Speculative Multithreading: from Multiscalar
to MSSP

Guri Sohi

Computer Sciences Department
University of Wisconsin-Madison

Outline

e A decade of speculative multithreading evolution
e Multiscalar background and rationale

e Multiscalar

e Parallelization and Speculative Parallelization

e Speculative Data-driven Multithreading (DDMT)

e Speculative Slices

e Master-Slave Speculative Parallelization (MSSP)

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 2

M A DI S O N

Hardware Wish List (circa 1993)

e Use of simple, regular hardware structures
e Clock speeds comparable to single-issue processors

e Easy growth path from one generation to next

o Reuse existing processing cores to extent possible
o No centralized bottlenecks

e Exploit available parallelism

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 3

M A DI S O N

Software Wish List (circa 1993)

« Write programs in ordinary languages (e.g. C)
e Target uniform hardware-software interface

o Facilitate software independence and growth path

e Maintain uniform hardware-software interface, i.e., do
not tailor for specific architecture

o Minimal OS impact
o Facilitate hardware independence and growth path

e Place few demands on software

o make minimum requirements for guarantees

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 4

M A DI S O N

The Opportunity and Objective (circa 1993)

e Many tens of millions of transistors on a chip vs. few
million today

e Can integrate several (tens?) of todays processors,
plus supporting hardware, on a chip

Use available resources to minimize program execution time!

UNIVERSITY OF slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 5

M A DI § O N

A Bird’s Eye View

e Sequence through static program
and establish a window of execution

e Establish dependence relationships
within window

e Set up parallel execution schedule
for operations in window

e Provide resources to implement
parallel execution schedule

UNIVERSITY OF

WISCDNSIN Speculative Multithreading: from Multiscalar to MSSP

M A DI § O N

PROGRAM

Slide

Multiscalar Paradigm (Franklin, Breach, Vijaykumar)

e Break sequencing process into two steps
o Sequence through static representation in task-sized steps

e Sequence through each task in conventional manner
e Split large instruction window into ordered tasks

e Assign a task to a simple execution engine; exploit ILP
by overlapping execution of multiple tasks

e Use separate PCs to sequence through separate tasks

e Maintain the appearance of a single-PC sequencing
through the static representation

UNIVERSITY OF slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 7

M A DI § O N

Multiscalar Big Picture: Basics

PROGRAM

N\
T

predict predict
PROC(C PROC PROC
UNIT UNIT UNIT
1 2 3

UNIVERSITY OF Slide

W!SCONSIN Speculative Multithreading: from Multiscalar to MSSP 8

M ADISON

Multiscalar Big Picture: Hardware

SEQUENCER

MEMORY DISAMBIGUATION
CACHE HIERARCHY

UNIVERSITY OF

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP

M A DI § O N

Slide

Dependence Prediction (Moshovos)

e circa 1995-96
e To prevent “over speculation” of dependences
e Predict load-store dependence relationships

o use to control dependence speculation
e Learn about likely violations and synchronize

e Emerged as key technology
o useful regardless of parallelism exploitation model

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 10

M A DI S O N

Stepping Back

« Multiprocessor microarchitecture

« \What should the “work” be for different processing
units?

o multiscalar is speculative form of traditional parallelization
e Relevance of solutions to other parallelism models

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 11

M A DI S O N

Work for Distributed/Multithreaded Processor

e Independent programs
o Increase overall processing throughput

e Independent threads of multithreaded application
o iIncrease overall throughput

e Related threads
o e.g., for reliability

e But what about speeding up single program
execution?

o how to “parallelize” or “multithread” single program?

