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• Wish lists for future processors

• ILP basics

• Multiscalar basics and details

• Preliminary performance results

• Summary and concluding remarks

Out l ine
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• Use of simple, regular hardware structures

• Clock speeds comparable to single-issue processors

• Easy growth path from one generation to next
• Reuse existing processing cores to extent possible

• No centralized bottlenecks

• Exploit available parallelism

Hardware Wish List
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• Write programs in ordinary languages (e.g. C or C++)

• Target uniform hardware-software interface
• Facilitate software independence and growth path

• Maintain uniform hardware-software interface, i.e., do not
tailor for specific architecture
• Minimal OS impact

• Facilitate hardware independence and growth path

• Place few demands on software
• make minimum requirements for guarantees

Software Wish List
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• Many tens of millions of transistors on a chip vs. few million
today

• Can integrate several (tens?) of todays processors, plus
supporting hardware, on a chip

Use available resources to minimize program execution time!

The Opportuni ty and Object ive
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• Start with a static representation of a
program

• Sequence through the program to generate
the dynamic stream of operations
• Use single PC to walk through static

representation

• Execute operations in dynamic stream as
quickly as is possible

Speed up this entire process

A Bird’s Eye View

PROGRAM
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C
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• Sequence through static representation
and establish a window of execution

• Establish dependence relationships
within window

• Set up parallel execution schedule for
operations in window

• Provide sufficient resources to implement
parallel execution schedule

ILP Basics

PROGRAM
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• Establish and maintain a large window (100s of instructions)

• Initiate at least 10 operations into this window per cycle

• Provide lots of storage for inter-operation communications

• Provide means for flexible operation movement in window

Target:  10 IPC
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• Use a ‘‘single’’ PC to sequence through static program,
‘‘instruction by instruction’’

• Establish a contiguous window of operations
Branch prediction accuracy limits size

• Set up dependence relationships
Complex decoder hardware in superscalar

• Schedule execution of N independent operations per cycle
Centralized resources to implement schedule

Superscalar/VLIW Paradigm
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• Break sequencing process into two steps
• Sequence through static representation in task-sized steps

• Sequence through each task in conventional manner

• Split large instruction window into ordered tasks

• Assign a task to a simple execution engine; exploit ILP by
overlapping execution of multiple tasks

• Use separate PCs to sequence through separate tasks

• Maintain the appearance of a single-PC sequencing
through the static representation

Mult iscalar Paradigm
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• A portion of the static representation
resulting in a contiguous portion of the
dynamic instruction stream

- part of a basic block

- basic block

- multiple basic blocks

- loop iteration

- entire loop

- procedure call, etc

What is a Task?

PROGRAM

A

B

C
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Mult iscalar Big Picture:  Basics

predict predict
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MEMORY DISAMBIGUATION
        CACHE HIERARCHY

Mult iscalar Big Picture:  Hardware
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• Processor consists of several processing cores (or units)
• each core executes a task

• each core is equivalent to a typical datapath

• Execution cores are connected in a logical order (queue)
• hardware pointers to head and tail

• share logical register and memory address spaces

• Active cores (ones between head and tail)
• contain tasks in logical (sequential) order

• together constitute a large dynamic window

More on Mult iscalar Hardware
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• Tasks complete and commit (logical) state in FIFO order

• Incorrect speculation ‘‘rolls back’’ queue
• Control speculation

• Data speculation

More on Mult iscalar Hardware
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Mult iscalar Big Picture:  Control
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• Sequencer manages processing cores like a queue

• Sequencer opens up ‘‘instruction window’’ by (speculatively)
assigning a new task to the tail unit
• Tells core to execute task starting at a given PC
• Does not perform instruction fetching and decoding

• Intra-task control controls execution of task

• Intra-task control determines when control flows out of task
(i.e., task is complete)

• Intra-task branches do not affect creation of ‘‘instruction
window’’

More on Control
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• Tasks produce and consume data values bound to registers
and memory locations

Big Picture:  Data Values
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• Storage
• values can be produced speculatively

• where should values be buffered?

• Synchronization
• ensure that an instruction in a task uses value created by the

logical predecessor

• Communication
• forwarding a value created by an instruction to all future

instructions that might need it

• Sequential ordering of tasks influences answers to above

Issues in Managing Data Values
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• Each core works out of its ‘‘local’’ register file

• Multiple register files act like separate ‘‘renamed’’ files

• Each register file contains register state at a particular time
in the (speculative) execution of a program

Register Values
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• Can be analyzed statically

• Compiler indicates registers that may be live when task is
exited (create mask)

• Task control accumulates create masks and passes info to
new tasks (accumulate mask)

• Registers in the accumulate mask are reserved when a new
task starts

• Values are forwarded on the register communication ring
• reservations are removed as registers get updated

Register Values
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Memory Disambiguation

predict predict
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• Can’t be analyzed statically
• can’t use bits to synchronize all memory operations

• Can’t allow loads in succeeding tasks to wait for (all) stores
in preceeding tasks to be resolved

• Perform loads (stores) speculatively, i.e., data speculation
• provide storage for speculative values

• Violation of dependences occurs if store in preceeding task
occurs later in time than a load in a successor task

• Provide means to detect violations of dependences, and roll
back if necessary

Memory Values
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• An address resolution mechanism compares and buffers
addresses from different processing cores

