Speculative Multithreaded Processors

Guri Sohi and Amir Roth

Computer Sciences Department
University of Wisconsin-Madison

Outline

e Trends and their implications
e \Workloads for future processors

e Program parallelization and speculative threads

o speculative control-driven threads
o speculative data-driven threads

e Sample applications and research issues

e Summary
M NMIVERSLILY OF Spe.culative Multithreaded Processors Slide
WISCONSIN HiPC 2000, December 18-20, 2000 5

M A DI S O N

Driving Factors

e Match upcoming technology trends

e Match upcoming software trends

e Match upcoming technology constraints

e Match upcoming design constraints

e Learn, and exploit, new program behaviors

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 3

M A DI S O N

Hardware/Design Trends

e Increasing wire delays

e Increasing memory latencies
e Deeper pipelines

e Design complexity

« \erification complexity

e Power issues

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONS[N HiPC 2000, December 18-20, 2000 p

M A DI § O N

Implications of Trends

e Distributed microarchitectures
e Clustered superscalar, with multithreading
e Chip multiprocessor

Question: what to run on underlying microarchitecture?

UNIVERSITY OF Speculative Multithreaded Processors Slide

W[SCONS[N HiPC 2000, December 18-20, 2000 c

M A DI § O N

Work for Distributed/Multithreaded Processor

e Independent programs

o Increase overall processing throughput
o works well in server environment

e Independent threads of multithreaded application

o iIncrease overall throughput
o compatible with software trends?

e Related threads
o e.g., for reliability
e But what about speeding up single program
execution?

o single program speed will continue to be important
o how to “parallelize” or “multithread” single program?

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 6

M A DI S O N

Program Parallelization

e What does it mean to parallelize?

o how to divide program into multiple portions
« \What constrains parallelization?

o dependences (especially ambiguous)
e How to overcome constraints?

o use speculation

UNIVERSITY OF Speculative Multithreaded Processors

W!SCONSIN HiPC 2000, December 18-20, 2000

M A DI S O N

Slide

Program Parallelization -- Theme |

e Traditional view: control-driven threads

o divide work into multiple groups of instructions

- conservative assumptions about dependences
constrain parallelization

o each group is specified using traditional control-driven
(von Neumann) semantics

e A newer view: multiscalar

o use dependence speculation to overcome constraints
o commercial example: Sun MAJC

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 g

M A DI § O N

Multiscalar: Speculative Control-Driven Threads

PROGRAM

predict predict

~~ TN\ 7

e @

UNIT UNIT UNIT
1 2 3

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 .

M ADISON

Program Parallelization -- Theme I

e Traditional view: data-driven threads

o divide work into (dependent) computations
o each computation is represented in a data-driven manner

e A newer view: speculative data-driven threads

o use speculation to facilitate thread creation
o create threads only for important events

UNIVERSITY OF Speculative Multithreaded Processors Slide

W[SCONSIN HiPC 2000, December 18-20, 2000 10

M A DI § O N

Motivation for Data-driven Threads

e Program execution: processing of low-latency
Instructions, with pauses for high-latency events

e Parallelizing low-latency instructions isn’t crucial
e Overlapping high-latency events is what matters!
e “Threads” should create high-latency events early

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 11

M A DI S O N

Speculative Data-Driven Threads

e Use dependence relationships to isolate thread(s)
of code from main program thread

o use speculation to facilitate creation
e Execute threads (speculatively) in parallel with
“main program”
o *“assist” main thread via side-effects
o don’t impact architectural correctness

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 12

M A DI S O N

Application: Cache Misses and Branch Mispredicts

Memory Control

Bse%ec:%zng)gcr)k # inst n:/ gr?w):)nbs % miss # inst fﬁfggh %misp
bzip2 24 3 63 62 26 77
crafty 35 2 54 51 7 30
eon Insufficient misses 24 13 71
gap 66 1 28 123 10 65
gcc 122 4 5 122 6 34
gzip 15 21 75 46 14 55
mcf 42 35 69 32 20 71
parser 70 4 42 80 10 38
perl 74 1 26 43 7 61
twolf 116 7 60 87 39 73
vortex 71 1 22 83 1 41
vpr (route) 55 13 67 72 16 75

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN

M A D S O N

HiPC 2000, December 18-20, 2000

13

Performance Leverage
4.0 -

3.5

3.0

2.5

r7//////

I oracle-dll

///.

|PC

2.0—3 § oracle-probs

/7.

