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e A decade of speculative multithreading evolution
e Multiscalar background and rationale

e Multiscalar

e Parallelization and Speculative Parallelization

e Speculative Data-driven Multithreading (DDMT)

e Speculative Slices

e Master-Slave Speculative Parallelization (MSSP)
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Hardware Wish List (circa 1993)

e Use of simple, regular hardware structures
e Clock speeds comparable to single-issue processors

e Easy growth path from one generation to next

o Reuse existing processing cores to extent possible
o No centralized bottlenecks

e Exploit available parallelism
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Software Wish List (circa 1993)

« Write programs in ordinary languages (e.g. C)
e Target uniform hardware-software interface

o Facilitate software independence and growth path

e Maintain uniform hardware-software interface, i.e., do
not tailor for specific architecture

o Minimal OS impact
o Facilitate hardware independence and growth path

e Place few demands on software

o make minimum requirements for guarantees
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The Opportunity and Objective (circa 1993)

e Many tens of millions of transistors on a chip vs. few
million today

e Can integrate several (tens?) of todays processors,
plus supporting hardware, on a chip

Use available resources to minimize program execution time!
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A Bird’s Eye View

e Sequence through static program
and establish a window of execution

e Establish dependence relationships
within window

e Set up parallel execution schedule
for operations in window

e Provide resources to implement
parallel execution schedule
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Multiscalar Paradigm (Franklin, Breach, Vijaykumar)

e Break sequencing process into two steps
o Sequence through static representation in task-sized steps

e Sequence through each task in conventional manner
e Split large instruction window into ordered tasks

e Assign a task to a simple execution engine; exploit ILP
by overlapping execution of multiple tasks

e Use separate PCs to sequence through separate tasks

e Maintain the appearance of a single-PC sequencing
through the static representation
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Multiscalar Big Picture: Basics
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Multiscalar Big Picture: Hardware

SEQUENCER

MEMORY DISAMBIGUATION
CACHE HIERARCHY
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Dependence Prediction (Moshovos)

e circa 1995-96
e To prevent “over speculation” of dependences
e Predict load-store dependence relationships

o use to control dependence speculation
e Learn about likely violations and synchronize

e Emerged as key technology
o useful regardless of parallelism exploitation model
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Stepping Back

« Multiprocessor microarchitecture

« \What should the “work” be for different processing
units?

o multiscalar is speculative form of traditional parallelization
e Relevance of solutions to other parallelism models

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 11

M A DI S O N




Work for Distributed/Multithreaded Processor

e Independent programs
o Increase overall processing throughput

e Independent threads of multithreaded application
o iIncrease overall throughput

e Related threads
o e.g., for reliability

e But what about speeding up single program
execution?

o how to “parallelize” or “multithread” single program?
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Program Parallelization

e What does it mean to parallelize?

o how to divide program into multiple portions
e \What constrains parallelization?

o dependences (especially ambiguous)
e How to overcome constraints?

o use speculation
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Program Parallelization -- Theme |

e Traditional view: control-driven threads

o divide work into multiple groups of instructions

- conservative assumptions about dependences
constrain parallelization

o each group is specified using traditional control-driven (von
Neumann) semantics

e A newer view: multiscalar

o use dependence speculation to overcome constraints
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Program Parallelization -- Theme I

e Another traditional view: dataflow

o divide work into (dependent) computations
o each computation is represented in a data-driven manner

e A newer view: speculative data-driven “threads”
o use speculation to facilitate thread creation
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Motivation for Data-driven Threads

e Program execution: processing of low-latency
Instructions, with pauses for high-latency events

e Parallelizing low-latency instructions isn’t crucial

e Overlapping high-latency events is what matters!
e “Threads” should initiate high-latency events early
e Need to “sequence” these instructions early
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Speculative Data-Driven Multithreading

e |solate data-driven threads from program

e Execute isolated (data-driven) threads in parallel
e Also called “pre-execution”

e |ssues

o nature of threads
o how to launch and execute threads
o communicating values between threads and main program
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DDMT (Roth)

unoptimiz_ed execution pre-execution
master thread master thread  pre-execution thread
fetch  execute fetch  execute fetch execute

