Single-Chip Multiprocessors: the
Rebirth of Parallel Architecture

Gur1 Sohi
University of Wisconsin

Outline

e Waves of innovation in architecture

¢ Innovation In uniprocessors

e Lessons from uniprocessors

e Future chip multiprocessor architectures
e Software and such things

Waves of Research and Innovation

e A new direction is proposed or new opportunity
becomes available

e The center of gravity of the research community
shifts to that direction
SIMD architectures in the 1960s
HLL computer architectures in the 1970s
RISC architectures in the early 1980s
Shared-memory MPs in the late 1980s
00O speculative execution processors in the 1990s

Waves

e Wave Is especially strong when coupled with
a “step function” change in technology

* Integration of a processor on a single chip
* Integration of a multiprocessor on a chip

Uniprocessor Innovation Wave: Part 1

e Many years of multi-chip implementations
= Generally microprogrammed control

= Major research topics: microprogramming,
pipelining, quantitative measures

¢ Significant research in multiprocessors

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

il

Uniprocessor Innovation Wave: Part 2

¢ Integration of processor on a single chip
* The inflexion point
= Argued for different architecture (RISC)
e More transistors allow for different models
= Speculative execution
e Then the rebirth of uniprocessors
= Continue the journey of innovation
= Totally rethink uniprocessor microarchitecture

Ny o= Jim Keller: “Golden Age of Microarchitecture”

il

Uniprocessor Innovation Wave: Results

e Current uniprocessor
very different from
1980’°s uniprocessor

e Uniprocessor
research dominates
conferences i

gv Multiprocessors

e MICRO comes back Il I
from the dead 1975 1980]98) 1990 905 2000

[] Top 1% (NEC Citeseer) ISCApapcrq 1973 2001
o Impact on compilers Source: Rajwar and Hill, 2001

NN
7

A Interconnection
| Networks

7777
[] 7]
SN2
NN (7774
—
L.

H Other
N
N Fault Tolerance
N
5| m o
=~ NN Dataflow
4 |
m ; & - \
1|5 %
Vi
I

a) (Percent)
N I —

RN

Why Uniprocessor Innovation Wave?

¢ Innovation needed to happen

= Alternatives (multiprocessors) not practical
option for using additional transistors

¢ Innovation could happen: things could be
done differently

* |dentify barriers (e.g., to performance)

= Use transistors to overcome barriers (e.g., via
speculation)

= Simulation tools facilitate innovation

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

al

[Lessons from Uniprocessors

e Don’t underestimate what can be done in
hardware

* Doing things in software was considered easy;
in hardware considered hard

= Now perhaps the opposite

e Barriers or limits become opportunities for
innovation

= Via novel forms of speculation
= E.g., barriers in Wall’s study on limits of ILP

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

al

Multiprocessor Architecture

e A.k.a. “multiarchitecture” of a multiprocessor
e Take state-of-the-art uniprocessor

e Connect several together with a suitable
network

= Have to live with defined interfaces

e Expend hardware to provide cache coherence
and streamline inter-node communication

= Have to live with defined interfaces

Soitware Responsibilities

e Have software figure out how to use MP

e Reason about parallelism

e Reason about execution times and overheads
e Orchestrate parallel execution

e Very difficult for software to parallelize
transparently

Explicit Parallel Programming

e Have programmer express parallelism
e Reasoning about parallelism is hard

e Use synchronization to ease reasoning

= Parallel trends towards serial with the use of
synchronization

e
/’:_-"*‘"’%T\

=4
= il

[Y H)
ALY
TR WRIIVARS LNy
W T
WVISCONSIN
Ry B]S @R

Net Result

e Difficult to get parallelism speedup
= Computation is serial

= |Inter-node communication latencies
exacerbate problem

e Multiprocessors rarely used for parallel
execution

e Used to run threaded programs
= Lower-overhead sync would help
e Used to improve throughput

o

&5

The Inflexion Pomnt for Multiprocessors

® Can put a basic small-scale MP on a chip

® Can think of alternative ways of building
multiarchitecture

® Don’t have to work with defined interfaces!
®* What opportunities does this open up?

® Allows for parallelism to get performance.

® Allows for use of novel techniques to
overcome (software and hardware) barriers

® Other opportunities (e.g., reliability)

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

al

Parallel Sottware

e Needs to be compelling reason to have a
parallel application

e Won’t happen if difficult to create

= Written by programmer or automatically
parallelized by compiler

e Won’t happen if insufficient performance gain

Changes in MP Multiarchitecture

¢ Inventing new functionality to overcome
barriers

= Consider barriers as opportunities
e Developing new models for using CMPs
e Revisiting traditional use of MPs

Speculative Multithreading

e Speculatively parallelize an application

= Use speculation to overcome ambiguous
dependences

= Use hardware support to recover from mis-
speculation

e E.g., multiscalar
e Use hardware to overcome limitations

A EY '.l-'!mllhl’w:i,:;!ﬁ!:'u'\“.’

