
Dataflow Execution of Sequential Imperative Programs on

Multicore Architectures
Gagan Gupta and Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison

Madison, WI, USA

{gagang, sohi}@cs.wisc.edu

ABSTRACT
As multicore processors become the default, researchers are

aggressively looking for program execution models that make it

easier to use the available resources. Multithreaded programming

models that rely on statically-parallel programs have gained

prevalence. Most of the existing research is directed at adapting

and enhancing such models, alleviating their drawbacks, and

simplifying their usage. This paper takes a different approach and

proposes a novel execution model to achieve parallel execution of

statically-sequential programs. It dynamically parallelizes the

execution of suitably-written sequential programs, in a dataflow

fashion, on multiple processing cores. Significantly, the execution

is race-free and determinate. Thus the model eases program

development and yet exploits available parallelism.

This paper describes the implementation of a software runtime

library that implements the proposed execution model on existing

commercial multicore machines. We present results from

experiments running benchmark programs, using both the

proposed technique as well as traditional parallel programming,

on three different systems. We find that in addition to easing the

development of the benchmarks, the approach is resource-efficient

and achieves performance similar to the traditional approach,

using stock compilers, operating systems and hardware, despite

the overheads of an all-software implementation of the model.

Categories and Subject Descriptors

C.1.3 [Processor Architecture]: Other Architecture Styles –

data-flow architectures; C.1.4 [Processor Architecture]: Parallel

Architectures; D.1.3 [Programming Techniques]: Concurrent

Programming – parallel programming.

General Terms: Performance, Design.

Keywords: Dataflow, multicore, programming, determinacy.

1. INTRODUCTION
As parallel computers are becoming commonplace, the computing

community has been aggressively seeking execution models that

will permit parallel program execution. Much of the research

community‟s efforts to date have tried to adapt the “canonical”

parallel computing principles that were developed for high-end

scientific computers, and then to address the myriad of issues that

arise in doing so.

Briefly, a canonical parallel processing model requires the

programmer (or some software tool) to identify the parallelism in

the program and statically create a parallel program using a

programming model such as Pthreads, MPI, or task programming,

expressed in an imperative programming language such as C or

C++. When such a statically-parallel program is executed, it

results in a parallel execution of the program‟s operations.

During dynamic execution of the statically-parallel program, a

multitude of complexities may arise that make program

development onerous [18]. For example, avoiding data races to

ensure correct execution may expose users to the intricacies of the

underlying architecture, such as memory consistency; unknown or

improper locking protocols can cause deadlocks; complex

algorithm structures may be needed to exploit available

parallelism; non-deterministic execution can lead to undetected

bugs, and on occasion requires recreation of the original sequence

for operations such as I/O. Concurrent program analysis to help

alleviate some of these issues is provably undecidable, ultimately

burdening the user to reason about their correctness [24]. Yet,

such a canonical model is at the core of almost all (if not all) of

the parallel programming/execution models that have been

proposed and practically deployed. Despite significant research

efforts over the past several decades to overcome the

shortcomings of the model, a practical paradigm for the future

remains elusive.

An alternate model for parallel processing, the dataflow model,

has been demonstrated, in academic research settings, to be very

successful at unlocking parallelism in a class of applications.

However, its adoption has been hampered by reliance on

functional languages which are hard or inefficient to use for many

practical applications, as well as the need to start from scratch

with all (software and hardware) components of computing. A

recent paper by Denning and Dennis [9] brings forth many of the

issues related to the canonical parallel processing model and

dataflow computing.

As we search for a practical execution model for future parallel

computers, it is instructive to study the history of instruction-level

parallel (ILP) processors. Here there were two major proposals:

VLIW and dynamically-scheduled superscalar [20]. The former

required a statically-created ILP program, whereas the latter

achieved ILP by dynamically carrying out an instruction-level

dataflow execution of a sequential program. The two approaches

had some similarities, e.g., how functional units may be

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MICRO‟11, December 3–7, 2011, Porto Alegre, Brazil.

Copyright 2011 ACM 978-1-4503-1053-6/11/12…$10.00.

organized, but there were many differences. The former required

additional architectural support (e.g., predicated execution), had

much more sophisticated software (e.g., trace and hyperblock

scheduling), required support to identify problems that occurred

in different places than they would have occurred sequentially

(e.g., support for traps), and was limited in its ability to exploit

ILP when dependence information was not known until run time

(e.g., dynamically-linked libraries). The latter, devoid of such

problems, was able to extract and exploit dynamic parallelism, but

required additional hardware logic, and potentially suffered when

parallelism was abundant and was easily identified statically.

