
Memory Dependence Prediction 1A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Exploi t ing Program Behavior
• Program Execution in the abstract:

 Faster Circuits -> Faster Execution

• Be “smarter” about program execution:
Exploit Idiosynchrasies in Program Behavior

Examples: 1. Caching
2. Branch Prediction

What to do Next? One Possibility is:
Identify Other Idiosynchrasies in Typical Program Behavior

 Develop Techniques to Exploit

1. fetch instruction
2. read inputs
3. calculate
4. store result

Memory Dependence Prediction 2A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependences are Quite Regular
• Identified a new form of regularity:

Memory Dependence Stream

1. Load/Store has a Dependence?
2. Which Dependence a Load/Store has?

Opportunity to Exploit this Regularity
Techniques are Required to Make Use of this Opportunity

Tim
e

load

store

load

store

Memory Dependence Prediction 3A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Predict ion

1. Load/Store has a Dependence?
2. Which Dependence a Load/Store has?

Past Behavior ->
Good Indicator of Future Behavior

Basis for Three Micro-Architectural Techniques:
1. Exploit Load/Store Parallelism
2. Reduce Memory Latency
3. Provide for Multiple Memory Accesses

Guess:

How?

load

store

load

store

1. Observe

2. Predict

G
O

A
L

Memory Dependence Prediction 4A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dynamic Speculat ion/Synchronizat ion
Goal: Exploit Load/Store Parallelism
Ideally:

Loads Wait for a Store only when a RAW dependence exists

Determining Dependences vs. Speculating Dependences
safe but delays balance penalty vs. gain

Prior to this work: Always predict no dependence or No Speculation

This work:
When Mispeculation Penalty Becomes High

Mimic Ideal: Make loads wait only as long as necessary

Memory Dependence Prediction 5A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

In Search of Higher Performance #1

Timeline

M
in

im
iz

e

send load

load

Instruction

address

value

Sequence

Memory

1. Higher Performance: Memory Responds Faster

computation
starts

Memory Dependence Prediction 6A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

#1. Making Memory Respond Faster

OK, we did the best we could, but ...
...memory is still not that fast

...and it is getting slower
Is this the end?

L1

L2

Main Memory

Ideally: Memory is Large and Fast
Can have it! Technology - Cost trade-off
Solution: Memory Hierarchy

slower
larger

cheaper

Memory Dependence Prediction 7A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

In Search of Higher Performance #2

2. Higher Performance:
Send Load Request As Far In Advance As Possible

But, will the program still run correctly?
A. Can we ever move loads up? B. How do we do it?

Timeline

M
ax

im
iz

e

send load

starts
load

old position

old position

load

Original
Sequence

Modified
Sequence

computation

Memory Dependence Prediction 8A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A . Can We Ever Move Loads Up?

load
A

Instruction Sequence

load
A

load A
load

A
load

A

A and load can execute in any order
if load does not use a value produced by A

dependence

load ..., [r3 + 5]
r1 = r2 + 10

load ..., [r1 + 5]
r1 = r2 + 10

Valid Execution Order

parallelism

Memory Dependence Prediction 9A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

B . How To Move Loads Up?
Instruction Level Parallel Processors:

load

grab a chunk
of instructions

Step #1 Step #2

find the
dependences

load

Step #3

load

execute

Instruction
Window

memory
latency

de
pe

nd
en

ce
s

Use Parallelism to Tolerate Memory Latency

Memory Dependence Prediction 10A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Moving Loads Past Stores

load

store

100

???

Use Of Addresses Hinders Parallelism

load

store

Instructions

de
pe

nd
en

ce
?

load addr

store addr. calc.

load addr. calc.

