
Microprocessors: 20 Years Back, Microprocessors: 20 Years Back,
10 Years Ahead10 Years Ahead

Guri Sohi
University of Wisconsin

2

OutlineOutline

The enabler: semiconductor technology
Role of the processor architect
Micro-architectures of the past 20 years

From pipelining to speculation
Micro-architectures of the next 10 years

3

Semiconductor TechnologySemiconductor Technology

Many more available transistors
Imbalances due to disparate rates of
performance improvement

E.g., logic and memory speeds

How does this impact the architecture
of microprocessors?

4

Number of TransistorsNumber of Transistors

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000,000,000

1971 1974 1982 1989 1997 2000 2004 2008 2012 2016

Tr
an

si
st

or
s

4004 8008

8080

80286

80386 80486

Pentium Pentium II

Pentium III Pentium 4

8086

5

Relative Memory SpeedRelative Memory Speed

1.4
2.5

3.8
6.3

10.7

29
48

75
120

1

10

100

1000

1974 1978 1982 1985 1989 1993 1997 1999 2000

Pr
oc

es
so

r,
M

em
or

y
D

iv
id

e
(C

yc
le

 T
im

e)

6

Intel MicroprocessorsIntel Microprocessors

386 (275 K) 486 (1180 K)
Pentium (3100 K)

Pentium II (7500 K)

Pentium III (24000 K)Pentium 4 (42000 K)

What is being
done with all

the transistors?

7

Role of Computer ArchitectRole of Computer Architect

Get desired level of performance
Determine functionality needed
Determine how functionality should be
implemented

8

Role of Computer Architect…Role of Computer Architect…

Defining functionality
Functionality to deal with increasing latencies
(e.g., caches, wires)
Functionality to increase parallelism and its
exploitation

Implementing functionality
Balancing various technology parameters
Ease of design / verification / testing

9

The Performance EquationThe Performance Equation

Time = Number of Instructions x Cycles per
Instruction x Clock Cycle Time

Not much can be done about first term in hardware
But, …

Logic speed increase - decreases 3rd term
Watch out for possible increase in 2nd term

Use micro-architectural innovations to decrease 2nd

and 3rd terms
Reduce latencies
Exploit parallelism

10

MicroarchitecturalMicroarchitectural FunctionalityFunctionality

Functionality to cope with increasing memory
latencies
Functionality to exploit parallelism

11

Memory HierarchiesMemory Hierarchies

Reducing access latency and improving
access bandwidth
Single-level caches
Multi-level caches
Non-blocking caches
Multi-ported and multi-banked caches
Trace caches

12

The March of ParallelismThe March of Parallelism

Generation 2 (1980s)Generation 1 (1970s)

Generation 4 (2000s)

Generation 3 (1990s)

13

Exploiting ParallelismExploiting Parallelism

• Little change in programming model
still write programs in sequential languages

Automatic parallelization not widely
successful
Great investment in existing software

Resort to low-level,
Instruction Level Parallelism (ILP)

14

Instruction Level Parallelism (ILP)Instruction Level Parallelism (ILP)

Determine small number (e.g., < 100)
instructions to be executed
Determine dependence relationships and
create dependence graph

Use to determine parallel execution
Can be done statically (VLIW / EPIC) or
dynamically (out-of-order superscalar)

15

Limitations to ILPLimitations to ILP

Branch instructions inhibit determination of
instructions to execute: control dependences
Imperfect analysis of memory addresses inhibits
reordering of memory operations: ambiguous
memory dependences
Program/algorithm data flow inhibits parallelism: true
dependences
Increasing latencies exacerbate impact of
dependences

Use speculation to overcome impact of dependences

16

SpeculationSpeculation

Speculation: “.. to assume a business risk
in hope of gain’’

Webster

17

Speculation and Computer ArchitectureSpeculation and Computer Architecture

Speculate outcome of event rather than
waiting for outcome to be known

Program behavior provides rationale for high
success rate

Functionality to support speculation
Functionality to speculate better
Functionality to minimize mis-speculation
penalty

18

Control SpeculationControl Speculation

Predict outcome of branch instructions
Speculatively fetch and execute instructions
from predicted path

Increase available parallelism
Recover if prediction is incorrect

19

Model for Speculative ExecutionModel for Speculative Execution

Instru
ctio

n

fetch & branch

predictio
n

Dependence

checking and

dispatching

Execution
window

Completed
instructions

Instn. re
order &

commit

Instruction
Issue & Execution

Static
program

Dynamic
instruction
stream

20

Supporting Control SpeculationSupporting Control Speculation
Techniques to predict branch outcome: branch
predictors

Initiating speculation
Improving accuracy of speculation

Techniques to support speculative execution:
reservation stations, register renaming etc.

