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gram Parallelization -- Theme II
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culative Slices (Zilles)
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timizing Live-in Computation
 general, computing live-ins not so triv

ant to optimize computation of inter-ta
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ingle executable:
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istilled program (master) allowed to be
O enables maximizing performance of the co

riginal program (slave) allowed to be s
O correctly updates architected state, verifie



Slide
30

 branches

00% safe

 from bzip2

ed optimizations
e branches
ction
ve/restores
dead code
allocate
 logical register
t folding

al execution)
Dis

• A

• S

• C

7186
Speculative Multithreading: from Multiscalar to MSSP

tilled Program Example

verage path length reduced by 2/3rds

ignificant reduction of static size, taken

orrect 99.999% of the time

Like traditional optimizations, but not 1

78

2 i

6

5 i

6

14 i

20 i

802
2 i

2827087

3 i

10 i

11 i

5 i

18 i

11 i

5 i

2827009

2827087

2827087

2827081

2827081

2827009

2827087

2827087

bsR

spec_getc

original Example

Profile-guid
O eliminat
O inline fun
O avoid sa
O remove 
O register 
O reassign
O constan

(3% of tot

8 i

7 i

15 i

2827009

2827087

7186802

bsR

distilled



Slide
31

cation Execution

detection latency

initiation latency
De

for
Speculative Multithreading: from Multiscalar to MSSP

tailed Execution

D

I

I

D

D

I

I

A

C

B

A

B

C

D

D
E

Speculative Execution Parallelized Verifi

k instruction



Slide
32

cation Execution

eculation detected
Mis

mis

bad
Speculative Multithreading: from Multiscalar to MSSP

speculation Path

D

I

I

D

D

I

I

A

C

B

A

B

C

D

D
E

Speculative Execution Parallelized Verifi

speculation

missp

 checkpoint



Slide
33

cation Execution

eculation detected
Mis

mis

bad
Speculative Multithreading: from Multiscalar to MSSP

speculation Path

D

I

I

D

R

D

I

I

I

A

C

B

A

B

C

D

D

D

D

E

E

Speculative Execution Parallelized Verifi

speculation

missp

 checkpoint

restart latency



Slide
34

i}

d}

} e

cation Execution

eculation detected
Mis

mis

bad
Speculative Multithreading: from Multiscalar to MSSP

speculation Path

D

I

e’

I

D

R

D

I

I

I

{

r {

A

C

B

A

B

C

D

D

D

D

E

E

Speculative Execution Parallelized Verifi

Critical Pathspeculation

missp

 checkpoint



Slide
35

 original
ion accuracy)

int accuracy

 tracks distilled
e latency

1.5 2.0

erhead (O)

P = 1.0
P = .99
P = .98

P = .95

P = .90
P = .85
P = .80

d (O)
An
• M

A

Speculative Multithreading: from Multiscalar to MSSP

alytical Performance Model
odel of 3 parameters:

O α = speedup of distilled program relative to
O P = fraction of correct checkpoints (predict
O O = normalized overhead = (I+D+R)/E

Performance is super-linear with checkpo

t high checkpoint accuracy, performance
program and is insensitive to inter-cor

0.0 0.2 0.4 0.6 0.8 1.0

Probability of correct checkpoint (P)

0%

100%

200%

300%

0.0 0.5 1.0

Normalized Ov

0%

100%

200%

300%α=4

α=3

α=2

Sp
e

e
d

up

correctness fraction (P) overhea



Slide
36

generated to

:
ented yet

lts comparable
. 22%)

original
+ dead 
+ branch
+ store
+ identity

r vpr
So 
• C

b

• W

• C

Im

6

8

10

12
Speculative Multithreading: from Multiscalar to MSSP

What?
an distilled programs be automatically
e fast and accurate?

e think so.