UNIVERSITY OF slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 12

M A DI § O N

Program Parallelization

e What does it mean to parallelize?

o how to divide program into multiple portions
e \What constrains parallelization?

o dependences (especially ambiguous)
e How to overcome constraints?

o use speculation

UNIVERSITY OF

W!SCONSIN Speculative Multithreading: from Multiscalar to MSSP

M A DI S O N

Slide
13

Program Parallelization -- Theme |

e Traditional view: control-driven threads

o divide work into multiple groups of instructions

- conservative assumptions about dependences
constrain parallelization

o each group is specified using traditional control-driven (von
Neumann) semantics

e A newer view: multiscalar

o use dependence speculation to overcome constraints

UNIVERSITY OF slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 14

M A DI § O N

Program Parallelization -- Theme I

e Another traditional view: dataflow

o divide work into (dependent) computations
o each computation is represented in a data-driven manner

e A newer view: speculative data-driven “threads”
o use speculation to facilitate thread creation

UNIVERSITY OF Slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 15

M A DI § O N

Motivation for Data-driven Threads

e Program execution: processing of low-latency
Instructions, with pauses for high-latency events

e Parallelizing low-latency instructions isn’t crucial

e Overlapping high-latency events is what matters!
e “Threads” should initiate high-latency events early
e Need to “sequence” these instructions early

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 16

M A DI S O N

Speculative Data-Driven Multithreading

e |solate data-driven threads from program

e Execute isolated (data-driven) threads in parallel
e Also called “pre-execution”

e |ssues

o nature of threads
o how to launch and execute threads
o communicating values between threads and main program

UNIVERSITY OF Slide

W!SCONSIN Speculative Multithreading: from Multiscalar to MSSP 17

M A DI S O N

DDMT (Roth)

unoptimiz_ed execution pre-execution
master thread master thread pre-execution thread
fetch execute fetch execute fetch execute

R1=R1+1 RL=R1+1| fork

R1=R1+1
R1=R1+1
RL=R1+1 R1=R1+1 |[R2=Id[R1]

RI=R1+1 load & RI=R1+1 bzR2,0x2c| [R1=R1+1
branch RI=RL1+1
computation

R1=R1+1 |R1=R1+1 |nstruct|ons R1=R1+1 |R1=R1+1

R2=1d [R1] R2=Id [R1] v

R2=1d [R1]
R1=R1+1 R1=R1+1 | bz R2, 0x2c
R2=Id[RY]| early
memory latenc :
bz R2, 0x2¢ i);mblemy bz R2, 0x2¢ resolution
R2 = Id [R1]
oad bz R2, 0x2¢
branch
resolution [bzrz oxze 3£gﬁ'§hm
ipeline latenc
PIp il y speedup
UNIVERSITY OF Slide
Speculative Multithreading: from Multiscalar to MSSP 18

WISCONSIN

M A D S O N

DDMT, cont.

e |dentify problem loads & branches
e Construct Speculative Data-Driven Threads (DDT):

o select a fork point with sufficient latency tolerance
o profile to identify common data-flow predecessors
o pack these instructions into static DDT

e Execute DDTs on idle SMT thread contexts

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 19

M A DI S O N

Register Integration (Roth)

e “Communicate” results of DDT to main thread
e DDTs are subset of program

o data-flow corresponds exactly
e Match up instructions at register rename stage

o If matching PC and physical register inputs ->
assign it the same physical register output

< Avoid re-executing instructions already executed
e Early resolution of branch mispredictions

e Also useful for squash reuse
o speculative code can be viewed as speculative thread

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 20

M A DI S O N

From DDMT to Speculative Slices

e DDMT requires DDTs to be program subsets:
o enables integration

What if we remove that constraint?

e Construct more efficient “DDTs”...

o freedom to optimize
e ...but, requires new DDT mapping mechanism

°Nno Ionger a one-to-one Correspondence to program

UNIVERSITY OF

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP

M A DI § O N

Slide
21

Speculative Slices (Zilles)

e Slices are not allowed to affect architected state
o Only generate predictions & prefetches
e Removes all correctness constraints from slices:

Enables slices to be transformed arbitrarily

e Profile program, identify predictable behaviors
e Transform code to assume these behaviors

o removes code from slice, improving efficiency
o results in incorrect computations on uncommon case

Common case efficiency at the expense of occasional
mispredicts

UNIVERSITY OF slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 22

M A DI § O N

Mapping for Speculative Slices

e Need to map predictions to branches in original prog.
< No data-flow correspondence (hence no integration)

Use control-flow

= Prediction generating instruction (in slice) specifies:

o prediction
o PC of corresponding branch
o region of execution for which the prediction is valid

UNIVERSITY OF Slide

W!SCONSIN Speculative Multithreading: from Multiscalar to MSSP 23

M A DI S O N

Valid Regions (Zilles)

st pred

WISCONSIN

M A DI § O N

e Prediction computed assume a
particular path (or set of paths)

o corresponds to a region in the space of
all possible executions

= predictions should be destroyed if
execution escapes region

e instructions on region boundary are
marked

e In practice few markers are needed

Slide
Speculative Multithreading: from Multiscalar to MSSP 24

Lessons learned from DDMT/Speculative Slices

e Computation can be an efficient means to make
predictions

e Can this idea be used in speculative parallelization?

