
Use-Based Register Caching

J. Adam Butts and Guri Sohi

{butts,sohi}@cs.wisc.edu

University of Wisconsin–Madison
Architecture Affiliates Meeting

October 9, 2003

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
2/24

Motivation
Need large register file

■ Deep, wide pipelines

■ Many instructions in flight

■ Many read and write ports

Need fast register file
■ High clock frequency

■ >1 cycle latency hurts IPC

■ Complex bypass network

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
3/24

Register values needed for small
fraction of lifetime

■ Few registers contain live values

■ Use a cache

0 50 100 150 200 250 300

Registers

0

10

20

30

40

50

60

70

80

90

100

%
 E

xe
cu

ti
on

 t
im

e
Live
Allocated

56 245

Motivation
Need large register file

■ Deep, wide pipelines

■ Many instructions in flight

■ Many read and write ports

Need fast register file
■ High clock frequency

■ >1 cycle latency hurts IPC

■ Complex bypass network

physical
register

allocated
value
ready

last
use

overwriting
instruction

retires
18 1 17

physical
register
lifetime

deadempty live

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
4/24

Overview
What register values should be present in the cache?

Values that have live consumers will be read in the future
■ Keep these values close, others available

■ Degree of use indicates total number of consumers

■ Count uses as they occur to determine future usefulness of value

■ Use future usefulness to make (re)placement decisions

How should values be placed within the cache?

Assign cache sets to minimize conflicts
■ No meaning in physical register tags

■ Map register tags to cache indices intelligently

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
5/24

Outline
Motivation and Overview

Register Caching
■ Prior work

■ Shortcomings

Use-based Register Cache Management

Decoupled Indexing

Evaluation

Conclusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
6/24

Register Caching
Reduce average access latency

■ Like cache hierarchy

■ Small, fast, high-level file

■ Large, slow low-level file

Many variations
■ Visibility to ISA

■ Software vs. hardware
management

■ Supply values from both levels
or only high-level register file

■ Inclusion policy

Fast
Registers R[0-7]

R[8-31]Slow
Registers

Execution Core

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
7/24

Register Cache Pipeline
Like Yung and Wilhelm or Cruz et al.

■ Hardware managed ■ Values assumed to be in cache

■ Cache fill on miss ■ All values written to register file

squash reissue

execute

I2

I3

write
Rcache

write
regfile

read
Rcache

issue execute
write

Rcache
write

regfile
read

Rcache

issue execute
write

Rcache
write

regfile
read

Rcache

issue execute
write

Rcache
write

regfile
read

Rcache

issue execute
read

regfile
write

Rcache
write

regfile
read

Rcache

issue execute
write

Rcache
write

regfile

issueI1

I4a

I4b

I5b

read
regfile

Cycle 1 2 3 4 5 6 7 8 9 10 11

read
Rcache

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
8/24

Problems with Register Caching
Fully-associative caches

■ Required to obtain reasonable performance (conflict misses)

■ Need many ports ⇒ slow

Poor content management
■ LRU replacement

■ Leads to frequent misses

Implementation complexity
■ Expensive recovery mechanisms

■ Many additional datapaths

Optimistic evaluations
■ Cheap misses

■ Unrealistic baselines

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
9/24

Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management
■ Insertion policy

■ Replacement policies

Decoupled Indexing

Evaluation

Conclusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
10/24

Use-Based Cache Insertion
Observation: a subset of values bypass to all their consumers

■ Avoid placing in the register cache values already communicated
through the bypass network

Bypass counting
■ Write to cache only if number of bypasses < predicted degree of use

■ Store remaining uses with each value in cache

■ Monitor subsequent uses (for use-based replacement)

Compare with non-bypass proposed by Cruz et al. [ISCA 27]
■ Write to cache if value is not bypassed

■ Assumes single-use values

• Def-first use distance largely independent of degree of use

• Subsequent consumers experience higher latency

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
11/24

Use-Based Victim Selection
Observation: LRU is poor

■ Does not accurately capture the behavior of register values

Use-based replacement
■ Use remaining uses stored in cache to select victim

Handling unknown numbers of remaining uses
■ Unknown default when initial prediction unavailable

• During training of degree of use predictor

• Unknown default of 1 works well; 2 for larger cache sizes

■ Fill default after register cache miss

• Fill default of 0 performs best

• Still need to fill!

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
12/24

Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management

Decoupled Indexing
■ Register cache set assignment

■ Round-robin indexing

■ Performance

Evaluation

Conclusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
13/24

Problem: Conflict misses
■ Standard cache index equals register tag modulo number of sets

■ No spatial locality in physical register tag references

Solution: Assign set index intelligently
■ Augment rename map to hold register cache index

■ Allocate set index with physical register using some algorithm

■ Provide set index to consumers along with physical register tag

Algorithm considerations
■ Avoid assigning long-lived values to same cache set

■ Information available

• Predicted number of uses

• Set assignment history

• Current front end status, performance

Decoupled Indexing

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
14/24

Round-Robin Indexing
Simple scheme to avoid conflicts

■ Single state variable: last
assigned set

■ Assumes execution order
resembles rename order

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
15/24

1 2 4 8 16

Associativity

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

Round-robin
Preg-derived

16-entries

32-entries

64-entries

Round-Robin Indexing
Simple scheme to avoid conflicts

■ Single state variable: last
assigned set

■ Assumes execution order
resembles rename order

Advantage dependent on cache
organization

■ Helps more with less associativity

■ More sets helps to a point

Room for improvement
■ Data still indicates 25% of misses

due to conflicts

■ Use-based set assignment?