Ô Limits Us in Our Effort to Tolerate Memory Latency

store addr
load executes

Timeline

Memory Dependence Prediction 11A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

The Goal and The Problem
Goal: Exploit Load/Store parallelism

1. Loads w/o Dep. execute at will
2. Loads w/ Dep. synchronize with store

Ideally

store Rx ???

 load Ry 100

P
ro

gr
am

 O
rd

er 1. Wait to Determine Dependences
safe, but addresses must be known

2. Speculate on Dependences
balance gain vs. penalty

Prior to this work:
Naive Speculation or No-Speculation

This work:
Speculation and No-speculation gap increases with window

Naive less close to Ideal - Net Mispeculation Penalty

Memory Dependence Prediction 12A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Naive Memory Dependence Speculat ion
• Don’t give up, be optimistic, guess no dependences exist
• State-of-the-art in modern processors

Instructions

store addr

Timeline

de
pe

nd
en

ce
?

load re-executes if yes

Guess no: load executes

dependence?

penalty

Need to Balance: Gain vs. Penalty

load

store

load addr

Memory Dependence Prediction 13A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculat ion and Performance

C
A

B
C

load

Program

store
C

load

load
C
B

D

A
B

D

No Dependence Dependence
Order

D

store
A

BC
load

D store

No Speculation Speculation

Speculation may affect performance either way

free load

A
B

store D

Penalty:

free

Balance: Gain vs. Penalty

(b) opportunity cost
(a) work thrown away

Memory Dependence Prediction 14A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculat ion and Performance

ASAP Never

Gain
Penalty

Mis-speculation%

SPECULATE

Performance

 Gain 5 (100% - Mis-speculation%)

 Penalty 5 Mis-speculation%

• Balance between Gain and Penalty

Memory Dependence Prediction 15A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dependences vs. Window Size

0 50 100 150 200
0.00

0.10

0.20

0.30

0.40

cc1
compress
espresso
sc
xlisp

Frequency of loads with Dependences within the Window
Distance in dynamic instructions

P
ro

ba
bi

lit
y

of
 d

ep
en

de
nc

e

Memory Dependence Prediction 16A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Small Instruction Window:
• Loads are speculated past few instructions

• Dependences are infrequent

Blind Speculation a good choice:

• Mis-speculations are infrequent

• Low probality of other, independent work

• Low mis-speculation penalty

Not Speculating at times is acceptable.

Smal l Instruct ion Windows and Speculat ion

Memory Dependence Prediction 17A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

How About Future Systems?

Future Systems: Wish Dependences Were Known

Soon • Memory will be slower
Ô Need to move loads further up

Guessing Naively:
Penalty becomes significant

Loads — Ideal Behavior:
No Dependence: execute at will
Dependence: Synchronize w/ store

Common Case:
Today

Memory Dependence Prediction 18A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

As the Window size increases:
• Loads are speculated past many more instructions
• Dependences become more frequent

Overall:
• Mis-speculations are more frequent
• Higher probability of other, independent work
• Higher mis-speculation penalty

Blind Speculation is still a viable approach

Not Speculating is not

HOWEVER! Net penalty of mis-speculation becomes sig-
nificant

Wider Instruct ion Windows

Memory Dependence Prediction 19A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Reducing Net Mispeculat ion Penal ty

1. Improve the Accuracy of Speculation

2. Reduce the Amount of Work Thrown away on mispeculation

Memory Dependence Prediction 20A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Reducing the Net Mis-speculat ion Penal ty

I1
ST1
I3
I4

ST2
LD1
I7

LD2
I9

I1
ST1
I3
I4

ST2

LD1
I7

I9

LD1
I7

LD2

I1
ST1
I3
I4

ST2

LD1
I7

LD2
I9

Blind Speculation Ideal Speculation

Code
Ideally:

• Dependent load/store pairs are synchronized

• Other loads execute as early as possible

Memory Dependence Prediction 21A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

When is Mispeculat ion Penal ty a Concern?
Intelligent Speculation for:

1. Distributed, Split Window
even if address-based information is available

2. Centralized, Continuous Window
if address-based information is not available

for i
a[i] = a[i - 1] + 1

store load

Cent. Continuous Dist. Split

iter i
iter i+1

iter i iter i+1

Memory Dependence Prediction 22A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

How ser ious a problem is i t real ly?
What if loads wait till dependences are known
Depends on how aggressive the processor is:

- For small instruction window ~16: no difference
- But for larger windows:

comp espr gcc sc xlisp0%

50%

100%

150%
SPECint’92

Waiting vs. Perfect Dependence Knowledge

better

40% - %140 Performance loss

Memory Dependence Prediction 23A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Naive Memory Dependence Speculat ion-Performance

• Naive: Always guess that no dependence exists
• Works well for today’s windows
• How well can we do on an aggressive processor:

go
m88

ks
im gc
c

co
mpr

es
s li

ijp
eg pe
rl

vo
rte

x

SPECint95

B
et

te
r

0%

20%

40%

60%

Future Processors: Wish we knew the dependences

Memory Dependence Prediction 24A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

To mimic the ideal we need:
(1). Identify the loads that have dependences

(2). Identify the relevant stores

(3). Enforce synchronization

Can we do without synchronization?