UNIVERSITY OF slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 25

M A DI § O N

Program Parallelization -- Theme llI

e Traditional view: master/slave message passing

o master divides problem, assigns slaves to pieces

o master sends each slave the necessary fraction of data

o generally programmer ensures slave’s work is independent
o hence, no inter-slave communication

e A newer view: master/slave speculative parallelization

o master executes “distilled” copy of original program

o master forks slaves to execute chunks of original program
o master provides start PC and live-in predictions

o Inter-slave communication to verify live-in predictions

o extension of parallel microarchitecture

UNIVERSITY OF slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 26

M A DI § O N

Master Slave Speculative Parallelization (Zilles)

SLAVE
original
program

start PC, live-in values

SLAVE

original
program

SLAVE

MASTER
distilled
program

unverified
domain

SLAVE

original
program

e Optimizing live-in communication (master/slave)

original
program

verified domain

e Optimizing live-in computation (distilled programs)
e Execution model

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 27

M A DI S O N

Optimizing Live-in Communication

lllustrative Example: loop counter increment

Previous Models:

e Communication
Latency Serialized

MSSP:

e Communication

Latency Parallelized

UNIVERSITY OF

WISCONSIN

M A DI § O N

task A

task B
\:ﬁ’ task C
1=5
S
ri=6
™~ r1=7
7

task A ri=4

taskB ri=5 rl"""
ri= 6|r1$|
task C I'1++
r1++
r1++

Speculative Multithreading: from Multiscalar to MSSP

Critical Paths

master

— —+ —+ —~+ —+
(U I
AWNEFRO

Slide
28

Optimizing Live-in Computation

e In general, computing live-ins not so trivial
e \Want to optimize computation of inter-task values
e Tension in previous models

e Single executable:

o computes live-ins for future tasks (want fast)
o updates architected state (want correct)

MSSP decomposes problem:

e distilled program (master) allowed to be incorrect
o enables maximizing performance of the common-case
e original program (slave) allowed to be slow
o correctly updates architected state, verifies master

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 29

M A DI S O N

Distilled Program Example

original distilled Example from bzip2
R (3% of total execution)
14 spec_getc
sy, Profile-guided optimizations
71
) | 20 bsR o eliminate branches
5i - . . .
8 287 811 2827000 o Inline function
2037087 ok 186802 |15 o avoid save/restores
0 o o remove dead code
i 2827087 .
2827009 | 6 Looo o register allocate
201 EnjEn o reassign logical register
i o constant folding

e Average path length reduced by 2/3rds
= Significant reduction of static size, taken branches
e Correct 99.999% of the time

Like traditional optimizations, but not 100% safe

UNIVERSITY OF slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 30

M A DI § O N

Detalled Execution

Speculative Execution Parallelized Verification Execution
. / I
fork instruction .
Initiation latency

\ .
detection latency

KRN RN RN RI

UNIVERSITY OF Slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 31

M A DI § O N

Misspeculation Path

Speculative Execution Parallelized Verification Execution
|

misspeculation

./'
bad checkpoint

QUNBUN RN RN B

D

~~misspeculation detected

UNIVERSITY OF Slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 32

M A DI § O N

Misspeculation Path

Speculative Execution Parallelized Verification Execution
é I
|
misspeculatio{A
_/V
bad checkpoint %
o ~“~misspeculation detected
restart latency g
> S
UMNMIVERSITY OF Slide
W[SCONS_IN Speculative Multithreading: from Multiscalar to MSSP 33

M A DI § O N

Misspeculation Path

Speculative Execution Parallelized Verification Execution
- | !}i
e’ I
|
|
I |
|
: e
hoos o o on o o e e
1
|
' i
|
| D d
|
|
|
I D
|
1
UNIVERSITY OF Slide
W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 34