The canonical parallel execution model is the VLIW analog in the

multicore world: static representation, much more sophisticated

compilers, architectural support for efficient synchronization

primitives, problems such as race conditions and non-determinism

that do not occur in a sequential program, limited ability to

achieve parallel execution when dependences are not known

statically, etc. The obvious question then is: can we have a

“superscalar” analog in the multicore world, i.e., can we achieve a

dataflow parallel execution of a statically-sequential program,

written in a ubiquitous imperative programming language, such as

C++, on multicore architectures?

In this paper we answer the above question by proposing an

execution model that determines data dependences between

computations dynamically and executes them concurrently in

dataflow fashion (§ 2). Importantly, we retain the conventional

sequential imperative programming interface and our current

implementation of the model requires no changes to existing

compilers and operating systems, and runs on stock hardware. We

describe the programming interface and the working of the model

in detail (§ 3). Evaluation (§ 4) shows that it: (i) achieves

performance comparable to traditional parallel programming

techniques, (ii) eases programming, (iii) while incurring

reasonable overheads. Finally, we compare our work with other

related work (§ 5) before concluding (§ 6).

2. DATAFLOW EXECUTION OF

SEQUENTIAL IMPERATIVE PROGRAMS
The dataflow model performs data-driven execution of programs

[3]. Instead of executing instructions sequentially as per the

control flow, it executes them as soon as their input operands are

available, execution resources permitting. Dependent instructions

are automatically serialized while independent instructions may

execute in parallel. The model naturally exposes all of the innate

parallelism within a program, while ensuring determinate

execution, and remains an idealized standard for exploiting

concurrency. To successfully employ a similar model in the

multicore realm, we address some of the inherent and new

challenges it poses: a practical programming paradigm,

dependence and resource management, and application of the

principles at a multicore scale.

Programming
Proposed dataflow machines have traditionally relied on

functional languages to express programs. Functional languages

disallow side effects and mutable data, properties that lend well to

the dataflow model. But they have failed to attract the

programming community. Hence we adopt the more familiar and

established imperative programming language, such as C++.

Developers today follow modern programming principles and

practices, which encompass modularity, object oriented designs,

data encapsulation, information hiding, and well defined module

interfaces [6]. In our model we exploit such common-case

empirical behaviors while provisioning for the rare worst-case

scenarios. Further, we favor the well understood notion of a

statically-sequential program over the statically-parallel

multithreaded model, the reason for which we highlight later in

this section.

Dataflow on Multicores
While traditional dataflow machines exploit instruction level

parallelism (ILP), we raise the granularity to functions which are

already used to organize task-level computations, facilitate code

reuse and compose well engineered programs. More appropriate

for the scale of multicores, we thus seek to exploit Function-Level

Parallelism (FLP) by executing functions on the cores in a

dataflow fashion. Employing FLP has the added potential

advantage of exploiting locality, which was difficult to achieve in

the dataflow machines1.

At run time, we sequence through a sequential program, a

function (rather than an instruction) at a time. Before executing

the function we first need to ascertain its “operands”. In our

model we also raise the granularity of an operand from an

individual register or memory location to an object. Commonly

used in modern programming practices, an object may comprise

of fields and usually forms a basic unit of data. A function‟s input

operands, i.e., the read set, and its output operands, i.e., the write

set, collectively called the data set, are readily available from its

interface. Often objects in the data set may be unknown statically.

Therefore we evaluate the data set dynamically, at run time, just

before the function is invoked.

We use the identity of the objects in the data set to establish the

data dependence between functions, in contrast to establishing

independence as is done in the statically-parallel model. In

particular, we determine if the function currently being processed

is dependent on any prior function(s) that are still executing. If

not, it is submitted (or delegated) to a core for execution. If so, it

is shelved until its dependences are resolved. In either case, we

then proceed to process the next function in the sequential

program.

Handling Dependences
Dataflow machines handle dependences using tokens to signal

production and availability of data. We employ a similar

technique, but make two crucial enhancements. First we associate

tokens with objects instead of individual memory locations, to

match the data abstraction. Second, we assign each object

multiple read tokens and a single write token, to manage both

production and consumption of data. This is needed to handle the

ability of imperative languages to mutate data as we illustrate

below.

When the execution encounters a function to be considered for

dataflow execution, it requests read (write) tokens for objects in

the function‟s read (write) set; it is ready for execution only after

it has acquired all its tokens. Upon completion, it relinquishes the

tokens which are then passed to the shelved function(s), if need

be. When a shelved function has acquired its requisite tokens, it

can be unshelved and submitted for execution.