How about selective speculation:
• Identify the loads that have dependences

• Do not speculate them

Dependence Speculat ion/Synchronizat ion

Memory Dependence Prediction 25A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Select ive Dependence Speculat ion

I1
ST1
I3
I4

ST2
LD1
I7

LD2
I9

I1
ST1
I3
I4

ST2

LD1
I7

I9

LD1
I7

LD2

I1
ST1
I3
I4

ST2

LD1
I7

LD2
I9

I1
ST1
I3
I4

ST2
LD1
I7

LD2
I9

Blind IdealSelective

S
TA

LL

Code

• Selective may perform worse than blind
• Can also perform as well as the ideal
• In practice:

performance behavior varies

Memory Dependence Prediction 26A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Speculation Policies
Q1. Which loads should wait

Q2. For how long
 No Speculation

A1. All A2. For all previous stores
 Naive

A1. None A2. N/A
 Selective (also in Alpha 21264)

A1. Some A2. For all previous stores
 Synchronization

A1. Some A2. For the specific store

Store Barrier (Hesson at al. IBM)
Predict Store and Make all subsequent loads wait

Memory Dependence Prediction 27A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Our Solut ion
Requirements:

Q1. Which loads should wait? Q2. For how long?
avoid mispeculation maintain high gain

Our Solution:
A1. Predict (load, store) dependences

start with naive
learn from mistakes
A2. Synchronize

Memory Dependence Prediction 28A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Attempt to mimic the Ideal:

• To identify the dependent load/store pairs:

Predict!
Based on the history of mis-speculations

• To synchronize:

Use dynamically assigned synchronization variables

Our approach

Memory Dependence Prediction 29A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Predict ion - Goal
Goal: Report Memory Dependences

without actual knowledge of the addresses involved

Functionality:
store: dependence with which load?
load: dependence with which store?

store load
load

store

Instructions

Dependence?

When Dependences Are Not Know... Guess Them.

Memory Dependence Prediction 30A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

load

store

load

Memory Dependence Predict ion
Dependence Behavior: Locality in time
Detect Dependences Ô next time guess that the same will happen

Address may vary over time!

store

Ti
m

e

store

load

Instructions

Record: (store PC, address)

Probe using address (store PC, load PC)

Predict: (store PC, load PC)

Predict: (store PC, load PC)

Use Dependence History to Predict Future Dependences

a[i] = a[i - 1]
p->count++

Memory Dependence Prediction 31A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Speculat ion/Synchronizat ion

Timeline

1. Predict load
Allocate Sync. bit

2. Predict store
Wait on Sync. bit

3. Store Signals
Load executes

Correct Prediction: Loads wait only as long as it is necessary
Incorrect: Same as Naive or Delay

store addr

load addr

store

load

1

2

3

A. Predict Dependence

2. Load executes
3. Store verifies

B. Predict No Dependence

Memory Dependence Prediction 32A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Predict ing Dependences

• Dependence: (Load PC, Store PC)
• Temporal locality - Small Working Set.

• Use a small table to:

 Memory Dependence Prediction Table

LD

ST

LDPC STPC

¬ Misspeculation

- Allocate entry

LDPC STPC PRED

LD

¬ Execute?

- No! Synchronize

LDPC STPC PRED

LDPC

LD

¬ Synchronize?

- Synchronize

LDPC STPC PR

STPC

ST

(1). track recent mis-speculations
(2). Predict dependences

Memory Dependence Prediction 33A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation/Synchronization

 Speculation/Synchronization, we need:
1. Loads with dependences

2. Relevant stores

3. Enforce synchronization

 How we do it:

• Parts (1) & (2): Predict load - store
Start with Naive but learn from mistakes
Based on the history of mispeculations

• Part (3):
Dynamically assigned synchronization variables

Identify

Memory Dependence Prediction 34A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

• Provide a small pool of full/empty bits
• Use (LD PC, ST PC) to associate entries w/ dependences

Synchronizat ion - Load Waits

Memory Dependence Synchronization Table

MDPT
LDPC STPC PRED

¬ May I Execute?