urrently developing automatic distiller
O early results: not all transformations implem

plemented transformations achieve resu
to example from bzip2 (15-40% vs

0%

0%

0%

0%

bzi cra eon gap gcc gzi mcf par per two vo



Slide
37

cy thresholds

impact
cy

0.2% 0.3%

tion rate
Per

• A

• C

ori
pro

p
i

pro
in
Speculative Multithreading: from Multiscalar to MSSP

formance vs. Accuracy

 continuum of distilled programs exists
O can turn on/off transformations, set accura

urve fit best configurations
O most benefit achieved with little accuracy 
O incremental benefit from trading off accura

0.0% 0.1%

misspecula

80%

85%

90%

95%

100%

dy
na

m
ic

 le
ng

th

d
yn

a
m

ic
 le

ng
th

ginal
gram

distilled
program

profile
info

profile
info

rofile
nfo
file
fo D

IS
TI

LL
ER

accuracy
threshold



Slide
38

h forks slave

f original

s:
iler mod’s)
inal program

ry
traints

aster
MS

• M
th

• S
p

• M
Speculative Multithreading: from Multiscalar to MSSP

SP Summary

aster: executes distilled program, whic
reads and predicts their live-in values

laves: perform parallelized execution o
rogram, verify live-in predictions

odel conforms to real world constraint
O supports legacy code (no necessary comp

distilled program can be derived from orig
O no verification of program distiller necessa

distilled program has no correctness cons
O tolerant of wire latency

only exposed on rare misspeculations by m



Slide
39

reading

cution

tations early

 (MSSP)
es
Co

• A
m

• M

• D

• M
Speculative Multithreading: from Multiscalar to MSSP

nclusions

 variety of different speculative multith
odels of the past decade

ultiscalar
O Use speculation to parallelize program exe

DMT/Speculative Slices
O Use speculation to execute critical compu

aster/Slave Speculative Parallelization
O Fusion of Multiscalar/DDMT/Speculative Slic


	Stepping Back
	• Multiprocessor microarchitecture
	• What should the “work” be for different processing units?
	O multiscalar is speculative form of traditional parallelization

	• Relevance of solutions to other parallelism models

	Work for Distributed/Multithreaded Processor
	• Independent programs
	O increase overall processing throughput

	• Independent threads of multithreaded application
	O increase overall throughput

	• Related threads
	O e.g., for reliability

	• But what about speeding up single program execution?
	O how to ‘‘parallelize’’ or ‘‘multithread’’ single program?

	Speculative Multithreading: from Multiscalar to MSSP
	Guri Sohi
	Computer Sciences Department
	University of Wisconsin-Madison



	Outline
	• A decade of speculative multithreading evolution
	• Multiscalar background and rationale
	• Multiscalar
	• Parallelization and Speculative Parallelization
	• Speculative Data-driven Multithreading (DDMT)
	• Speculative Slices
	• Master-Slave Speculative Parallelization (MSSP)

	Program Parallelization
	• What does it mean to parallelize?
	O how to divide program into multiple portions

	• What constrains parallelization?
	O dependences (especially ambiguous)

	• How to overcome constraints?
	O use speculation


	Program Parallelization -- Theme II
	• Another traditional view: dataflow
	O divide work into (dependent) computations
	O each computation is represented in a data-driven manner

	• A newer view: speculative data-driven “threads”
	O use speculation to facilitate thread creation


	Speculative Data-Driven Multithreading
	• Isolate data-driven threads from program
	• Execute isolated (data-driven) threads in parallel
	• Also called “pre-execution”
	• Issues
	O nature of threads
	O how to launch and execute threads
	O communicating values between threads and main program

	• Sequence through static program and establish a window of execution
	• Establish dependence relationships within window
	• Set up parallel execution schedule for operations in window
	• Provide resources to implement parallel execution schedule

	DDMT (Roth)
	DDMT, cont.
	• Identify problem loads & branches
	• Construct Speculative Data-Driven Threads (DDT):
	O select a fork point with sufficient latency tolerance
	O profile to identify common data-flow predecessors
	O pack these instructions into static DDT