R1=R1+1 RL=R1+1| fork

R1=R1+1
R1=R1+1
RL=R1+1 R1=R1+1 |[R2=Id[R1]

RI=R1+1 load & RI=R1+1 bzR2,0x2c| [R1=R1+1
branch RI=RL1+1
computation

R1=R1+1 |R1=R1+1 |nstruct|ons R1=R1+1 |R1=R1+1

R2=1d [R1] R2=Id [R1] v

R2=1d [R1]
R1=R1+1 R1=R1+1 | bz R2, 0x2c
R2=Id[RY]| early
memory latenc :
bz R2, 0x2¢ i );mblemy bz R2, 0x2¢ resolution
R2 = Id [R1]
oad bz R2, 0x2¢
branch
resolution [bzrz oxze 3£gﬁ'§hm
ipeline latenc
PIp il y speedup
UNIVERSITY OF Slide
Speculative Multithreading: from Multiscalar to MSSP 18

WISCONSIN

M A D S O N




DDMT, cont.

e |dentify problem loads & branches
e Construct Speculative Data-Driven Threads (DDT):

o select a fork point with sufficient latency tolerance
o profile to identify common data-flow predecessors
o pack these instructions into static DDT

e Execute DDTs on idle SMT thread contexts
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Register Integration (Roth)

e “Communicate” results of DDT to main thread
e DDTs are subset of program

o data-flow corresponds exactly
e Match up instructions at register rename stage

o If matching PC and physical register inputs ->
assign it the same physical register output

< Avoid re-executing instructions already executed
e Early resolution of branch mispredictions

e Also useful for squash reuse
o speculative code can be viewed as speculative thread
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From DDMT to Speculative Slices

e DDMT requires DDTs to be program subsets:
o enables integration

What if we remove that constraint?

e Construct more efficient “DDTs”...

o freedom to optimize
e ...but, requires new DDT mapping mechanism

°Nno Ionger a one-to-one Correspondence to program
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Speculative Slices (Zilles)

e Slices are not allowed to affect architected state
o Only generate predictions & prefetches
e Removes all correctness constraints from slices:

Enables slices to be transformed arbitrarily

e Profile program, identify predictable behaviors
e Transform code to assume these behaviors

o removes code from slice, improving efficiency
o results in incorrect computations on uncommon case

Common case efficiency at the expense of occasional
mispredicts
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Mapping for Speculative Slices

e Need to map predictions to branches in original prog.
< No data-flow correspondence (hence no integration)

Use control-flow

= Prediction generating instruction (in slice) specifies:

o prediction
o PC of corresponding branch
o region of execution for which the prediction is valid
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Valid Regions (Zilles)

st pred
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e Prediction computed assume a
particular path (or set of paths)

o corresponds to a region in the space of
all possible executions

= predictions should be destroyed if
execution escapes region

e instructions on region boundary are
marked

e In practice few markers are needed
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Lessons learned from DDMT/Speculative Slices

e Computation can be an efficient means to make
predictions

e Can this idea be used in speculative parallelization?
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Program Parallelization -- Theme llI

e Traditional view: master/slave message passing

o master divides problem, assigns slaves to pieces

o master sends each slave the necessary fraction of data

o generally programmer ensures slave’s work is independent
o hence, no inter-slave communication

e A newer view: master/slave speculative parallelization

o master executes “distilled” copy of original program

o master forks slaves to execute chunks of original program
o master provides start PC and live-in predictions

o Inter-slave communication to verify live-in predictions

o extension of parallel microarchitecture
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Master Slave Speculative Parallelization (Zilles)