MDST
LDPC STPC 0 1

F/EV

- No WaitLD

LDPC

®

Memory Dependence Prediction 35A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Synchronizat ion - Load Resumes

Memory Dependence Synchronization Table

MDPT
LDPC STPC PRED

¬ Do I need to synchronize?

MDST
LDPC STPC 0 1

F/EV

- Probably

LD

STPC

® Anyone waiting?

STPC LDPC

¯ Resume Execution
ST

° Free

Memory Dependence Prediction 36A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Multiple Instances of the Same Dependence

0 STORE0

1 STORE1

c LOADc

c+1 LOADc+1

Identification: (Load PC, Store PC) not enough

In addition:

May Need:

 Multiple synchronization entries per dependence

STORE

LOAD

c

1

2

(1). Data Address, or

(2). Dependence Distance
Analogous to static linear recurrence

LOOP

Memory Dependence Prediction 37A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

• Other alternatives exist for both prediction and
synchronization.

• Simplifications may be possible.

For example:
• Use PC to identify only loads
• Use the data address to indirectly identify the stores and to

synchronize

Dependence Speculat ion/Synchronizat ion

Memory Dependence Prediction 38A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

How it works

LD

¬ Mispeculation

- Allocate entry

LDPC STPC PRED

¬ Execute?

- No! Wait

LD

¬ Synchronize?
- Resume

ST

LDPC STPC PRED LDPC STPC PRED

STPC LDPC

LD

LDPCSTPCLDPC

LDST

Mem. Dependence Prediction Table
Predict Loads w/ DependencesST

LD

LD

ST
LD

1

2

3

1 2 3

Mem. Dependence Synchronization Table

LDPC STPC 0 1
F/EV

LDPC STPC 0 1
F/EVMDST

MDPT

Enforce Synchronization

Ô

Ô

Ô

Memory Dependence Prediction 39A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Mechanism Models
• Multiscalar - 3 models:

1. Merged MDPT/MDST, allows for adaptivity
concerns: centralized & multiple deps. per load
use more as an indicator of potential

2. Merged MDPT/MDST, fixed #stores per load
3. Split, Level of indirection for multiple dependences per load

• Superscalar - 1 model:
Level of indirection for multiple dependences
Synchronization using the register scheduler

Memory Dependence Prediction 40A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Evaluat ion - Roadmap
1. Multiscalar - Split, Distributed Window

• Review:
Naive Speculation / Potential
Address-Based information
Selective Speculation

• Evaluation of Speculation/Synchronization
1. Prediction Accuracy
2. Performance

2. Superscalar - Continuous, Centralized window

Memory Dependence Prediction 41A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Mul t iscalar - Resul t Review
• Naive Speculation is a win, more so as window increases

4-stages: ~30% int, ~110% fp
8-stages: ~50% int, ~280% fp

• Potential over Naive (oracle):
8-stages: ~31% int, ~17% fp

• Exposing Store addresses helps only slightly
8-stages: ~9% int, ~3% fp

• Selective Speculation not robust
8-stages: slowdowns as much as 45%

Memory Dependence Prediction 42A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Comparison of Speculat ion Pol ic ies

Blind SynchronizationSelective

co
m

p

es
pr

gc
c sc

xl
is

p

co
m

p

es
pr

gc
c sc

xl
is

p

0%

50%

100%

150%

4-Stages 8-Stages

1.03 1.61 1.36 1.45 1.34 1.13 1.63 1.40 1.54 1.38

• Speedups are relative to no speculation (IPC along X axis)
• Perfect dependence prediction is used

SPECint’92

Memory Dependence Prediction 43A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Predict ion Accuracy

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

14
1.

ap
si

14
5.

fp
pp

p88%

90%

95%

100%

14
6.

w
av

e5

N/N N/Y Y/N Y/Y
Predicted/Actual Correct: +

Incorrect: +

Memory Dependence Prediction 44A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Blind
Ours

