
Multiscalar Processors

Guri Sohi

Computer Sciences Department
University of Wisconsin — Madison

URL: http://www.cs.wisc.edu/~mscalar

Multiscalar Processors Slide
2

Guri Sohi

• Wish lists for future processors

• ILP basics

• Multiscalar basics and details

• Preliminary performance results

• Summary and concluding remarks

Out l ine

Multiscalar Processors Slide
3

Guri Sohi

• Use of simple, regular hardware structures

• Clock speeds comparable to single-issue processors

• Easy growth path from one generation to next
• Reuse existing processing cores to extent possible

• No centralized bottlenecks

• Exploit available parallelism

Hardware Wish List

Multiscalar Processors Slide
4

Guri Sohi

• Write programs in ordinary languages (e.g. C or C++)

• Target uniform hardware-software interface
• Facilitate software independence and growth path

• Maintain uniform hardware-software interface, i.e., do not
tailor for specific architecture
• Minimal OS impact

• Facilitate hardware independence and growth path

• Place few demands on software
• make minimum requirements for guarantees

Software Wish List

Multiscalar Processors Slide
5

Guri Sohi

• Many tens of millions of transistors on a chip vs. few million
today

• Can integrate several (tens?) of todays processors, plus
supporting hardware, on a chip

Use available resources to minimize program execution time!

The Opportuni ty and Object ive

Multiscalar Processors Slide
6

Guri Sohi

• Start with a static representation of a
program

• Sequence through the program to generate
the dynamic stream of operations
• Use single PC to walk through static

representation

• Execute operations in dynamic stream as
quickly as is possible

Speed up this entire process

A Bird’s Eye View

PROGRAM

A

B

C

Multiscalar Processors Slide
7

Guri Sohi

• Sequence through static representation
and establish a window of execution

• Establish dependence relationships
within window

• Set up parallel execution schedule for
operations in window

• Provide sufficient resources to implement
parallel execution schedule

ILP Basics

PROGRAM

A

B

C

Multiscalar Processors Slide
8

Guri Sohi

• Establish and maintain a large window (100s of instructions)

• Initiate at least 10 operations into this window per cycle

• Provide lots of storage for inter-operation communications

• Provide means for flexible operation movement in window

Target: 10 IPC

Multiscalar Processors Slide
9

Guri Sohi

• Use a ‘‘single’’ PC to sequence through static program,
‘‘instruction by instruction’’

• Establish a contiguous window of operations
Branch prediction accuracy limits size

• Set up dependence relationships
Complex decoder hardware in superscalar

• Schedule execution of N independent operations per cycle
Centralized resources to implement schedule

Superscalar/VLIW Paradigm

Multiscalar Processors Slide
10

Guri Sohi

• Break sequencing process into two steps
• Sequence through static representation in task-sized steps

• Sequence through each task in conventional manner

• Split large instruction window into ordered tasks

• Assign a task to a simple execution engine; exploit ILP by
overlapping execution of multiple tasks

• Use separate PCs to sequence through separate tasks

• Maintain the appearance of a single-PC sequencing
through the static representation

Mult iscalar Paradigm

Multiscalar Processors Slide
11

Guri Sohi

• A portion of the static representation
resulting in a contiguous portion of the
dynamic instruction stream

- part of a basic block

- basic block

- multiple basic blocks

- loop iteration

- entire loop

- procedure call, etc

What is a Task?

PROGRAM

A

B

C

Multiscalar Processors Slide
12

Guri Sohi

Mult iscalar Big Picture: Basics

predict predict

PROC
UNIT
 1

PROC
UNIT
 2

PROC
UNIT
 3

A
B C

PROGRAM

A

B

C

Multiscalar Processors Slide
13

Guri Sohi

REG

P.U. P.U. P.U.
REG REG REG

P.U.