N T TN T

NISCONSIN
M E SR

il

Overcoming Barriers: Memory Models

e Weak models proposed to overcome
performance limitations of SC

e Speculation used to overcome “maybe”
dependences

e Series of papers showing SC can achieve
performance of weak models

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

al

[mplications

e Strong memory models not necessarily low
performance

e Programmer does not have to reason about
weak models

e More likely to have parallel programs written

Overcoming Barriers: Synchronization

e Synchronization to avoid “maybe”
dependences

= Causes serialization
e Speculate to overcome serialization

e Recent work on techniques to dynamically
elide synchronization constructs

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

il

[mplications

e Programmer can make liberal use of
synchronization to ease programming

e Little performance impact of synchronization
e More likely to have parallel programs written

Overcoming Barriers: Coherence

e Caches used to reduce data access latency;
need to be kept coherent

e Latencies of getting value from remote
location impact performance

e Getting remote value is two-part operation
= Get value
= Get permissions to use value
= Can separating these help?

Coherence Decoupling

Sequential

. execution
Miss latency
Time
>

Coherence Permission.
miss detected and value arrive

Speculative
execution

Time
-—=. >

Coherence Value Permission Value arrives Retried (on
miss detected predicted granted and verified misspeculation)

Zeros/Ones 1in Coherence Misses

Load Value
OLTP
Apache
JBB

Bames
Ocean
Store Value
OLTP
Apache
JBB

Bames
Ocean

Preliminary Data, Simics (Ultrasparc/Solaris, 16P),
Cache (4MB 4-way SA L2, 64B lines, MOSI)

Other Periormance Optimizations

e Clever techniques for inter-processor
communication

= Remember: no artificial constraints on chip
e Further reduction of artificial serialization

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

il

New Uses tor CMPs

e Helper threads, redundant execution, etc.

®* will need extensive research in the context of
CMPs

e How about trying to parallelize application,
I.e., “traditional” use of MPs?

A EY '.l-'!mllhl’w:i,:;!ﬁ!:'u'\“.’

N T TN T

NISCONSIN
M E SR

al

Revisiting Traditional Use of MPs

e Compilers and software for MPs

e Digression: Master/Slave Speculative
Parallelization (MSSP)

e Expectations for future software
e Implications

Parallelizing Apps: A Moving Target

e Learned to reason about certain languages,
data structures, programming constructs and
applications

e Newer languages, data structures,

programming constructs and applications
appear

e Always playing catch up
e Can we get a jump ahead?

Master/Slave Speculative Parallelization (MSSP)

e Take a program and create program with two
sub-programs: Master and Slave

e Master program is approximate (or distilled)
version of original program

e Slave (original) program “checks” work
done by master

e Portions of the slave program execute in
parallel

MSSP - Overview

Original Code mmmp Distilled Code ﬂ H

Distilled Code on Master

Original Code concurrently on
Slaves verifies Distilled Code

Use checkpoints to
communicate changes

MSSP - Distiller

Program with many paths

MSSP - Distiller

Program with many paths

Dominant paths

MSSP - Distiller

Program with many paths

Dominant paths

MSSP - Distiller

Program with many paths

Dominant paths

MSSP - Distiller

AppCaxmpdéer Dpioniaatipaths

Distilled Code

MSSP - Execution

Slave Slave

SRS
|

\

-

Verify chiocitpoiiit af ®®° 0oriect

MISSP Summary

e Distill away code that is unlikely to impact
state used by later portions of program

e Performance tracks distillation ratio
= Better distillation = better performance

e Verification of distilled program done in
parallel on slaves

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

il

Future Applications and Software

e What will future applications look like?
* Don’t know

e What language will they be written in?
= Don’t know; don’t care

e Code for future applications will have
“overheads”

= Overheads for checking for correctness
= Overheads for improving reliability
= Overheads for checking security

|,".. .'.'il
v YY

LIRE R IR RS L
N T TN T
NISCONSIN

M E SR

Overheads as an Opportunity

Performance costs of overhead have limited their use
Overheads not a limit; rather an opportunity
Run overhead code in parallel with non-overhead
code

= Develop programming models

= Develop parallel execution models (a la MSSP)

= Recent work in this direction

Success at reducing overhead cost will encourage
even more use of “overhead” techniques

Sumimary

e New opportunities for innovation in MPs

e Expect little resemblance between MPs today
and CMPs in 15 years
= We need to invent and define differences

= Not because uniprocessors are running out of
steam

= But because innovation in CMP
multiarchitecture possible

Sumimary

¢ Novel techniques for attacking performance
limitations

e New models for expressing work
(computation and overhead)

e New parallel processing models
e Simulation tools