Mis-speculat ion Rates

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

14
1.

ap
si

14
5.

fp
pp

p

14
6.

w
av

e5

0.00

0.05

0.10

8 Stages

Memory Dependence Prediction 45A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speedup - SPECint95

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijpeg
134.perl

147.vortex

0%

20%

40%

60%

1.18 2.96 1.65 2.44 2.11 4.45 2.12 1.90

SPECint95 - 8 Stages

• Speedups are relative to blind speculation

Actual
Ideal

• IPC w/ our mechanism

Memory Dependence Prediction 46A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speedup - SPECfp95

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d
141.apsi

145.fpppp

146.wave5

0%

20%

40%

60%

4.86 5.81 5.33 3.12 6.92 3.62 5.02 2.85 1.31 3.46

SPECfp95 - 8 Stages Actual
Ideal

• Speedups are relative to blind speculation
• IPC w/ our mechanism

Memory Dependence Prediction 47A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Superscalar: Key Resul ts

• Naive memory speculation very close to ideal speculation
if loads can inspect store addresses before going to memory

&
this does not impact load latency

Address Scheduler: Complexity & Cost?

• Memory Dependence Speculation/Synchronization for:
 1. Lower Complexity

2. High Performance

Memory Dependence Prediction 48A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Fe
tc

h

Re-Schedul ing Loads on-the-f ly : Design Space

• Address Scheduler
Can loads see preceding store addresses before going to
memory?

• Why not? Additional Scheduler is needed!
Complexity & Latency implications

• Similar to register scheduler (window), but:
e.g., Large address fields & Out-of-order insertion

D
ec

od
e

Is
su

e

EA M
em W
B

C
om

m
it

R
eg

.

Is
su

e
M

em
.

Is it there?

Memory Dependence Prediction 49A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Memory Dependence Speculat ion
• No Speculation:

load executes only when it is certain that no dependence will
be violated

• Speculation:
load may execute before a preceding store
a dependence may be violated
check for violations at a later time (possibly not in critical path)

Fe
tc

h

D
ec

od
e

Is
su

e

EA M
em W
B

C
om

m
it

R
eg

.

Is
su

e
M

em
.

Mem Dependence
Checking

?

Memory Dependence Prediction 50A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speculation Policies

ST1

ST2
LD1

LD2

ST1

ST2

LD1

LD1

LD2

ST1

ST2

LD1

LD2

Naive SynchronizationCode

ST1

ST2
LD1

LD2

Selective

ST1

ST2

LD1

LD2

Store Barrier

Memory Dependence Prediction 51A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speculat ion Pol ic ies: Tradeoffs
• Naive:

May execute loads too early
Suffers from misspeculations

• Selective
May delay a load more than it is necessary
Dependences often among distant loads and stores

• Store Barrier
Delays dependent loads only as long as it is necessary
Delays unrelated loads too

• Synchronization
Delays loads only as long as it is necessary

Memory Dependence Prediction 52A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Evaluat ion
• w/ Address Scheduler (AS)

- Speculation a win
- NAIVE Speculation as good as it gets (ORACLE)

- no need for other speculation policies
- But! Performance drops w/ scheduler latency

• w/o Scheduler (NAS)
- Speculation a must
- Can do a lot better than NAIVE
- SELECTIVE and STORE BARRIER not robust
- SYNCHRONIZATION close to as good as it gets (ORACLE)

Memory Dependence Prediction 53A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Dependence Status Predict ion - Loads

0.0%

1.0%

2.0%

3.0% N/Y - DEPENDENCE MISSED

 Y/N - FALSE DEPENDENCE

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

Memory Dependence Prediction 54A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Mispeculat ion Rates

0%

2%

4%

6%

8%

10%
 SYNCHRONIZATION

 NAIVE

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

Memory Dependence Prediction 55A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

AS: Naive vs. No Speculat ion

• NAIVE a win over no speculation (in most cases)
• Gains increase w/ scheduler latency
• No misspeculations observed

go gc
c

li pe
rl

to
m

su
2

m
gd

trb
3

fp
*

0%
2%
4%
6%
8%

10%
12%
14%
16% 38

%
41

%
43

%

 0 CYCLES 1 CYCLE 2 CYCLES P
er

fo
rm

an
ce

 N
ai

ve
 o

ve
r

N
o

Sp
ec

ul
at

io
n

better

Memory Dependence Prediction 56A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