PIPE
LINE

PIPE
LINE

PIPE
LINE

PIPE
LINE

SEQUENCER

MEMORY DISAMBIGUATION
 CACHE HIERARCHY

Mult iscalar Big Picture: Hardware

Multiscalar Processors Slide
14

Guri Sohi

• Processor consists of several processing cores (or units)
• each core executes a task

• each core is equivalent to a typical datapath

• Execution cores are connected in a logical order (queue)
• hardware pointers to head and tail

• share logical register and memory address spaces

• Active cores (ones between head and tail)
• contain tasks in logical (sequential) order

• together constitute a large dynamic window

More on Mult iscalar Hardware

Multiscalar Processors Slide
15

Guri Sohi

• Tasks complete and commit (logical) state in FIFO order

• Incorrect speculation ‘‘rolls back’’ queue
• Control speculation

• Data speculation

More on Mult iscalar Hardware

Multiscalar Processors Slide
16

Guri Sohi

predict predict

PROC
UNIT
 1

PROC
UNIT
 2

PROC
UNIT
 3

A
B C

PROGRAM

A

B

C

Mult iscalar Big Picture: Control

Multiscalar Processors Slide
17

Guri Sohi

• Sequencer manages processing cores like a queue

• Sequencer opens up ‘‘instruction window’’ by (speculatively)
assigning a new task to the tail unit
• Tells core to execute task starting at a given PC
• Does not perform instruction fetching and decoding

• Intra-task control controls execution of task

• Intra-task control determines when control flows out of task
(i.e., task is complete)

• Intra-task branches do not affect creation of ‘‘instruction
window’’

More on Control

Multiscalar Processors Slide
18

Guri Sohi

• Tasks produce and consume data values bound to registers
and memory locations

Big Picture: Data Values

predict predict

PROC
UNIT
 1

PROC
UNIT
 2

PROC
UNIT
 3

A
B C

PROGRAM

A

B

C

Multiscalar Processors Slide
19

Guri Sohi

• Storage
• values can be produced speculatively

• where should values be buffered?

• Synchronization
• ensure that an instruction in a task uses value created by the

logical predecessor

• Communication
• forwarding a value created by an instruction to all future

instructions that might need it

• Sequential ordering of tasks influences answers to above

Issues in Managing Data Values

Multiscalar Processors Slide
20

Guri Sohi

• Each core works out of its ‘‘local’’ register file

• Multiple register files act like separate ‘‘renamed’’ files

• Each register file contains register state at a particular time
in the (speculative) execution of a program

Register Values

Multiscalar Processors Slide
21

Guri Sohi

• Can be analyzed statically

• Compiler indicates registers that may be live when task is
exited (create mask)

• Task control accumulates create masks and passes info to
new tasks (accumulate mask)

• Registers in the accumulate mask are reserved when a new
task starts

• Values are forwarded on the register communication ring
• reservations are removed as registers get updated

Register Values

Multiscalar Processors Slide
22

Guri Sohi

Memory Disambiguation

predict predict

PROC
UNIT
 1

PROC
UNIT
 2

PROC
UNIT
 3

A
B C

PROGRAM

A

B

C

Memory Values

Multiscalar Processors Slide
23

Guri Sohi

• Can’t be analyzed statically
• can’t use bits to synchronize all memory operations

• Can’t allow loads in succeeding tasks to wait for (all) stores
in preceeding tasks to be resolved

• Perform loads (stores) speculatively, i.e., data speculation
• provide storage for speculative values

• Violation of dependences occurs if store in preceeding task
occurs later in time than a load in a successor task

• Provide means to detect violations of dependences, and roll
back if necessary

Memory Values

Multiscalar Processors Slide
24

Guri Sohi

• An address resolution mechanism compares and buffers
addresses from different processing cores

• Each processing core has a (speculative) image of memory
at a different time during the execution of the program
• Allows memory renaming

• Arbitrary order of memory operations possible

• Arbitrary speculation of memory operations possible

More on Memory Values

Multiscalar Processors Slide
25

Guri Sohi

• Address Resolution Buffer (ARB)

• Temporal or sequenced cache/buffers

Address Resolut ion Mechanism

address data address data address data

address

sequence
 number

address

sequence
 number

address

sequence
 number

Bank 0 Bank 1 Bank m−1

Address Resolution Mechanism

Multiscalar Processors Slide
26

Guri Sohi

• Divide static program into tasks

• For each task, determine:
• Possible successor tasks

• How control flows out of task

• Values created by task

• values bound to registers

• values bound to memory

Mult iscalar Programs

Multiscalar Processors Slide
27

Guri Sohi

• Which task to execute after
current task?
• task prediction by sequencer
• similar to branch prediction