M A DI § O N

Analytical Performance Model

e Model of 3 parameters:

o o = speedup of distilled program relative to original
o P = fraction of correct checkpoints (prediction accuracy)

o O = normalized overhead = (I+D+R)/E

300% o=4 300%—

0O O

a=3 200%]

a=2 100%—f

o1 O

0% —————mmmmmm e m

. . . 1.0 O.OIIII0.5IIlll!Olllll!SIIIIZ.O
correctness fraction (P) overhead (O)

Performance is super-linear with checkpoint accuracy

At high checkpoint accuracy, performance tracks distilled
program and is insensitive to inter-core latency

UNIVERSITY OF Slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 35

M A DI § O N

So What?

e Can distilled programs be automatically generated to
be fast and accurate?

e \We think so.
e Currently developing automatic distiller:

o early results: not all transformations implemented yet

120%

O
100] | L0l nfn g = gr:jgelgdal
80% — o + branch
B + store
60% — m + identity

zZl cra eon gap gcc gzZi mcf par per two vor vpr

Implemented transformations achieve results comparable
to example from bzip2 (15-40% vs. 22%)

UNIVERSITY OF slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 36

M A DI § O N

Performance vs. Accuracy

« A continuum of distilled programs exists
o can turn on/off transformations, set accuracy thresholds

accuracy =
original threshold g
program Q
© X X

o

= i % XXX X% "o

EI distilled c X ”
profile wn program % | | |
info II = 0.0% 0.1% 0.2% 0.3%

misspeculation rate

e Curve fit best configurations

o most benefit achieved with little accuracy impact
o Incremental benefit from trading off accuracy

UNIVERSITY OF Slide

W[SCONSIN Speculative Multithreading: from Multiscalar to MSSP 37

M A DI § O N

MSSP Summary

» Master: executes distilled program, which forks slave
threads and predicts their live-in values

e Slaves: perform parallelized execution of original
program, verify live-in predictions

e Model conforms to real world constraints:

o supports legacy code (no necessary compiler mod’s)
distiled program can be derived from original program
o no verification of program distiller necessary
distiled program has no correctness constraints
o tolerant of wire latency
only exposed on rare misspeculations by master

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 38

M A DI S O N

Conclusions

e A variety of different speculative multithreading
models of the past decade

« Multiscalar

o Use speculation to parallelize program execution
e DDMT/Speculative Slices

o Use speculation to execute critical computations early
e Master/Slave Speculative Parallelization (MSSP)

o Fusion of Multiscalar/DDMT/Speculative Slices

UNIVERSITY OF Slide

WISCONSIN Speculative Multithreading: from Multiscalar to MSSP 39

M A DI S O N

	Stepping Back
	• Multiprocessor microarchitecture
	• What should the “work” be for different processing units?
	O multiscalar is speculative form of traditional parallelization

	• Relevance of solutions to other parallelism models

	Work for Distributed/Multithreaded Processor
	• Independent programs
	O increase overall processing throughput

	• Independent threads of multithreaded application
	O increase overall throughput

	• Related threads
	O e.g., for reliability

	• But what about speeding up single program execution?
	O how to ‘‘parallelize’’ or ‘‘multithread’’ single program?

	Speculative Multithreading: from Multiscalar to MSSP
	Guri Sohi
	Computer Sciences Department
	University of Wisconsin-Madison

	Outline
	• A decade of speculative multithreading evolution
	• Multiscalar background and rationale
	• Multiscalar
	• Parallelization and Speculative Parallelization
	• Speculative Data-driven Multithreading (DDMT)
	• Speculative Slices
	• Master-Slave Speculative Parallelization (MSSP)

	Program Parallelization
	• What does it mean to parallelize?
	O how to divide program into multiple portions

	• What constrains parallelization?
	O dependences (especially ambiguous)

	• How to overcome constraints?
	O use speculation

	Program Parallelization -- Theme II
	• Another traditional view: dataflow
	O divide work into (dependent) computations
	O each computation is represented in a data-driven manner

	• A newer view: speculative data-driven “threads”
	O use speculation to facilitate thread creation