1 We do not address this further in this paper.

Imperative programming can impose additional hurdles. A

“poorly” composed function (e.g., one with side effects) or an

unknown function (e.g., from third party) may make it difficult to

ascertain the read and write sets. In such a case our model can

resort to sequential execution of such a function, i.e., all prior

computations in the program order complete before performing

the function, and any subsequent computation begins only after its

completion. This precludes the need to determine precise data

dependences for the function, and hence its data set.

Model Overview
We illustrate the execution model with the simple sequential

program example of Figure 1a, which invokes a function T within

a loop. Figure 1b shows an example dynamic sequence of

invocations of T, along with their dynamically computed write

and read sets, generated by sequencing through the program.

Figure 1c shows the data dependence between the functions. For

example, T3 writes objects A and E, and thus it has a WAR

dependence (solid arrows in the figure) on T1 and T2, which read

A. Likewise T4 has a RAW dependence (dashed arrows) on T2,

and T5 has a WAW (dotted arrows) dependence on T4. These

dependences must be preserved if the dynamic execution is to

maintain the sequential appearance of the static program.

Figure 1d shows the execution of the code as per our model. The

execution first encounters invocation T1. Attempts to acquire a

read token for object A, and write tokens for B and C are

successful. Hence T1 is submitted for execution on an available

core (P1). The execution proceeds (on a processor not shown)

and processes T2 while T1 is executing. Attempts to acquire a

write token for D and a read token for A are successful, and thus

T2 is scheduled to execute (on core P2). The execution advances

to T3, which is shelved because a write token for object A can‟t

be acquired since T1 and T2, which are still being executed, hold

read tokens for A. However, before being shelved, T3 acquires a

read token for F and a write token for E. Next, functions T4, T5,

and T6 are processed in turn. T4 and T5 are shelved because they

require a write token to B, which is being held by T1. On the

other hand, T6 is able to acquire its requisite tokens (for G and H)

and thus can be executed, possibly even in parallel (on core P3)

with T1 and T2.

When T1 completes its execution at time t2, it releases the write

tokens for B and C (signaling availability of B and C). The token

for B is passed to the shelved function T4, since it is the oldest

function waiting for it; T5 continues to wait until T4 finishes and

releases the token for B. The token for C is returned to the object

since no function is waiting for it. At this point, none of the

shelved functions (T3, T4, or T5) can be woken up since none of

them has successfully acquired all its tokens. When T2

completes, it releases the tokens for D and A (signaling

availability of D and completion of use of A), thus waking up T3

(awaiting write token to A) and T4 (awaiting read token to D).

These functions can thus be executed starting at time t3 (e.g., on

cores P1 and P2), with T3 now being able to write to A in the

same order as in the sequential program (after T2 is done reading

it). When T4 completes, it passes the write token for B to T5,

which can then be executed at time t4.

Note that dependences, even between dynamic instances of the

same function, may or may not manifest at run time, e.g., dynamic

instances of the function T, T1 and T2 are independent while T2

and T3 are not. Handling the dependences statically, as is required

in the statically-parallel model, often leads to an overly

conservative solution. By detecting and only serializing the

dependent functions dynamically, while permitting independent

functions to proceed in parallel we can achieve the ideal dataflow

schedule of execution (resources permitting).

In the event a function‟s data set cannot be determined, e.g., for

function T' in Figure 1a, we resort to its sequential execution, in

which an implicit barrier is created between T' and all previously

scheduled functions, as shown by dark solid arrows in Figure 1d.

T' will be submitted for execution after all previous functions

complete. The program subsequent to T' may revert back to

parallel execution after T‟ has finished.

1 while (cond) {

2 ..

3 function T: {wr_set} {rd_set}

4 }

5 function T': {?} {?}

 (a)

1 T1: {B, C} {A}

2 ..

3 T2: {D} {A}

4 ..

5 T3: {A, E} {F}

6 ..

7 T4: {B} {D}

8 ..
9 T5: {B} {D}
10 ..
11 T6: {G} {H}
12 T': {?} {?}

 (b)

(d)

 P1

 P2

 P3 T6

T1

T2

T6

T2

T3

T4 T5 T‟

 t1 t2 t3 t4 Time

Barrier

(c)

T1 T2

T3

T6 T5

T4

 Time

Figure 1. (a) Example pseudocode that invokes functions T and T’. T: {write set} {read set} modifies (reads) objects in its write set

(read set). Data set of T’ is unknown. (b) Dynamic invocations of the functions T and T’, in the program order, and the data set of

each invocation. (c) Dataflow graph of the dynamic function stream. (d) Dataflow execution schedule of the function stream.

Deadlock Avoidance
The token mechanism in a normal dataflow model could deadlock

if two or more functions create a cyclic dependency on tokens.