Supporting speculative execution
Techniques to give appearance of sequential
execution: reorder buffers, etc.

Doing it transparently

21

Key observationKey observation

Basic mechanisms to support control
speculation can support other forms of

speculation as well

22

PerformancePerformance--Inhibiting ConstraintsInhibiting Constraints
Control dependences: inhibit creation of instruction
window

Use control speculation
Ambiguous data dependences: inhibit parallelism
recognition

Use data dependence speculation
True data dependences: inhibit parallelism

Use value speculation
Common mechanisms may support different forms of
speculation
Different techniques to improve accuracy of
speculation

23

Speculation in Use TodaySpeculation in Use Today

Address calculation and translation
(especially if 2-step process)
Cache hit
Memory ordering violation in multiprocessors
Load/store dependences

24

Microprocessors Microprocessors –– the next 10 yearsthe next 10 years

Factor of 30 increase in semiconductor resources
How to use it?

New constraints
Power consumption
Wire delays
Design / verification complexity

New applications?
Throughput-oriented workloads
Coarse-grain multithreaded applications

25

Technology TrendsTechnology Trends

Design and verification of large number of
transistors becoming unwieldy
Wires getting relatively slower

Short wires for fast clock
Implies increase latencies; exploit locality of
communication

Power issues becoming very important

26

Architect’s Role RevisitedArchitect’s Role Revisited

Defining functionality
New models needed to further increase
parallelism exploitation

Implementing functionality
Becoming a dominating factor?

Speculation is likely to be the key to
overcoming constraints

27

Implications of TrendsImplications of Trends

Implementation considerations will imply computing
chips with multiple (replicated?) processing cores

“multiprocessor” or “multiprocessor-like” or
“multithreaded”
Will start out as “logical” replication (e.g., SMT)
Will move towards “physical” replication (e.g., CMP)

How to assign work to multiple processing cores?
Independent programs (or threads)
Parts of a single program

28

ThroughputThroughput--Oriented ProcessingOriented Processing

Executing multiple, independent programs on
underlying parallel micro-architecture

Similar to traditional throughput-oriented
multiprocessor
Significant engineering challenges, but little in
ways of architectural / micro-architectural
innovation

Can we use underlying “multiprocessor” to
speed up execution of single program?

29

Parallel Processing of Single ProgramParallel Processing of Single Program

Will the promise of explicit / automatic
parallelism come true?
Will new (parallel) programming languages
take over the world?

Don’t count on it !

30

Speculative ParallelizationSpeculative Parallelization

Sequential languages aren’t going away
Use speculation to overcome inhibitors to
“automatic” parallelization

Ambiguous dependences
Divide program into “speculatively parallel”
portions or “speculative threads”

31

Speculative ThreadsSpeculative Threads

Subject of extensive research today
Different speculative parallelization models
being investigated

32

Generic circa 2010 MicroprocessorGeneric circa 2010 Microprocessor
4 – 8 general-purpose processing engines on chip

Used to execute independent programs
Explicitly parallel programs (when possible)
Speculatively parallel threads
Helper threads

Special-purpose processing units (e.g., DSP
functionality)
Elaborate memory hierarchy
Elaborate inter-chip communication facilities
Extensive use of different forms of speculation

33

SummarySummary

Semiconductor technology has, and will continue to,
give computer architects new opportunities
Architects have used speculation techniques to
overcome performance barriers; will likely continue
to do so
Future microprocessors are going to have capability
to execute multiple threads of code
New models of speculation (e.g., thread-level
speculation) will be needed to extract more
parallelism

	Microprocessors: 20 Years Back, 10 Years Ahead
	Outline
	Semiconductor Technology
	Number of Transistors
	Relative Memory Speed
	Intel Microprocessors
	Role of Computer Architect
	Role of Computer Architect…
	The Performance Equation
	Microarchitectural Functionality
	Memory Hierarchies
	The March of Parallelism
	Exploiting Parallelism
	Instruction Level Parallelism (ILP)
	Limitations to ILP
	Speculation
	Speculation and Computer Architecture
	Control Speculation
	
	Supporting Control Speculation
	Key observation
	Performance-Inhibiting Constraints
	Speculation in Use Today
	Microprocessors – the next 10 years
	Technology Trends
	Architect’s Role Revisited
	Implications of Trends
	Throughput-Oriented Processing
	Parallel Processing of Single Program
	Speculative Parallelization
	Speculative Threads
	Generic circa 2010 Microprocessor
	Summary