	Speculative Data-Driven Multithreading
	• Isolate data-driven threads from program
	• Execute isolated (data-driven) threads in parallel
	• Also called “pre-execution”
	• Issues
	O nature of threads
	O how to launch and execute threads
	O communicating values between threads and main program

	• Sequence through static program and establish a window of execution
	• Establish dependence relationships within window
	• Set up parallel execution schedule for operations in window
	• Provide resources to implement parallel execution schedule

	DDMT (Roth)
	DDMT, cont.
	• Identify problem loads & branches
	• Construct Speculative Data-Driven Threads (DDT):
	O select a fork point with sufficient latency tolerance
	O profile to identify common data-flow predecessors
	O pack these instructions into static DDT

	• Execute DDTs on idle SMT thread contexts

	Program Parallelization -- Theme I
	• Traditional view: control-driven threads
	O divide work into multiple groups of instructions
	- conservative assumptions about dependences constrain parallelization

	O each group is specified using traditional control-driven (von Neumann) semantics

	• A newer view: multiscalar
	O use dependence speculation to overcome constraints

	Register Integration (Roth)
	• “Communicate” results of DDT to main thread
	• DDTs are subset of program
	O data-flow corresponds exactly

	• Match up instructions at register rename stage
	O if matching PC and physical register inputs ->
	assign it the same physical register output

	• Avoid re-executing instructions already executed
	• Early resolution of branch mispredictions
	• Also useful for squash reuse
	O speculative code can be viewed as speculative thread

	From DDMT to Speculative Slices
	• DDMT requires DDTs to be program subsets:
	O enables integration

	What if we remove that constraint?
	• Construct more efficient “DDTs”...
	O freedom to optimize

	• ...but, requires new DDT mapping mechanism
	O no longer a one-to-one correspondence to program

	Speculative Slices (Zilles)
	• Slices are not allowed to affect architected state
	O Only generate predictions & prefetches

	• Removes all correctness constraints from slices:
	Enables slices to be transformed arbitrarily
	• Profile program, identify predictable behaviors
	• Transform code to assume these behaviors
	O removes code from slice, improving efficiency
	O results in incorrect computations on uncommon case

	Common case efficiency at the expense of occasional mispredicts

	Mapping for Speculative Slices
	• Need to map predictions to branches in original prog.
	• No data-flow correspondence (hence no integration)
	Use control-flow
	• Prediction generating instruction (in slice) specifies:
	O prediction
	O PC of corresponding branch
	O region of execution for which the prediction is valid

	Valid Regions (Zilles)
	• Prediction computed assume a particular path (or set of paths)
	O corresponds to a region in the space of all possible executions

	• predictions should be destroyed if execution escapes region
	• instructions on region boundary are marked
	• in practice few markers are needed

	Lessons learned from DDMT/Speculative Slices
	• Computation can be an efficient means to make predictions
	• Can this idea be used in speculative parallelization?

	Program Parallelization -- Theme III
	• Traditional view: master/slave message passing
	O master divides problem, assigns slaves to pieces
	O master sends each slave the necessary fraction of data
	O generally programmer ensures slave’s work is independent
	O hence, no inter-slave communication

	• A newer view: master/slave speculative parallelization
	O master executes “distilled” copy of original program
	O master forks slaves to execute chunks of original program
	O master provides start PC and live-in predictions
	O inter-slave communication to verify live-in predictions
	O extension of parallel microarchitecture

	Master Slave Speculative Parallelization (Zilles)
	distilled
	program
	• Optimizing live-in communication (master/slave)
	• Optimizing live-in computation (distilled programs)
	• Execution model

	Optimizing Live-in Communication
	Previous Models:
	• Communication Latency Serialized
	MSSP:

	• Communication Latency Parallelized

	Optimizing Live-in Computation
	• In general, computing live-ins not so trivial
	• Want to optimize computation of inter-task values
	• Tension in previous models
	• Single executable:
	O computes live-ins for future tasks (want fast)
	O updates architected state (want correct)
	MSSP decomposes problem:

	• distilled program (master) allowed to be incorrect
	O enables maximizing performance of the common-case

	• original program (slave) allowed to be slow
	O correctly updates architected state, verifies master