For example, invocations T4 and T5 may create a request

sequence T4:B (acquired) → T5:B (waiting) → T5:D (acquired)

→ T4:D (waiting) and deadlock. We avoid token deadlocks by

ensuring: (i) token requests are processed one function at a time,

and (ii) tokens for an object are granted in the order they are

requested. Thus T5's token requests are only processed after T4's,

and T5 can only receive tokens to its objects after all previous

requesters have relinquished them.

Resource Management
Dataflow machines can easily scout an entire program for

parallelism even when only a fraction of the program has actually

executed. In the process they can exhaust resources, causing

deadlocks [8]. We prevent such deadlocks by unraveling the

(sequential) program only as much as the resources permit and at

the same time guarantee forward progress since functions already

processed are always independent of their successors.

Benefits of Sequential Programming
The sequential programming model affords the key property of an

implicit order for computations, the benefits of adopting which we

highlight here. First, since the computation schedule is based on

the program order the model achieves sequentially determinate

execution [17]. Sequential determinacy ensures that in any

execution of a program with the same inputs, an object is assigned

the same sequence of values. This makes programs easy to reason

about, and their execution predictable and repeatable, key

distinctions from the multithreaded model. Second, sequential

unfolding of execution helps avoid the two types of deadlocks.

Third, sequential operations such as I/O require no special

handling from the user. Finally, it obviates the need to abandon

what is already a very well established and understood

programming paradigm.

Just as it was in the case of dynamically scheduled superscalar

processors, we believe that the proposed model is an apt

execution model for parallel processing hardware and thus will

significantly impact future hardware and software architectures.

But before we can investigate how to architect the hardware and

software components to support the model, we first study its

feasibility. Instead of building a simulator of the hardware

components, we chose to build a prototype entirely in software to

experiment on real hardware. Such an approach has the potential

to incur high overheads, but rapidly allows us to assess the

practicality and viability of the approach. The remainder of the

paper describes and evaluates the prototype. As we show in the

evaluation section, despite the overheads of a software

implementation it achieves performance that is competitive with

traditional parallel execution models on commodity hardware.

3. PROTOTYPE IMPLEMENTATION
We developed a software prototype of the execution model

described in section 2 in the form of a C++ runtime library. The

application to be parallelized is compiled with the library which

becomes a part of the program that it dynamically parallelizes.

During execution the runtime provides three key capabilities: (i)

identify and track dynamic dependences, (ii) schedule functions

for execution while balancing load, and (iii) orchestrate dataflow

parallel execution of independent computations. As part of the

executable of the user-level code, it executes on the same

hardware and uses the same system memory as the application.

We next describe program development using the library, and the

runtime mechanics.

3.1 Static Sequential Program
To enable full expression of imperative languages, the model

permits programs to express and alternate between dataflow and

sequential execution. Programs written for the model, currently in

C++, are similar to conventional sequential programs, augmented

to work with the prototype. Specifically, in addition to coding the

algorithms, users identify: (i) potentially parallel functions

therein, (ii) objects shared between such functions, (iii) their read

and write sets, and (iv) sequential program segments, if any.

Dataflow Functions
A program written for the model may be viewed as comprising of

a main program context from which functions may be invoked for

concurrent execution. A program function to be considered for

potential parallel execution is invoked using the df_execute

interface provided in the library. df_execute is a runtime function

implemented using C++ templates. The function pointer and its

arguments are included in the call to df_execute. It prompts the

runtime to attempt execution of the function in parallel with the

continuation of the program, i.e., the remainder of the program

past the df_execute call, and other (sequentially preceding)

executing functions, dependences permitting, as we shall see

below. Non-df_execute instructions in the program execute in the

specified sequence. Figure 2 shows the main program context of

an example similar to the one in Figure 1a. Function T is invoked

on line 3 by passing its pointer to df_execute, possibly executing

it with other executing functions and the continuation beginning

from line 4.

Users also identify object classes that may be shared across

parallel functions by inheriting from a token base class supplied in

the library (not shown in the example). The runtime associates

tokens with the dynamic instances of these classes; they are used

to track dependences as we describe in the following subsections.

Shared data, in the form of globals, passed-by-reference objects

or pointers to them, that are accessed by a function are passed to it

as arguments. Users group them into two sets, one that may be

modified (write set) and another that is only read (read set). In

case the users are unable to create precise sets, they may specify a

superset of objects. The C++ STL-based set data structure of the

token base class is used to create them. The two sets are also

passed to the function via df_execute, as shown in Figure 2 on line

3 for function T (wr_set and rd_set).

Users may also pass data not shared across parallel functions and

passed-by-value objects through df_execute to the function, by

listing them after the function pointer (none in the example).

Tokens need not be associated with such data since they do not

cause dependences and are inconsequential to parallel execution.