	• Execute DDTs on idle SMT thread contexts

	Program Parallelization -- Theme I
	• Traditional view: control-driven threads
	O divide work into multiple groups of instructions
	- conservative assumptions about dependences constrain parallelization

	O each group is specified using traditional control-driven (von Neumann) semantics

	• A newer view: multiscalar
	O use dependence speculation to overcome constraints


	Register Integration (Roth)
	• “Communicate” results of DDT to main thread
	• DDTs are subset of program
	O data-flow corresponds exactly

	• Match up instructions at register rename stage
	O if matching PC and physical register inputs ->
	assign it the same physical register output


	• Avoid re-executing instructions already executed
	• Early resolution of branch mispredictions
	• Also useful for squash reuse
	O speculative code can be viewed as speculative thread


	From DDMT to Speculative Slices
	• DDMT requires DDTs to be program subsets:
	O enables integration

	What if we remove that constraint?
	• Construct more efficient “DDTs”...
	O freedom to optimize

	• ...but, requires new DDT mapping mechanism
	O no longer a one-to-one correspondence to program



	Speculative Slices (Zilles)
	• Slices are not allowed to affect architected state
	O Only generate predictions & prefetches

	• Removes all correctness constraints from slices:
	Enables slices to be transformed arbitrarily
	• Profile program, identify predictable behaviors
	• Transform code to assume these behaviors
	O removes code from slice, improving efficiency
	O results in incorrect computations on uncommon case


	Common case efficiency at the expense of occasional mispredicts

	Mapping for Speculative Slices
	• Need to map predictions to branches in original prog.
	• No data-flow correspondence (hence no integration)
	Use control-flow
	• Prediction generating instruction (in slice) specifies:
	O prediction
	O PC of corresponding branch
	O region of execution for which the prediction is valid



	Valid Regions (Zilles)
	• Prediction computed assume a particular path (or set of paths)
	O corresponds to a region in the space of all possible executions

	• predictions should be destroyed if execution escapes region
	• instructions on region boundary are marked
	• in practice few markers are needed

	Lessons learned from DDMT/Speculative Slices
	• Computation can be an efficient means to make predictions
	• Can this idea be used in speculative parallelization?

	Program Parallelization -- Theme III
	• Traditional view: master/slave message passing
	O master divides problem, assigns slaves to pieces
	O master sends each slave the necessary fraction of data
	O generally programmer ensures slave’s work is independent
	O hence, no inter-slave communication

	• A newer view: master/slave speculative parallelization
	O master executes “distilled” copy of original program
	O master forks slaves to execute chunks of original program
	O master provides start PC and live-in predictions
	O inter-slave communication to verify live-in predictions
	O extension of parallel microarchitecture


	Master Slave Speculative Parallelization (Zilles)
	distilled
	program
	• Optimizing live-in communication (master/slave)
	• Optimizing live-in computation (distilled programs)
	• Execution model

	Optimizing Live-in Communication
	Previous Models:
	• Communication Latency Serialized
	MSSP:

	• Communication Latency Parallelized

	Optimizing Live-in Computation
	• In general, computing live-ins not so trivial
	• Want to optimize computation of inter-task values
	• Tension in previous models
	• Single executable:
	O computes live-ins for future tasks (want fast)
	O updates architected state (want correct)
	MSSP decomposes problem:

	• distilled program (master) allowed to be incorrect
	O enables maximizing performance of the common-case

	• original program (slave) allowed to be slow
	O correctly updates architected state, verifies master


	Distilled Program Example
	Profile-guided optimizations
	O eliminate branches
	O inline function
	O avoid save/restores
	O remove dead code
	O register allocate
	O reassign logical register
	O constant folding

	• Average path length reduced by 2/3rds
	• Significant reduction of static size, taken branches
	• Correct 99.999% of the time
	Like traditional optimizations, but not 100% safe

	Detailed Execution
	Misspeculation Path
	Misspeculation Path
	Misspeculation Path
	Analytical Performance Model
	• Model of 3 parameters:
	O a = speedup of distilled program relative to original
	O P = fraction of correct checkpoints (prediction accuracy)
	O O = normalized overhead = (I+D+R)/E

	Performance is super-linear with checkpoint accuracy
	At high checkpoint accuracy, performance tracks distilled program and is insensitive to inter-cor...