	Distilled Program Example
	Profile-guided optimizations
	O eliminate branches
	O inline function
	O avoid save/restores
	O remove dead code
	O register allocate
	O reassign logical register
	O constant folding

	• Average path length reduced by 2/3rds
	• Significant reduction of static size, taken branches
	• Correct 99.999% of the time
	Like traditional optimizations, but not 100% safe

	Detailed Execution
	Misspeculation Path
	Misspeculation Path
	Misspeculation Path
	Analytical Performance Model
	• Model of 3 parameters:
	O a = speedup of distilled program relative to original
	O P = fraction of correct checkpoints (prediction accuracy)
	O O = normalized overhead = (I+D+R)/E

	Performance is super-linear with checkpoint accuracy
	At high checkpoint accuracy, performance tracks distilled program and is insensitive to inter-cor...

	So What?
	• Can distilled programs be automatically generated to be fast and accurate?
	• We think so.
	• Currently developing automatic distiller:
	O early results: not all transformations implemented yet

	Implemented transformations achieve results comparable to example from bzip2 (15-40% vs. 22%)

	Performance vs. Accuracy
	• A continuum of distilled programs exists
	O can turn on/off transformations, set accuracy thresholds
	original
	program

	• Curve fit best configurations
	O most benefit achieved with little accuracy impact
	O incremental benefit from trading off accuracy

	MSSP Summary
	• Master: executes distilled program, which forks slave threads and predicts their live-in values
	• Slaves: perform parallelized execution of original program, verify live-in predictions
	• Model conforms to real world constraints:
	O supports legacy code (no necessary compiler mod’s)
	distilled program can be derived from original program
	O no verification of program distiller necessary

	distilled program has no correctness constraints
	O tolerant of wire latency

	only exposed on rare misspeculations by master

	Conclusions
	• A variety of different speculative multithreading models of the past decade
	• Multiscalar
	O Use speculation to parallelize program execution

	• DDMT/Speculative Slices
	O Use speculation to execute critical computations early

	• Master/Slave Speculative Parallelization (MSSP)
	O Fusion of Multiscalar/DDMT/Speculative Slices

	Motivation for Data-driven Threads
	• Program execution: processing of low-latency instructions, with pauses for high-latency events
	• Parallelizing low-latency instructions isn’t crucial
	• Overlapping high-latency events is what matters!
	• “Threads” should initiate high-latency events early
	• Need to ‘‘sequence’’ these instructions early

	Hardware Wish List (circa 1993)
	• Use of simple, regular hardware structures
	• Clock speeds comparable to single-issue processors
	• Easy growth path from one generation to next
	O Reuse existing processing cores to extent possible
	O No centralized bottlenecks

	• Exploit available parallelism

	Software Wish List (circa 1993)
	• Write programs in ordinary languages (e.g. C)
	• Target uniform hardware-software interface
	O Facilitate software independence and growth path

	• Maintain uniform hardware-software interface, i.e., do not tailor for specific architecture
	O Minimal OS impact
	O Facilitate hardware independence and growth path

	• Place few demands on software
	O make minimum requirements for guarantees

	The Opportunity and Objective (circa 1993)
	• Many tens of millions of transistors on a chip vs. few million today
	• Can integrate several (tens?) of todays processors, plus supporting hardware, on a chip
	Use available resources to minimize program execution time!

	A Bird’s Eye View
	Multiscalar Paradigm (Franklin, Breach, Vijaykumar)
	• Break sequencing process into two steps
	O Sequence through static representation in task-sized steps

	• Sequence through each task in conventional manner
	• Split large instruction window into ordered tasks
	• Assign a task to a simple execution engine; exploit ILP by overlapping execution of multiple tasks
	• Use separate PCs to sequence through separate tasks
	• Maintain the appearance of a single-PC sequencing through the static representation

	Multiscalar Big Picture: Basics
	Multiscalar Big Picture: Hardware
	Dependence Prediction (Moshovos)
	• circa 1995-96
	• To prevent “over speculation” of dependences
	• Predict load-store dependence relationships
	O use to control dependence speculation

	• Learn about likely violations and synchronize
	• Emerged as key technology
	O useful regardless of parallelism exploitation model