The user formulates the read and write sets before invoking

df_execute. The runtime determines the identity of the objects in

1 while (cond) {
2 ..
3 df_execute(wr_set, rd_set, &T);

4 }

5 df_seq (G, &print);

6 df_end ();

7 T’ (args);

Figure 2. Example program in the proposed model.

them, by dereferencing pointers if need be, at run time. This

interface allows the model to handle data referenced using

pointers, as well as pointer arithmetic.

Serial Segments/Functions
Users may revert to sequential execution of program segments by

using the df_end interface, as shown on line 6 in Figure 2. df_end,

analogous to a barrier, causes the runtime to suspend execution of

the main program context and quiesce the dataflow execution. The

program resumes after all previous functions finish, thus

serializing execution of the computation that follows df_end, T‟ in

our example. Beginning from function T', the program receives no

special treatment from the runtime until the next df_execute.

To operate on a shared object in sequence with the main program,

the runtime provides a df_seq interface. df_seq accepts the object

instance, the function (object method) pointer and any arguments

to it. df_seq achieves object-sequential execution, which we

define as one in which all prior computations that access the

specified object complete before the given computation begins,

and any subsequent computation in the program order can only

begin after it completes. df_seq causes the runtime to suspend the

main program context until the associated function finishes

operating on the specified object. Line 5 in Figure 2 shows use of

df_seq to invoke the function print on shared object G. Execution

will proceed from line 6 only after print finishes, but potentially

in parallel with other (prior) functions (that are not accessing G).

While df_end permits the user to quiesce the dataflow execution

with respect to all objects and safely fall back to sequential

execution where parallel execution may be undesired or difficult

to use, df_seq allows the user to quiesce the parallel execution

with respect to a single object.

Beyond inheriting from the base class for the shared objects,

creating the read and write sets, and invoking the potentially

parallel functions via df_execute, the onus is not on the

programmer to ensure mutual exclusivity between the functions or

insert and manage any synchronization. While additional to

conventional sequential programming, we believe this imposes

only a modest burden on users who already follow many modern

software engineering principles, and much less than reasoning

about correctness of and debugging non-deterministic statically-

parallel programs.

3.2 Runtime Mechanics
Our runtime, based on the Prometheus runtime described by Allen

[2], employs multithreading to implement the mechanics of

parallel execution using the Pthreads API. However, the thread

management is abstracted away from the user. In fact, the user is

entirely oblivious of the underlying infrastructure and its

mechanics, such as the number of hardware contexts, atomic

operations, synchronization activities, etc.

Executing Functions on Processing Cores
At the start of a program, the runtime creates threads, usually one

per hardware context available to it. A double-ended work queue

(deque) is then assigned to each thread in the system.

Computations are scheduled for execution by a thread by queuing

them in the corresponding work deque. Each thread also has a

task-stealing scheduler whose use will be seen below.

Discovering Functions for Parallel Execution
At the onset, all but one of the processors idle, waiting for work to

arrive in the deques. Execution of the program begins on a single

processor core and unfolds in a fashion similar to sequential

execution. When a function to be considered for parallel

execution (via df_execute) is encountered, the runtime is

activated. The runtime processes a dataflow function in three

decoupled phases, prelude, execute and postlude, as outlined in

Figure 3. In the prelude phase (Figure 3: 1) it dereferences

pointers to objects in the read/write sets, if need be, and attempts

to acquire the tokens. Successful acquisition of tokens leads to

the execute phase (Figure 3: 2), in which the function is delegated

for (potentially parallel) execution. Specifically, the runtime

pushes the program continuation (remainder of the program past

the df_execute call) onto the thread's work deque, and executes

the function on the same thread. A task-stealing scheduler,

running on each hardware context, will cause an idle processor to

steal the program continuation and continue its execution, until it

encounters the next df_execute, repeating the process of

delegation and pushing of the program continuation onto its work

deque. Thus the execution of the program unravels in parallel with

executing functions, and possibly on different hardware contexts

rather than on one hardware context. The postlude phase is

described later in the subsection.

Tokens and Dependency Tracking
During the program execution, when a designated shared object is

allocated it receives one write token, unlimited read tokens

(limited only by the number of bits used to represent tokens), and

a wait list. Tokens are acquired for objects that the dataflow

functions operate on, and released when the functions complete. A

token may be granted only if it is available. Figure 4a gives the

definition of availability of read and write tokens, and Figure 4b

shows the token acquisition protocol. The wait list is used to track

functions to which the token could not be granted at the time of

their requests. A non-empty wait list signifies pending requests,

in the enlisted order. To prevent deadlocks all token requests from

a function are processed before proceeding to the next function,

possibly in parallel with other executing functions, and a token is

granted strictly in the order in which it was requested. Hence an

available token is not granted if an earlier function enqueued in

the wait list is waiting to acquire it (Figure 4b: 1). For example, if

a read token is available but a prior function requires a write token

to the object, it cannot be granted to the requester, ensuring that

functions acquire tokens in the program order.