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
16/24

Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management

Decoupled Indexing

Evaluation
■ Methodology

■ Cache parameters

■ Performance

Conclusion

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
17/24

Methodology
Simulator

■ Execution driven, SimpleScalar syscalls (trap to OS)

■ 512 instructions in-flight, 128-instruction window, 8-wide issue

■ 15-cycle minimum fetch redirect, 12 KB YAGS, 9KB DOU predictor

■ 32 KB 2-way L1 (4), 1MB 4-way L2 (12), 180 cycles to memory

SPECInt 2000, training inputs, 1 billion instructions

Register cache miss model
■ Replay all operations within one cycle issue (Alpha 21264-style)

■ Block issue port for duration of miss resolution

■ Re-issue delay to ensure complete writeback

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
18/24

16 24 32 40 48 56 64

Number of entries

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

Fully associative
8-way
4-way
2-way
Direct mapped
No Rcache

 1

 2

 3

 4

Register Cache Tuning

Associativity is important
■ 4-way minimum

■ Capacity can compensate

■ Conflicts

Larger caches than prior work
■ 48-64 entries vs. 16

■ Due to wider, deeper pipeline

■ Use 48-entry, 6-way

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
19/24

0

1

2

3

4

5

6

7

8

R
eg

is
te

r
ca

ch
e

m
is

s
ra

te
 (

%
) Capacity

Conflict

Not written

LRU Non-
bypass

Use-
filtering

Use-
based

5.0

7.2

3.3

2.1

Register Cache Miss Breakdown
LRU is bad

■ No write-filtering (75% never read)

■ Many capacity & conflict misses

Non-bypass is worse (!)
■ Reduces capacity and conflict misses

■ But, larger increase in misses from write
filtering

Use-based scheme is superior
■ Insertion policy reduces capacity and

conflict misses

■ Only with small increase in misses from
write filtering

■ Replacement policy reduces misses from
premature evictions of useful values

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
20/24

Performance vs. Cache Size

16 24 32 40 48 56 64

Register cache size (entries)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

No Rcache
Use-based
LRU
Non-bypass

 1

 2

 3

 4

Small cache sizes favor filtering
■ Net gain from filtering

unneeded values

■ Non-bypass surpasses LRU for
caches with 16-24 entries

Very large cache sizes favor LRU
■ Not due to replacement policy!

■ No misses from incorrect
filtering

■ Large cache ⇒ low capacity/
conflict miss rate

■ Too large to be much benefit as
a cache

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
21/24

Sensitivity to Register File Latency

1 2 3 4 5

Backing register file latency (cycles)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

No Rcache
Use-based
LRU
Non-bypass

 1

 2

 3

 4

Use-based register cache
exhibits least sensitivity

Backing file latency can be
lower than monolithic

■ Few shared read ports

■ 24-port ⇒ 8-port

Use-based register cache
tracks fully-bypassed
register file

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
22/24

Configuration

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

LRU Round-
robin

indexing

Write-
filtering

Replace
least uses

Perfect
degree

prediction

 1

 2

 3

 4

+1.7%

+5.4%

+8.0%
+9.0%

Incremental Performance Breakdown

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
23/24

Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management

Decoupled Indexing

Evaluation

Conclusion
■ Future Work

■ Questions

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
24/24

Future Work
Augmented heuristics to reduce misses from write-filtering?

■ Account for mis-speculation

■ Use additional information (static, operand type, etc.)

Deterministic scheduling latency
■ Degree of use prediction + use counting

■ False positive problem

Additional indexing schemes to reduce conflict misses
■ Apply degree of use information

■ Synchronization of front-end and register cache

Combine with previous work to reduce cache write ports
■ Cache write bandwidth <1 value per cycle

■ Requires arbitration, queueing, extra bypassing

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
25/24

Questions

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
26/24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

 B
an

dw
id

th
 (

pe
r

cy
cl

e) LRU
Non-bypass
Use-filtering
Use-based

RCache
read

RCache
write

Regfile
read

Regfile
write

Access Bandwidth

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
27/24

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

LRU
Non-bypass
Use-filtering
Use-based

Cached,
never read

Not written
initially

Never
cached

Write-filtering Effects

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
28/24

2 4 6 8 10 12 14 16

Maximum predictable degree of use

1.3

1.4

1.5

1.6

1.7

1.8

P
er

fo
rm

an
ce

 (
IP

C
)

48/6
32/4

Maximum Degree of Use

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
29/24

0

20

40

60

80

100

%
 I

np
ut

 v
al

ue
s

Register file

2nd bypass stage

1st bypass stage

Register cache
LR

U

N
on

-b
yp

as
s

U
se

-b
as

ed

Sources of Values for Execution

Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
30/24

16 24 32 40 48 56 64

Register cache size (entries)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

P
er

fo
rm

an
ce

 (
IP

C
)

No Rcache
Use-based
Two-level
LRU
Non-bypass

 1

 2

 3

 4

Comparison with Two-Level RegFile