• Each processing core has a (speculative) image of memory
at a different time during the execution of the program
• Allows memory renaming

• Arbitrary order of memory operations possible

• Arbitrary speculation of memory operations possible

More on Memory Values
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• Address Resolution Buffer (ARB)

• Temporal or sequenced cache/buffers

Address Resolut ion Mechanism

address data address data address data

address

sequence
 number

address

sequence
 number

address

sequence
 number

Bank 0 Bank 1 Bank m−1

Address Resolution Mechanism
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• Divide static program into tasks

• For each task, determine:
• Possible successor tasks

• How control flows out of task

• Values created by task

• values bound to registers

• values bound to memory

Mult iscalar Programs
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• Which task to execute after
current task?
• task prediction by sequencer
• similar to branch prediction

• When should a later task wait for
a value?
• register create mask

• When should a task forward a
value?
• register forward bits

• When is a task over?
• task stop bits

Problems and their  Solut ions
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• Conservative create mask (due to
control flow in task)
• Release instructions

• Our-of-order memory operations
• Address resolution mechanism

Problems and their  Solut ions
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• Process stream of tokens

• Create entry in list for new token

• Use information in list to process token

Example:  Problem
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for (indx = 0; indx < BUFSIZE; indx++) {
    /* get the symbol for which to search */
    symbol = SYMVAL(buffer[indx]);

    /* do a linear search fo rthe symbol in the list */
    for (list = listhd; list; list = LNEXT(list) {
        /* if symbol already present, process entry */
        if (symbol == LELE(list)) {
            process(list);
            break;
        }
     }

     /* if symbol not found, add it to the tail */
    if (! list) {
        addlist(symbol);
    }
}

Example:  C Code
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• Each task is a complete list search

• Searches are usually independent and parallel
• Multiscalar can assume they are always independent

• Branches that separate tasks are predictable

• Branches within a task will not be 100% predictable
• Superscalar/VLIW will not be able to overlap processing

of different tokens

Example
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Going from one
generation to
another could
leave binary
untouched!

Example:  Executable
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• Multiscalar-specific information (task successors, create
masks, forward bits, stop bits) is available in a binary

• Recover information at run time
• ‘‘Low’’ performance but run ordinary binaries

• Binary to binary translation
• Better performance by including some optimizations

• Compiler
• Best performance, but needs recompilation

Regardless, binary from one multiscalar generation to
another can remain the same

Binary Compat ib i l i ty  Opt ions



Multiscalar Processors Slide
34

Guri Sohi

Attributes Multiprocessor Multiscalar

Speculative task initiation No/Difficult Yes

Multiple flows of control Yes Yes

Task determination Static Static (possibly dynamic)

Software guarantee of inter-task
control independence

Required Not required

Software knowledge of inter-task
data dependences

Required Not required

Inter-task sync. Explicit Implicit/Explicit

Inter-task communication Through memory
Through messages

Through registers and
memory

Register space Distinct for PEs Common for PEs

Memory space Common
Distinct

Common for PEs

Comparison with Mult iprocessors
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• Tasks are predicted well, or incorrect predictions known
soon
• Can get around hard-to-predict branches by including in

task

• Tasks are ‘‘large enough’’ to overcome pipeline oveheads

• Tasks are of equal dynamic length, else load balancing
problem

• Task is scheduled for efficient execution on processing core

• Inter-task dependences are scheduled properly

• Memory dependences are not violated often

Making Mult iscalar Tick
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• Project in existence for 4-5 years
• 1-2 students per year

• GCC-based compiler
• can generate multiscalar executable for arbitrary C program

• naive task selection and scheduling

• no memory disambiguation used

• Detailed timing simulator
• accepts executable and carries out a cycle-by-cycle simulation

of its execution, varying core capabilities

• Initiated large scale effort (Kestrel)

Current Status
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Four processing cores

Approx. 15% extra instructions, plus extra cycle for cache hit
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Current Performance Resul ts



Multiscalar Processors Slide
38

Guri Sohi

Eight processing cores

Current Performance Resul ts
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• Demonstrate feasibility of both hardware and software
• Hardware

• 8 moderately superscalar processing cores

• based upon MIPS-IV ISA

• Software

• integrated (front- and back-end) compiler

• Funded by ARPA and NSF

• Collaborative effort between Wisconsin and Minnesota
• Wisconsin PIs: Sohi and Smith

• Minnesota collaborators: Yew, Li, and Lilja

Mult iscalar Kestrel  Project
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• Hardware design and simulation at multiple levels
• Clock level (for performance evaluation)

• Verilog functional level for non-multiscalar specific (e.g.,
floating point)

• Verilog/Synopsys gate-level for multiscalar specific

• Circuit level for special functions (e.g., ARB)

• Very accurate performance and hardware cost estimates

• Integrated compilers
• integrate front end (SUIF) and back end (GCC)

• better task selection algorithms and heuristics

• inter- and intra-task scheduling algorithms

Ongoing/Planned Work
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• Utility for C++, database, and other non-numeric programs

• Alternate microarchitectures

• Alternate memory disambiguation mechanisms and
hardware

Ongoing/Planned Work
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• Superscalar has some life left
• different ways of looking at it may give it even more life

• If compiler has full knowledge about all dependence
relationships, use a Multiprocessor, with very fine-grain
synchronization

• If full knowledge is not available, use Multiscalar

• Multiscalar platform allows both!

Concluding Remarks


