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Outline

e Trends and their implications
e \Workloads for future processors

e Program parallelization and speculative threads

o speculative control-driven threads
o speculative data-driven threads

e Sample applications and research issues

e Summary
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Driving Factors

e Match upcoming technology trends

e Match upcoming software trends

e Match upcoming technology constraints

e Match upcoming design constraints

e Learn, and exploit, new program behaviors
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Hardware/Design Trends

e Increasing wire delays

e Increasing memory latencies
e Deeper pipelines

e Design complexity

« \erification complexity

e Power issues
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Implications of Trends

e Distributed microarchitectures
e Clustered superscalar, with multithreading
e Chip multiprocessor

Question: what to run on underlying microarchitecture?
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Work for Distributed/Multithreaded Processor

e Independent programs

o Increase overall processing throughput
o works well in server environment

e Independent threads of multithreaded application

o iIncrease overall throughput
o compatible with software trends?

e Related threads
o e.g., for reliability
e But what about speeding up single program
execution?

o single program speed will continue to be important
o how to “parallelize” or “multithread” single program?
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Program Parallelization

e What does it mean to parallelize?

o how to divide program into multiple portions
« \What constrains parallelization?

o dependences (especially ambiguous)
e How to overcome constraints?

o use speculation
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Program Parallelization -- Theme |

e Traditional view: control-driven threads

o divide work into multiple groups of instructions

- conservative assumptions about dependences
constrain parallelization

o each group is specified using traditional control-driven
(von Neumann) semantics

e A newer view: multiscalar

o use dependence speculation to overcome constraints
o commercial example: Sun MAJC
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Multiscalar: Speculative Control-Driven Threads
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Program Parallelization -- Theme I

e Traditional view: data-driven threads

o divide work into (dependent) computations
o each computation is represented in a data-driven manner

e A newer view: speculative data-driven threads

o use speculation to facilitate thread creation
o create threads only for important events
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Motivation for Data-driven Threads

e Program execution: processing of low-latency
Instructions, with pauses for high-latency events

e Parallelizing low-latency instructions isn’t crucial
e Overlapping high-latency events is what matters!
e “Threads” should create high-latency events early
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Speculative Data-Driven Threads

e Use dependence relationships to isolate thread(s)
of code from main program thread

o use speculation to facilitate creation
e Execute threads (speculatively) in parallel with
“main program”
o *“assist” main thread via side-effects
o don’t impact architectural correctness
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Application: Cache Misses and Branch Mispredicts

Memory Control

Bse%ec:%zng)gcr)k # inst n:/ gr?w):)nbs % miss # inst fﬁfggh %misp
bzip2 24 3 63 62 26 77
crafty 35 2 54 51 7 30
eon Insufficient misses 24 13 71
gap 66 1 28 123 10 65
gcc 122 4 5 122 6 34
gzip 15 21 75 46 14 55
mcf 42 35 69 32 20 71
parser 70 4 42 80 10 38
perl 74 1 26 43 7 61
twolf 116 7 60 87 39 73
vortex 71 1 22 83 1 41
vpr (route) 55 13 67 72 16 75
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Performance Leverage
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Perfecting a small set of instructions provides significant performance
much of that of a perfect branch predictor and data cache
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Using Speculative Data-driven Threads
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Sample Performance Results

VPR (ROUTE)

= 200M instruction sample (starting at 14.1B on 20B run)
e 100M instruction warm-up for caches/predictors

32% SPEEDUP: 16% FROM PRE-FETCHING, 16% FROM BRANCHES

Cache Misses (primary L1)

Branch Mispredictions

number rate | /1000 inst number rate | /1000 inst
base 2,850,000 | 3.3% 14.3 1,400,000  7.3% 7.0
w/slices | 1,340,000  1.6% 6.7 420,000 2.2% 2.1
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Sample Applications

e Cache prefetching/management

e Computing branch outcomes

e TLB prefetching/management

« |/O prefetching

e Multiprocessor communication management

e Other applications where high-latency events
need to be “created” early
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Some Research Issues

e How to divide control-driven program into data-
driven threads?

« \When to divide program?
e How to represent data-driven threads?
e Managing mixed thread workloads
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summary

e Hardware and design trends will lead to
distributed/multithreaded processors

e Many options for running different thread types on
underlying microarchitecture

e Overcome constraints to “parallelization”
techniques with speculation

o speculative control-driven threads
o speculative data-driven threads

e Most of the research still needs to be done
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