Shelving Functions/Program Continuations
If the tokens for a function cannot be acquired, it is enqueued in

the wait lists of all the objects for which tokens could not be

acquired (Figure 4b, 4 or 5), and subsequently shelved (Figure 3:

1.2). While the shelved function waits for the dependences to

1 Prelude () 1 {

2 Acquire tokens 1.1 {

3 // See Figure 4b

4 }

5 If all tokens not acquired {

6 Shelve function 1.2

7 }

8 }

9 // All tokens acquired

10 Execute function () 2

11 // Return from function

12 Postlude () 3 {

13 Release Tokens 3.1 {

14 // See Figure 4c

15 }

16 }

Figure 3. Logical view of runtime operations to process a

dataflow function.

resolve, the runtime looks for other independent work from the

program continuation to perform, as above.

df_seq can cause the program continuation to be shelved (possibly

in addition to the associated function). The continuation is

enqueued in the wait list of the object identified in df_seq. df_end

can also cause the program continuation to be shelved until all

executing functions complete. In this event the continuation is

shelved on a special runtime structure. Since the program is now

suspended in either case, the context looks for previously shelved

functions that may now be unshelved, via task stealing.

Completion of Function Execution
When a dataflow function completes execution it returns the

control to the runtime, which initiates the postlude phase (Figure

3: 3). In this step all acquired tokens are released. Figure 4c

describes the token release protocol. Once a token for an object is

relinquished (Figure 4c: 1), it is passed to the next waiting

function(s) in the wait list (Figure 4c: 2), if present, in the same

order that the functions were enqueued. When a shelved function

receives all requested tokens, it is considered to be ready for

execution. The thread that grants the final token also awakens the

ready function and schedules it for execution by enqueuing it in

its own work deque (Figure 4c: 3). Then either the same thread, or

another that steals the function, will eventually execute it (Figure

3: 2). The process is identical if a df_seq caused the program

continuation to be enqueued in a wait list. Different threads may

simultaneously attempt to release, acquire, and pass a token. The

runtime manages the data races in such scenarios.

The runtime tracks in-flight functions by updating a count every

time a function is processed or completed. If df_end caused the

continuation to be shelved, the postlude phase of the last function

to finish will schedule the continuation for execution, resuming

the program.

Thus, by shelving dependent functions, scheduling them for

execution as soon as their dependences have resolved, and

executing other independent functions in the meantime, the

runtime achieves the dataflow execution outlined in our model.

Scheduling and Balancing Load
To achieve optimal performance we employ dynamic task-

scheduling similar to the one outlined in Cilk-5 [12] and [2]. The

runtime uses the work-first principle and lazy task creation to

delegate functions to threads, and a randomized task-stealing

policy to balance the load. Threads first execute functions from

their own deques when available, failing which they steal from

others. We make three enhancements to the algorithm: (i) we

employ polymorphic work deques that can hold functions and

program continuation, (ii) program continuation and functions

may be shelved, and (iii) the thread that awakens a shelved

function enqueues it in its own deque, potentially executing it

next. Doing so permits the dependent function to migrate to the

thread that may have already cached the data. Furthermore, all

threads have a runtime scheduler, hence we avoid bottlenecks that

result from using centralized resources.

3.3 Example Execution
We illustrate the runtime operations using the example code in

Figure 2. Figure 5a shows the initial state of the system. CPU0 is

executing the program and objects have been constructed. Objects

A to F are depicted along with their tokens. R = n indicates n read

tokens have been granted; W indicates the write token has been

granted (none at this time). Wait lists of objects A, B and D,

currently empty, are also shown. Figure 5b shows the state of the

system as the program begins execution (the same while loop as in

Figure 1a). Events are identified using # time stamps. The first

invocation of T, T1, with write set {B, C} and read set {A} is

encountered. Write tokens for B and C, and a read token for A are

acquired (1) and the function is delegated for execution on CPU0

(1), and the program continuation is pushed on to the deque of

CPU0. From there, CPU1 steals the continuation, and encounters

the second invocation, T2. It acquires tokens for objects D and A,

and delegates T2‟s execution on itself (2). Note that at this time,

two read tokens for object A have been granted.

Next, the third invocation, T3, attempts to acquire a write token

for A, and fails (however it succeeds in acquiring tokens E and F

(3)). It is hence shelved and enqueued in the wait list of A (3).