AS/Naive vs. NAS/Oracle
NAS/Oracle: No scheduler (i.e., no latency for loads)

Perfect knowledge of all memory dependences

 NAS/ORACLE AS/NAV 0-CYCLES

go gc
c

li pe
rl

to
m

su
2

m
gd

trb
3

fp
*

-20%

-10%

0%

10%

20%

30%

40%

 AS/NAV 2-CYCLE

P
er

fo
rm

an
ce

 o
ve

r
A

S
/n

o
0-

cy
cl

es

AS/Naive 0-cycles: as good as it gets
Potential to do much better when AS latency is > 0

 AS/NAV 1-CYCLE

better

Memory Dependence Prediction 57A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Approximat ing NAS/Oracle: NAS/Naive

• Naive offers some of the performance potential
Speedups over No Speculation:

Oracle: ~65%, 30% (int) and 113% (fp)
Naive: ~20%, 21% (int) and 20% (fp)

Significant room for improvement w/ other speculation
methods

Memory Dependence Prediction 58A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Select ive and Store Barr ier Speculat ion

Neither is robust: Naive sometimes better

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%

 NAS/ORACLE NAS/STORE

go gc
c

li pe
rl

to
m

su
2

m
gd

trb
3

fp
*

 NAS/SEL

better

ov
er

 N
A

S/
N

ai
ve

Memory Dependence Prediction 59A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speculat ion/Synchronizat ion

• 4k-entry memory dependence predictor
Robust, performance close to Oracle Speculation

0%

10%

20%

30%

40%

 NAS/ORACLE NAS/SYNC

09
9

12
6

13
0

13
4

10
1

10
3

10
7

12
5

14
5

better

ov
er

 N
A

S/
N

ai
ve

Memory Dependence Prediction 60A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

AS: Naive vs. No Speculat ion

• NAIVE a win over no speculation (in most cases)
• Gains increase w/ scheduler latency
• No misspeculations observed

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-2%
0%
2%
4%
6%
8%

10%
12%
14%
16% 38

%
41

%
43

%

 0 CYCLES 1 CYCLE 2 CYCLES P
er

fo
rm

an
ce

 N
ai

ve
 o

ve
r

N
o

Sp
ec

ul
at

io
n

better

Memory Dependence Prediction 61A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

AS/Naive vs. NAS/Oracle
NAS/Oracle: No scheduler (i.e., no latency for loads)

Perfect knowledge of all memory dependences

 NAS/ORACLE AS/NAV 0-CYCLES

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

-20%

-10%

0%

10%

20%

30%

40%

 AS/NAV 2-CYCLE

P
er

fo
rm

an
ce

 o
ve

r
A

S
/n

o
0-

cy
cl

es

AS/Naive 0-cycles: as good as it gets
Potential to do much better when AS latency is > 0

 AS/NAV 1-CYCLE

better

Memory Dependence Prediction 62A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Select ive and Store Barr ier Speculat ion

• Performance relative to NAS/Naive
Neither is robust: Naive is often better

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%
50%

 NAS/ORACLE NAS/STORE

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

 NAS/SEL

better

Memory Dependence Prediction 63A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Speculat ion/Synchronizat ion

• 4k-entry memory dependence predictor
Robust, performance close to Oracle Speculation

0%

10%

20%

30%

40%

50%

 NAS/ORACLE NAS/SYNC

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1

10
2

10
3

10
4

10
7

11
0

12
5

14
1

14
5

14
6

better

ov
er

 N
A

S/
N

ai
ve

Memory Dependence Prediction 64A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

Summary
• W/ AS

- Speculation is a win
- Naive speculation as good as it gets
- No need for other speculation policies
- But AS may impact latency
- Performance degrades w/ scheduling latency
- Could do better if dependence were known in advance

• W/O an AS
- Naive much better than no speculation
- But lots to be gained over naive
- Selective or Barrier not robust, often worse than naive
- Speculation/Synchronization very close to ideal