	So What?
	• Can distilled programs be automatically generated to be fast and accurate?
	• We think so.
	• Currently developing automatic distiller:
	O early results: not all transformations implemented yet

	Implemented transformations achieve results comparable to example from bzip2 (15-40% vs. 22%)

	Performance vs. Accuracy
	• A continuum of distilled programs exists
	O can turn on/off transformations, set accuracy thresholds
	original
	program

	• Curve fit best configurations
	O most benefit achieved with little accuracy impact
	O incremental benefit from trading off accuracy


	MSSP Summary
	• Master: executes distilled program, which forks slave threads and predicts their live-in values
	• Slaves: perform parallelized execution of original program, verify live-in predictions
	• Model conforms to real world constraints:
	O supports legacy code (no necessary compiler mod’s)
	distilled program can be derived from original program
	O no verification of program distiller necessary

	distilled program has no correctness constraints
	O tolerant of wire latency

	only exposed on rare misspeculations by master


	Conclusions
	• A variety of different speculative multithreading models of the past decade
	• Multiscalar
	O Use speculation to parallelize program execution

	• DDMT/Speculative Slices
	O Use speculation to execute critical computations early

	• Master/Slave Speculative Parallelization (MSSP)
	O Fusion of Multiscalar/DDMT/Speculative Slices


	Motivation for Data-driven Threads
	• Program execution: processing of low-latency instructions, with pauses for high-latency events
	• Parallelizing low-latency instructions isn’t crucial
	• Overlapping high-latency events is what matters!
	• “Threads” should initiate high-latency events early
	• Need to ‘‘sequence’’ these instructions early

	Hardware Wish List (circa 1993)
	• Use of simple, regular hardware structures
	• Clock speeds comparable to single-issue processors
	• Easy growth path from one generation to next
	O Reuse existing processing cores to extent possible
	O No centralized bottlenecks

	• Exploit available parallelism

	Software Wish List (circa 1993)
	• Write programs in ordinary languages (e.g. C)
	• Target uniform hardware-software interface
	O Facilitate software independence and growth path

	• Maintain uniform hardware-software interface, i.e., do not tailor for specific architecture
	O Minimal OS impact
	O Facilitate hardware independence and growth path

	• Place few demands on software
	O make minimum requirements for guarantees


	The Opportunity and Objective (circa 1993)
	• Many tens of millions of transistors on a chip vs. few million today
	• Can integrate several (tens?) of todays processors, plus supporting hardware, on a chip
	Use available resources to minimize program execution time!


	A Bird’s Eye View
	Multiscalar Paradigm (Franklin, Breach, Vijaykumar)
	• Break sequencing process into two steps
	O Sequence through static representation in task-sized steps

	• Sequence through each task in conventional manner
	• Split large instruction window into ordered tasks
	• Assign a task to a simple execution engine; exploit ILP by overlapping execution of multiple tasks
	• Use separate PCs to sequence through separate tasks
	• Maintain the appearance of a single-PC sequencing through the static representation

	Multiscalar Big Picture: Basics
	Multiscalar Big Picture: Hardware
	Dependence Prediction (Moshovos)
	• circa 1995-96
	• To prevent “over speculation” of dependences
	• Predict load-store dependence relationships
	O use to control dependence speculation

	• Learn about likely violations and synchronize
	• Emerged as key technology
	O useful regardless of parallelism exploitation model