The next invocation, T4, also fails to acquire a read token for

object D and a write token for B, and is enqueued in their wait

lists (4). Likewise, the following invocation, T5, has to be

enqueued in object B and D‟s waitlists (5). While the shelved

methods await their tokens, the main program context on CPU2

reaches the final invocation of T from the loop, T6, which is

delegated for execution on CPU2 itself (6).

Upon completion T1 releases the tokens back to objects B, C and

A (7 in Figure 6a). This causes B‟s write token to be granted to T4

(8). However T4 cannot execute yet since not all of its requested

tokens have been granted. Next CPU0 steals the program

continuation from CPU2 and encounters df_seq. It causes the

runtime to shelve the program continuation beyond df_seq in G‟s

wait list (not shown) and await completion of all functions

accessing G (only T6 in this case), before advancing further.

Eventually, T2 and T6 complete (Figure 6b), and release their

tokens (9). Now that all of its read tokens are available, the write

token for A is granted to T3 (10). Since T3 now has all its tokens,

it is enqueued in the work deque, from where the next available

context will execute it (10). Similarly, once the write token is

returned to object D, read tokens are granted to T4 and T5 (11,

Initial State:

 Read Token: None granted.

 Write Token: Not granted.

Read Token is available if:

 write token is not granted.

Write Token is available if:

 no read token is granted AND

 write token is not granted

 (a)

Acquire Read/Write Token:

1 if wait list is empty { 1

2 if token is available { 2

3 grant token 3

4 } else {

5 enqueue in wait list 4

6 }

7 } else {

8 enqueue in wait list 5

9 }

 (b)

Release Read/Write Token:

1 return token 1

2 while wait list is not empty { 2

3 if token is available {

4 grant token

5 if waiting function is ready {

6 schedule function 3

7 }

8 } else {

9 break

10 }

 (c)

Figure 4. The token protocol: (a) Definition of availability, (b) Read/Write token acquisition, (c) Read/Write token release.

12). This causes T4 to transition to the ready state, and be

scheduled for execution on an available context (11). Completion

of T6 causes the runtime to execute the print method on object G

(13). T5 will be scheduled for execution once T4 completes and

releases the tokens for objects B and D. After print completes, the

runtime schedules the program continuation for execution,

whereupon it processes df_end. The continuation is shelved again,

thus preventing further processing of the program, until all in-

flight functions (only T5 here) finish, before proceeding to T‟.

4. EVALUATION
We evaluated the software prototype of the proposed model for its

programming efficacy and performance efficiency by developing

several benchmarks using the runtime library. Table 1 lists the

applications we selected from different benchmark suites and the

input data sizes used for the evaluation. Baseline parallel

implementations for all of them were in Pthreads (bzip2 is the

pbzip2 implementation in [13]). We studied and characterized the

prototype on three stock multicore machines. Table 2 lists their

configurations. The first uses a single-socket, 4 core, 2-way

hyperthreaded, Intel iCore-965 (Nehalem) processor. The other

two use 4- and 8-socket, 4 core/socket AMD Opteron 8350/8356

(Barcelona) processors. The sequential versions of the

benchmarks were first ported to C++ and then modified using the

programming interface for execution with the model. It is

noteworthy that our system required no modification to the

software tool chain. We compiled the code using gcc-4.3.2 –

O3 –march=amdfam10 for the Opteron machines, and with

gcc-4.3.2 –O3 –march=core2 for Core i7.

Ease of Programming
Codes developed for the benchmarks using our model closely

resembled the sequential versions intended to run on a

uniprocessor. No threads were created and no synchronization

primitives were used to facilitate concurrent execution. No

explicit work distribution or recreation of the original execution

sequence was required. Further, no pattern-specific algorithm

structures [19] were needed to exploit parallelism. We elaborate

below using bzip2 as an example.

The main loop of bzip2 in our model is shown in Figure 7a. Note

the lack of synchronization constructs, and its similarity with the

sequential version in Figure 7b, but for the creation of write sets

(lines 2 and 6 in Figure 7a) for the two functions, compress and

wr_file, invoked through df_execute.

T3

T4

G.print()

Figure 6. Example execution. (a) State of the system after invocation T1 completes execution. (b) State of the system after

invocations T2 and T6 complete execution.

T2

T6

(a)

D

R = 0

W

E

R = 0

W

F

R = 1

A

R = 1

B

R = 0

W

C

R = 0

T2 ({D}, {A})

T3 ({A, E}, {F})

T4 ({B}, {D})

T5 ({B}, {D})

T6 ({G}, {H}

df_seq (G, &print)

7 7

8

T3 T5 T4 T5

8

CPU0

CPU1

CPU2

8

7

11

(b)

D

R = 2

E

R = 0

W

F

R = 1

A

R = 0

W

B

R = 0

W

C

R = 0

T3 ({A, E}, {F})

T4 ({B}, {D})

T5 ({B}, {D})

df_seq (G, &print)

df_end ()

T‟ ()

10

9

10

11

12

 T5

11

CPU0

CPU1

CPU2

10 11 12

13

13

9 10 12

Figure 5. Example execution. (a) Initial state of the system. (b) State of the system after processing the six invocations of function

T, denoted as: T {write set} {read set}.