Y SN R I N

1.5—2 I baseline

/)
/7.

Yo S N N I A
G/’

1.0

0.5

0.0 =

Perfecting a small set of instructions provides significant performance
much of that of a perfect branch predictor and data cache

UMNMIVERSITY OF Speculative Multithreaded Processors Slide

NSCONS[N HiPC 2000, December 18-20, 2000 14

M A DI § O N

Using Speculative Data-driven Threads

RETIREMENT
STREAM

Pre-execution

FORK

-

sub

program
branch TIME

mispredict

A
BRANCH

TIME

BRAN;;L»
OUTCOME

BRANCH

AVOID MISPREDICTION
cache

miss

UMNIVI - Speculative Multithreaded Processors

HiPC 2000, December 18-20, 2000
M ADISON

Slide
15

Sample Performance Results

VPR (ROUTE)

= 200M instruction sample (starting at 14.1B on 20B run)
e 100M instruction warm-up for caches/predictors

32% SPEEDUP: 16% FROM PRE-FETCHING, 16% FROM BRANCHES

Cache Misses (primary L1)

Branch Mispredictions

number rate | /1000 inst number rate | /1000 inst
base 2,850,000 | 3.3% 14.3 1,400,000 7.3% 7.0
w/slices | 1,340,000 1.6% 6.7 420,000 2.2% 2.1

WISCONSIN

M A DI § O N

Speculative Multithreaded Processors
HiPC 2000, December 18-20, 2000

Slide
16

Sample Applications

e Cache prefetching/management

e Computing branch outcomes

e TLB prefetching/management

« |/O prefetching

e Multiprocessor communication management

e Other applications where high-latency events
need to be “created” early

UNIVERSITY OF Speculative Multithreaded Processors Slide

WISCONSIN HiPC 2000, December 18-20, 2000 17

M A DI S O N

Some Research Issues

e How to divide control-driven program into data-
driven threads?

« \When to divide program?
e How to represent data-driven threads?
e Managing mixed thread workloads

UNIVERSITY OF Speculative Multithreaded Processors Slide

W!SCONSIN HiPC 2000, December 18-20, 2000 18

M A DI S O N

summary

e Hardware and design trends will lead to
distributed/multithreaded processors

e Many options for running different thread types on
underlying microarchitecture

e Overcome constraints to “parallelization”
techniques with speculation

o speculative control-driven threads
o speculative data-driven threads

e Most of the research still needs to be done

UNIVERSITY OF Speculative Multithreaded Processors Slide

WiSCONSIN HiPC 2000, December 18-20, 2000 19

M A DI S O N

	Multiscalar: Speculative Control-Driven Threads
	Work for Distributed/Multithreaded Processor
	• Independent programs
	O increase overall processing throughput
	O works well in server environment

	• Independent threads of multithreaded application
	O increase overall throughput
	O compatible with software trends?

	• Related threads
	O e.g., for reliability

	• But what about speeding up single program execution?
	O single program speed will continue to be important
	O how to ‘‘‘parallelize’’ or ‘‘multithread’’ single program?

