
– Different fragments may be assigned to the same core

Koushik Chakraborty 67PhD. Oral Examination

OS and User Computations
Coarse grain computation fragments
Exercise mutually exclusive code
Limited data communication

Koushik Chakraborty 68PhD. Oral Examination

OS-User Data Communication

Apache OLTP

OS-User Communication is limited

Koushik Chakraborty 69PhD. Oral Examination

Implementation

OS and User computation
– Satisfies all fragment selection objectives
– Server apps spend significant time in OS mode

Core provision
– Provision some cores for running user code, rest for OS code
– VMM perform CT on mode transfer

Assignment Policies
– Thread Assignment Policy (TAP)

– Maintain VCPU to core mapping
– Syscall Assignment Policy (SAP)

– Maintain system call to core mapping for OS computation

Koushik Chakraborty 70PhD. Oral Examination

CSP: Key Aspects

P1 P2 P3 P4

T1

T1

T2 T3

T3

T3T2

T1 T2T2

Dynamic Specialization and Heterogeneity

– Computation fragments are localized

– Heterogeneity derived from structurally
identical cores

Computation Transfer (CT)

– Enabling mechanism: transfer
necessary state between on-chip cores

Inactive cores maintain predictive state

Moving Computation to Data

Selecting Fragments: key objectives

– Mutually exclusive code fragment

– Relatively coarse to amortize CT

– Independent data footprint as much as
possible

Koushik Chakraborty 71PhD. Oral Examination

Performance Comparison
Invariants: Area and power budget

16MB L2 12MB L2

Baseline * OPMS *

OPMS Schemes: Core Hopping (CHP) and Computation Spreading (CSP)

Full System simulation using SIMICS

– Unmodified server apps running on Solaris

* Figures do no represent floorplan

Koushik Chakraborty 72PhD. Oral Examination

Branch Prediction Improvements

Koushik Chakraborty 73PhD. Oral Examination

Future Work
Managing Heterogeneity
– Need for energy efficiency push towards specialization
– Both static and dynamic heterogeneity will co-exist
– How can we engage application developers and compilers?

– Abstract model and interface

Bridging general purpose and mobile architecture
– Mobile: sophisticated software with diverse requirements
– Holistic approach breaks the separation of s/w and h/w

– Managing complexity will become infeasible
– Requires abstraction for developing complex software

Koushik Chakraborty 74PhD. Oral Examination

Memory Latency Improvements

Koushik Chakraborty 75PhD. Oral Examination

L1 Instruction Miss Comparison

Koushik Chakraborty 76PhD. Oral Examination

L1 Load Miss Breakdown

Koushik Chakraborty 77PhD. Oral Examination

SAF Speedup: Symmetric and Dynamic

Symmetric Multicore Dynamic Multicore

Diminishing perfomance gap at higher power constraint

	Over-provisioned Multicore Systems
	Technology Scaling: Classical View
	Technology Scaling: Power
	Why power is a problem?
	Power and Cooling
	Thesis Contributions
	Outline
	Area and Power constraints	
	Power constraint: An Area Perspective
	SAF: First order model
	SAF Trend
	Technology Scaling: SAF View
	Application of SAF
	Hill-Marty model: Multicore Speedup
	Power constraint in Hill-Marty Model
	Asymmetric Multicore
	Asymmetric Multicore
	SAF-aware Asymmetric Multicore
	Parameters
	SAF Speedup: Dynamic Multicore
	SAF Speedup: Asymmetric Multicore
	Asymmetric versus Dynamic
	SAF Summary
	Outline
	Power Management: SAF reduction
	Over-provisioned Multicore Systems
	Technology Invariants in OPMS design
	OPMS: Design Considerations
	Managing Inactive Cores: Cost/Benefit
	Flexible Computation Assignment
	Outline
	CSP: Overview
	CSP: Design Considerations
	Implementation
	Outline
	Methodology
	Results
	Instruction Latency Improvement
	Data Latency Improvement
	Performance
	Energy Efficiency
	Active Cores
	Total Core Logic Energy Comparison
	Cache Energy
	Comparative Study with 12-core
	Power Comparison
	Energy Delay Improvement
	Outline
	Related Work
	Summary of Contributions
	Thank You!
	Contention Overhead
	Inactive Periods
	Interconnect Bandwidth
	Runtime
	Multicore Evolution
	SAF
	OPMS: The Next Step Ahead
	Implementation
	OS-User Data Communication
	CSP: Longer
	Multithreaded Server Application
	Multicore Code Reuse
	Exploiting Code Reuse
	Example
	CSP: Design Considerations
	OS and User Computations	
	OS-User Data Communication
	Implementation
	CSP: Key Aspects
	Performance Comparison
	Branch Prediction Improvements
	Future Work
	Memory Latency Improvements
	L1 Instruction Miss Comparison
	L1 Load Miss Breakdown
	SAF Speedup: Symmetric and Dynamic

