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Motivation
Need large  register file

■ Deep, wide pipelines

■ Many instructions in flight

■ Many read and write ports

Need fast  register file
■ High clock frequency

■ >1 cycle latency hurts IPC

■ Complex bypass network
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Register values needed for small
fraction of lifetime

■ Few registers contain live values

■ Use a cache
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Overview
What register values should be present in the cache?

Values that have live consumers will be read in the future
■ Keep these values close, others available

■ Degree of use  indicates total  number of consumers

■ Count uses as they occur to determine future usefulness  of value

■ Use future usefulness  to make (re)placement decisions

How should values be placed within the cache?

Assign cache sets to minimize conflicts
■ No meaning in physical register tags

■ Map register tags to cache indices intelligently
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Outline
Motivation and Overview

Register Caching
■ Prior work

■ Shortcomings

Use-based Register Cache Management

Decoupled Indexing

Evaluation

Conclusion
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Register Caching
Reduce average access latency

■ Like cache hierarchy

■ Small, fast, high-level file

■ Large, slow low-level file

Many variations
■ Visibility to ISA

■ Software vs. hardware
management

■ Supply values from both levels
or only high-level register file

■ Inclusion policy

Fast
Registers R[0-7]

R[8-31]Slow
Registers

Execution Core
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Register Cache Pipeline
Like Yung and Wilhelm or Cruz et al.

■ Hardware managed ■ Values assumed to be in cache

■ Cache fill on miss ■ All values written to register file
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Problems with Register Caching
Fully-associative caches

■ Required to obtain reasonable performance (conflict misses )

■ Need many ports ⇒ slow

Poor content management
■ LRU replacement

■ Leads to frequent misses

Implementation complexity
■ Expensive recovery mechanisms

■ Many additional datapaths

Optimistic evaluations
■ Cheap misses

■ Unrealistic baselines
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Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management
■ Insertion policy

■ Replacement policies

Decoupled Indexing

Evaluation

Conclusion
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Use-Based Cache Insertion
Observation: a subset of values bypass  to all their consumers

■ Avoid placing in the register cache values already communicated
through the bypass network

Bypass counting
■ Write to cache only if number of bypasses < predicted degree of use

■ Store remaining uses with each value in cache

■ Monitor subsequent uses (for use-based replacement)

Compare with non-bypass  proposed by Cruz et al. [ISCA 27]
■ Write to cache if value is not bypassed

■ Assumes single-use values

• Def-first use distance largely independent of degree of use

• Subsequent consumers experience higher latency
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Use-Based Victim Selection
Observation: LRU is poor

■ Does not accurately capture the behavior of register values

Use-based replacement
■ Use remaining uses stored in cache to select victim

Handling unknown  numbers of remaining uses
■ Unknown default  when initial prediction unavailable

• During training of degree of use predictor

• Unknown default of 1 works well; 2 for larger cache sizes

■ Fill default  after register cache miss

• Fill default of 0 performs best

• Still need to fill!
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Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management

Decoupled Indexing
■ Register cache set assignment

■ Round-robin indexing

■ Performance

Evaluation

Conclusion
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Problem: Conflict misses
■ Standard cache index equals register tag modulo number of sets

■ No spatial locality in physical register tag references

Solution: Assign set index intelligently
■ Augment rename map to hold register cache index

■ Allocate set index with physical register using some algorithm

■ Provide set index to consumers along with physical register tag

Algorithm considerations
■ Avoid assigning long-lived values  to same cache set

■ Information available

• Predicted number of uses

• Set assignment history

• Current front end status, performance

Decoupled Indexing
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Round-Robin Indexing
Simple scheme to avoid conflicts

■ Single state variable: last
assigned set

■ Assumes execution order
resembles rename order
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Round-Robin Indexing
Simple scheme to avoid conflicts

■ Single state variable: last
assigned set

■ Assumes execution order
resembles rename order

Advantage dependent on cache
organization

■ Helps more with less associativity

■ More sets helps to a point

Room for improvement
■ Data still indicates 25% of misses

due to conflicts

■ Use-based set assignment?
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Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management

Decoupled Indexing

Evaluation
■ Methodology

■ Cache parameters

■ Performance

Conclusion
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Methodology
Simulator

■ Execution driven, SimpleScalar syscalls (trap to OS)

■ 512 instructions in-flight, 128-instruction window, 8-wide issue

■ 15-cycle minimum fetch redirect, 12 KB YAGS, 9KB DOU predictor

■ 32 KB 2-way L1 (4), 1MB 4-way L2 (12), 180 cycles to memory

SPECInt 2000, training inputs, 1 billion instructions

Register cache miss model
■ Replay all  operations within one cycle issue (Alpha 21264-style)

■ Block issue port for duration of miss resolution

■ Re-issue delay to ensure complete writeback
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Register Cache Tuning

Associativity  is important
■ 4-way minimum

■ Capacity can compensate

■ Conflicts

Larger caches  than prior work
■ 48-64 entries vs. 16

■ Due to wider, deeper pipeline

■ Use 48-entry, 6-way
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Register Cache Miss Breakdown
LRU is bad

■ No write-filtering (75% never read)

■ Many capacity & conflict misses

Non-bypass is worse (!)
■ Reduces capacity and conflict misses

■ But, larger increase in misses from write
filtering

Use-based scheme is superior
■ Insertion policy reduces capacity and

conflict misses

■ Only with small increase in misses from
write filtering

■ Replacement policy reduces misses from
premature evictions of useful values
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Performance vs. Cache Size
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Small cache sizes favor  filtering
■ Net gain from filtering

unneeded values

■ Non-bypass surpasses LRU for
caches with 16-24 entries

Very large cache sizes favor LRU
■ Not  due to replacement policy!

■ No misses from incorrect
filtering

■ Large cache ⇒ low capacity/
conflict miss rate

■ Too large to be much benefit as
a cache



Use-Based Register Caching – J. Adam Butts and Guri Sohi
UW–Madison Architecture Affiliates Meeting, October 2002

Slide
21/24

Sensitivity to Register File Latency
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Use-based register cache
exhibits least sensitivity

Backing file latency can be
lower  than monolithic

■ Few shared read ports

■ 24-port ⇒ 8-port

Use-based register cache
tracks fully-bypassed
register file
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Configuration
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+1.7%
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Incremental Performance Breakdown
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Outline
Motivation and Overview

Register Caching

Use-based Register Cache Management

Decoupled Indexing

Evaluation

Conclusion
■ Future Work

■ Questions
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Future Work
Augmented heuristics to reduce misses from write-filtering?

■ Account for mis-speculation

■ Use additional information (static, operand type, etc.)

Deterministic scheduling latency
■ Degree of use prediction + use counting

■ False positive problem

Additional indexing schemes to reduce conflict misses
■ Apply degree of use information

■ Synchronization of front-end and register cache

Combine with previous work to reduce cache write ports
■ Cache write bandwidth <1 value per cycle

■ Requires arbitration, queueing, extra bypassing
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Questions
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