	Speculative Multithreaded Processors
	Guri Sohi and Amir Roth
	Computer Sciences Department
	University of Wisconsin-Madison

	Outline
	• Trends and their implications
	• Workloads for future processors
	• Program parallelization and speculative threads
	O speculative control-driven threads
	O speculative data-driven threads

	• Sample applications and research issues
	• Summary

	Program Parallelization
	• What does it mean to parallelize?
	O how to divide program into multiple portions

	• What constrains parallelization?
	O dependences (especially ambiguous)

	• How to overcome constraints?
	O use speculation

	Program Parallelization -- Theme II
	• Traditional view: data-driven threads
	O divide work into (dependent) computations
	O each computation is represented in a data-driven manner

	• A newer view: speculative data-driven threads
	O use speculation to facilitate thread creation
	O create threads only for important events

	Hardware/Design Trends
	• Increasing wire delays
	• Increasing memory latencies
	• Deeper pipelines
	• Design complexity
	• Verification complexity
	• Power issues

	Implications of Trends
	• Distributed microarchitectures
	• Clustered superscalar, with multithreading
	• Chip multiprocessor

	Driving Factors
	• Match upcoming technology trends
	• Match upcoming software trends
	• Match upcoming technology constraints
	• Match upcoming design constraints
	• Learn, and exploit, new program behaviors

	Some Research Issues
	• How to divide control-driven program into data- driven threads?
	• When to divide program?
	• How to represent data-driven threads?
	• Managing mixed thread workloads

	Speculative Data-Driven Threads
	• Use dependence relationships to isolate thread(s) of code from main program thread
	O use speculation to facilitate creation

	• Execute threads (speculatively) in parallel with “main program”
	O “assist” main thread via side-effects
	O don’t impact architectural correctness

	Program Parallelization -- Theme I
	• Traditional view: control-driven threads
	O divide work into multiple groups of instructions
	- conservative assumptions about dependences constrain parallelization

	O each group is specified using traditional control-driven (von Neumann) semantics

	• A newer view: multiscalar
	O use dependence speculation to overcome constraints
	O commercial example: Sun MAJC

	Application: Cache Misses and Branch Mispredicts
	Performance Leverage
	Vpr (route)
	• 200M instruction sample (starting at 14.1B on 20B run)
	• 100M instruction warm-up for caches/predictors
	32% speedup: 16% from pre-fetching, 16% from branches

	base
	2,850,000
	3.3%
	14.3
	1,400,000
	7.3%
	7.0
	w/slices
	1,340,000
	1.6%
	6.7
	420,000
	2.2%
	2.1

	Sample Performance Results
	bzip2
	24
	3
	63
	62
	26
	77
	crafty
	35
	2
	54
	51
	7
	30
	eon
	Insufficient misses
	24
	13
	71
	gap
	66
	1
	28
	123
	10
	65
	gcc
	122
	4
	5
	122
	6
	34
	gzip
	15
	21
	75
	46
	14
	55
	mcf
	42
	35
	69
	32
	20
	71
	parser
	70
	4
	42
	80
	10
	38
	perl
	74
	1
	26
	43
	7
	61
	twolf
	116
	7
	60
	87
	39
	73
	vortex
	71
	1
	22
	83
	1
	41
	vpr (route)
	55
	13
	67
	72
	16
	75
	Perfecting a small set of instructions provides significant performance - much of that of a perfe...

	Sample Applications
	• Cache prefetching/management
	• Computing branch outcomes
	• TLB prefetching/management
	• I/O prefetching
	• Multiprocessor communication management
	• Other applications where high-latency events need to be ‘‘created’’ early

	Summary
	• Hardware and design trends will lead to distributed/multithreaded processors
	• Many options for running different thread types on underlying microarchitecture
	• Overcome constraints to “parallelization” techniques with speculation
	O speculative control-driven threads
	O speculative data-driven threads

	• Most of the research still needs to be done

	Motivation for Data-driven Threads
	• Program execution: processing of low-latency instructions, with pauses for high-latency events
	• Parallelizing low-latency instructions isn’t crucial
	• Overlapping high-latency events is what matters!
	• “Threads” should create high-latency events early

	Using Speculative Data-driven Threads