SLAVE
original
program

start PC, live-in values

SLAVE

original
program

SLAVE

MASTER
distilled
program

unverified
domain

SLAVE

original
program

e Optimizing live-in communication (master/slave)

original
program

verified domain

e Optimizing live-in computation (distilled programs)
e Execution model
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Optimizing Live-in Communication

lllustrative Example: loop counter increment

Previous Models:

e Communication
Latency Serialized

MSSP:

e Communication

Latency Parallelized
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Optimizing Live-in Computation

e In general, computing live-ins not so trivial
e \Want to optimize computation of inter-task values
e Tension in previous models

e Single executable:

o computes live-ins for future tasks (want fast)
o updates architected state (want correct)

MSSP decomposes problem:

e distilled program (master) allowed to be incorrect
o enables maximizing performance of the common-case
e original program (slave) allowed to be slow
o correctly updates architected state, verifies master
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Distilled Program Example

original distilled Example from bzip2
R (3% of total execution)
14 spec_getc
sy, Profile-guided optimizations
71
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8 287 811 2827000 o Inline function
2037087 ok 186802 |15 o avoid save/restores
0 o o remove dead code
i 2827087 .
2827009 | 6 Looo o register allocate
201 EnjEn o reassign logical register
i o constant folding

e Average path length reduced by 2/3rds
= Significant reduction of static size, taken branches
e Correct 99.999% of the time

Like traditional optimizations, but not 100% safe
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Detalled Execution

Speculative Execution Parallelized Verification Execution
. / I
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Initiation latency

\ .
detection latency
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Misspeculation Path

Speculative Execution Parallelized Verification Execution
|

misspeculation
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bad checkpoint

QUNBUN RN RN B

D

~~misspeculation detected

UNIVERSITY OF Slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 32

M A DI § O N




Misspeculation Path

Speculative Execution Parallelized Verification Execution
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Misspeculation Path

Speculative Execution Parallelized Verification Execution
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Analytical Performance Model

e Model of 3 parameters:

o o = speedup of distilled program relative to original
o P = fraction of correct checkpoints (prediction accuracy)

o O = normalized overhead = (I+D+R)/E

300% o=4 300%—

0O O

a=3 200%]

a=2 100%—f

o1 O

0% —————mmmmmm e m

. . . 1.0 O.OIIII0.5IIlll!Olllll!SIIIIZ.O
correctness fraction (P) overhead (O)

Performance is super-linear with checkpoint accuracy

At high checkpoint accuracy, performance tracks distilled
program and is insensitive to inter-core latency
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So What?

e Can distilled programs be automatically generated to
be fast and accurate?

e \We think so.
e Currently developing automatic distiller:

o early results: not all transformations implemented yet

120%

O
100 ] | L0l nfn g = gr:jgelgdal
80% — o + branch
B + store
60% — m + identity

zZl cra eon gap gcc gzZi mcf par per two vor vpr

Implemented transformations achieve results comparable
to example from bzip2 (15-40% vs. 22%)
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Performance vs. Accuracy

« A continuum of distilled programs exists
o can turn on/off transformations, set accuracy thresholds

accuracy =
original threshold g
program Q
© X X

o

= i % XXX X% "o

EI distilled c X ”
profile wn program % | | |
info II = 0.0% 0.1% 0.2% 0.3%

misspeculation rate

e Curve fit best configurations

o most benefit achieved with little accuracy impact
o Incremental benefit from trading off accuracy
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MSSP Summary

» Master: executes distilled program, which forks slave
threads and predicts their live-in values

e Slaves: perform parallelized execution of original
program, verify live-in predictions

e Model conforms to real world constraints:

o supports legacy code (no necessary compiler mod’s)
distiled program can be derived from original program
o no verification of program distiller necessary
distiled program has no correctness constraints
o tolerant of wire latency
only exposed on rare misspeculations by master
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Conclusions

e A variety of different speculative multithreading
models of the past decade

« Multiscalar

o Use speculation to parallelize program execution
e DDMT/Speculative Slices

o Use speculation to execute critical computations early
e Master/Slave Speculative Parallelization (MSSP)

o Fusion of Multiscalar/DDMT/Speculative Slices
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