• When should a later task wait for
a value?
• register create mask

• When should a task forward a
value?
• register forward bits

• When is a task over?
• task stop bits

Problems and their Solut ions

F

F
o
rw

a
rd

 B
its

Stop
Always

S
to

p
 B

its

OUTER:

INNER:

SKIPCALL:

OUTERFALLOUT:

bne $17, $0, SKIPINNER

j INNERFALLOUT

INNERFALLOUT:

F

F

move $17, $21

move $4, $23

Branch, Branch

OUTER
OUTERFALLOUT

Targ Spec

Targ1

Targ2

Create mask $4,$8,$17,$20,$23

release $8, $17

beq $17, $0, SKIPINNER

ld $8, LELE($17)
bne $8, $23, SKIPCALL
move $4, $17

ld $17, NEXTLIST($17)

bne $17, $0, INNER

addu $20, $20, 16

ld $23, SYMVAL−16($20)

jal process

jal addlist

bne $20, $16, OUTER

release $4

SKIPINNER:

Multiscalar Processors Slide
28

Guri Sohi

• Conservative create mask (due to
control flow in task)
• Release instructions

• Our-of-order memory operations
• Address resolution mechanism

Problems and their Solut ions

F

F
o
rw

a
rd

 B
it
s

Stop
Always

S
to

p
 B

it
s

OUTER:

INNER:

SKIPCALL:

OUTERFALLOUT:

bne $17, $0, SKIPINNER

j INNERFALLOUT

INNERFALLOUT:

F

F

move $17, $21

move $4, $23

Branch, Branch

OUTER
OUTERFALLOUT

Targ Spec

Targ1

Targ2

Create mask $4,$8,$17,$20,$23

release $8, $17

beq $17, $0, SKIPINNER

ld $8, LELE($17)
bne $8, $23, SKIPCALL
move $4, $17

ld $17, NEXTLIST($17)

bne $17, $0, INNER

addu $20, $20, 16

ld $23, SYMVAL−16($20)

jal process

jal addlist

bne $20, $16, OUTER

release $4

SKIPINNER:

Multiscalar Processors Slide
29

Guri Sohi

• Process stream of tokens

• Create entry in list for new token

• Use information in list to process token

Example: Problem

Multiscalar Processors Slide
30

Guri Sohi

for (indx = 0; indx < BUFSIZE; indx++) {
 /* get the symbol for which to search */
 symbol = SYMVAL(buffer[indx]);

 /* do a linear search fo rthe symbol in the list */
 for (list = listhd; list; list = LNEXT(list) {
 /* if symbol already present, process entry */
 if (symbol == LELE(list)) {
 process(list);
 break;
 }
 }

 /* if symbol not found, add it to the tail */
 if (! list) {
 addlist(symbol);
 }
}

Example: C Code

Multiscalar Processors Slide
31

Guri Sohi

• Each task is a complete list search

• Searches are usually independent and parallel
• Multiscalar can assume they are always independent

• Branches that separate tasks are predictable

• Branches within a task will not be 100% predictable
• Superscalar/VLIW will not be able to overlap processing

of different tokens

Example

Multiscalar Processors Slide
32

Guri Sohi

Going from one
generation to
another could
leave binary
untouched!

Example: Executable

F

Fo
rw

ar
d

Bi
ts

Stop
Always

St
op

 B
its

OUTER:

INNER:

SKIPCALL:

OUTERFALLOUT:

bne $17, $0, SKIPINNER

j INNERFALLOUT

INNERFALLOUT:

F

F

move $17, $21

move $4, $23

Branch, Branch

OUTER
OUTERFALLOUT

Targ Spec

Targ1

Targ2

Create mask $4,$8,$17,$20,$23

release $8, $17

beq $17, $0, SKIPINNER

ld $8, LELE($17)
bne $8, $23, SKIPCALL
move $4, $17

ld $17, NEXTLIST($17)

bne $17, $0, INNER

addu $20, $20, 16

ld $23, SYMVAL−16($20)

jal process

jal addlist

bne $20, $16, OUTER

release $4

SKIPINNER:

Multiscalar Processors Slide
33

Guri Sohi

• Multiscalar-specific information (task successors, create
masks, forward bits, stop bits) is available in a binary

• Recover information at run time
• ‘‘Low’’ performance but run ordinary binaries

• Binary to binary translation
• Better performance by including some optimizations

• Compiler
• Best performance, but needs recompilation

Regardless, binary from one multiscalar generation to
another can remain the same

Binary Compat ib i l i ty Opt ions

Multiscalar Processors Slide
34

Guri Sohi

Attributes Multiprocessor Multiscalar

Speculative task initiation No/Difficult Yes

Multiple flows of control Yes Yes

Task determination Static Static (possibly dynamic)

Software guarantee of inter-task
control independence

Required Not required

Software knowledge of inter-task
data dependences

Required Not required

Inter-task sync. Explicit Implicit/Explicit

Inter-task communication Through memory
Through messages

Through registers and
memory

Register space Distinct for PEs Common for PEs

Memory space Common
Distinct

Common for PEs

Comparison with Mult iprocessors

Multiscalar Processors Slide
35

Guri Sohi

• Tasks are predicted well, or incorrect predictions known
soon
• Can get around hard-to-predict branches by including in

task

• Tasks are ‘‘large enough’’ to overcome pipeline oveheads

• Tasks are of equal dynamic length, else load balancing
problem

• Task is scheduled for efficient execution on processing core

• Inter-task dependences are scheduled properly

• Memory dependences are not violated often

Making Mult iscalar Tick

Multiscalar Processors Slide
36

Guri Sohi

• Project in existence for 4-5 years
• 1-2 students per year

• GCC-based compiler
• can generate multiscalar executable for arbitrary C program

• naive task selection and scheduling

• no memory disambiguation used

• Detailed timing simulator
• accepts executable and carries out a cycle-by-cycle simulation

of its execution, varying core capabilities

• Initiated large scale effort (Kestrel)

Current Status

Multiscalar Processors Slide
37

Guri Sohi

Four processing cores

Approx. 15% extra instructions, plus extra cycle for cache hit

0.0

1.0

2.0

3.0

4.0

cmps sc eqn xli gcc esp tmc wc cmp eg
Benchmark Programs

S
pe

ed
up

Current Performance Resul ts

Multiscalar Processors Slide
38

Guri Sohi

Eight processing cores

Current Performance Resul ts

0.0

1.0

2.0

3.0

4.0

5.0

6.0

cmps sc eqn xli gcc esp tmc wc cmp eg
Benchmark Programs

Sp
ee

du
p

Multiscalar Processors Slide
39

Guri Sohi

• Demonstrate feasibility of both hardware and software
• Hardware

• 8 moderately superscalar processing cores

• based upon MIPS-IV ISA

• Software

• integrated (front- and back-end) compiler

• Funded by ARPA and NSF

• Collaborative effort between Wisconsin and Minnesota
• Wisconsin PIs: Sohi and Smith

• Minnesota collaborators: Yew, Li, and Lilja

Mult iscalar Kestrel Project

Multiscalar Processors Slide
40

Guri Sohi

• Hardware design and simulation at multiple levels
• Clock level (for performance evaluation)

• Verilog functional level for non-multiscalar specific (e.g.,
floating point)

• Verilog/Synopsys gate-level for multiscalar specific

• Circuit level for special functions (e.g., ARB)

• Very accurate performance and hardware cost estimates

• Integrated compilers
• integrate front end (SUIF) and back end (GCC)

• better task selection algorithms and heuristics

• inter- and intra-task scheduling algorithms

Ongoing/Planned Work

Multiscalar Processors Slide
41

Guri Sohi

• Utility for C++, database, and other non-numeric programs

• Alternate microarchitectures

• Alternate memory disambiguation mechanisms and
hardware

Ongoing/Planned Work

Multiscalar Processors Slide
42

Guri Sohi

• Superscalar has some life left
• different ways of looking at it may give it even more life

• If compiler has full knowledge about all dependence
relationships, use a Multiprocessor, with very fine-grain
synchronization

• If full knowledge is not available, use Multiscalar

• Multiscalar platform allows both!

Concluding Remarks