(a)

D

R = 0

E

R = 0

F

R = 0

A

R = 0

B

R = 0

C

R = 0

. .

while (cond) {

. .

 df_execute (., &T);

}

df_seq (G, &print);

df_end ();

T’() ;

. .

Main

Program

Wait
R = 0

 Lists

CPU0

CPU1

CPU2

(b)

D

R = 0

W

E

R = 0

W

F

R = 1

A

R = 2

B

R = 0

W

C

R = 0

W

T1 ({B, C}, {A})

T2 ({D}, {A})

T3 ({A, E}, {F})

T4 ({B}, {D})

T5 ({B}, {D})

T6 ({G}, {H})

1
1

2

2

2

1 1 2 3

3

4

5

T3 T4 T5

4

6

T1

T2

T6

3 5

6

T4 T5

4 5

CPU0

CPU1

CPU2

3 1

By contrast, the Pthreads bzip2 is complex, as is also noted in

[12], and too large to show here. It uses task-specific threads, one

each for file read and write, and the rest to compress data. A

pipeline of computations, based on the master/worker mechanism,

is created by passing data (and hence work) from the file-reading

thread to the compression thread, which in turn forwards its

results to the file-writing thread. Threads communicate through

lock-protected producer-consumer queues. To utilize resources

efficiently in such a model, the user has to ensure just enough

work is created for worker threads and idle workers do not

consume cycles that may otherwise be utilized to perform work.

In Pthreads bzip2 idle threads can suspend themselves and are

awakened when work arrives or needs to be created, using wait-

signaling. In our model, dataflow processing achieves these

objectives without user intervention. It serializes dependent

computations and schedules their execution when they are ready,

thus automatically creating a pipeline of computations, e.g., by

serializing a dependent file write after the computation but

overlapping it with an independent computation. Further, lazy

task creation and work-stealing ensure work is sought, and created

if need be, by a context only when it is idle, thus efficiently

utilizing resources.

Often the fork-join model (e.g., in Pthreads blackscholes), is used

to achieve ordered file writes, underutilizing resources. To

improve the utilization Pthreads bzip2 again relies on the

master/worker model. Compressed data is logged into a

predetermined slot in a lock-protected queue that is drained by

another thread. In our model ordered execution of dependent

computations made handling file I/O particularly straightforward,

as shown in Figure 7a: invocations of the file-write function (line

8) simply serialize in the program order since they all write to the

same object.

We saw similar benefits for the other benchmarks. Finally,

determinate execution resulted in repeatable programs and

precluded the need to reason about the correctness of their parallel

execution, considerably easing program debug and development.

Performance
Figure 8 shows the speedups achieved by our model and the

Pthreads implementations available from the respective suites

over the original sequential programs on the three machines.

Speedups shown are for the large-sized inputs. They are based on

the time taken to run the programs from launch to completion and

include all runtime overheads and file I/O wherever performed.

Ignoring the speedup bars marked „-LG‟ for the moment,

compared to Pthreads, we achieve better speedups on dedup and

reverse_index, while we do the same on histogram. We do worse

on barneshut, blackscholes and bzip2. The harmonic mean

(H_MEAN) shows we achieve 13%, 21.7% and 18.2% lower

speedups than those achieved by Pthreads on Core i7, AMD 8350

and AMD 8356, respectively.

The Pthreads barneshut and blackscholes divide the data into

equal-sized chunks and distribute them among threads to create

coarse-grained tasks. However, for the above comparison, we

used a grain size of only one object to retain the simple sequential

programming style – the same as uniprocessor code, but at the

cost of performance. In a second set of implementation we

increased the granularity of the functions in barneshut and

blackscholes to create 5 and 128 times as many chunks as the

number of contexts in the system, respectively. We observed this

yielded better performance than creating as many chunks as

contexts since it permitted the runtime to better balance the load.

For bzip2 we increased the file block size from 900K to 1.2MB.

The bars marked „-LG‟ show improvements we achieved as a

result. Barneshut being a data parallel application benefits the

least from our model due to the absence of latent parallelism; our

model incurs the overhead with limited benefit to the

performance. Replacing the previous speedups for barneshut,

blackscholes and bzip2 with the new figures, we now achieve a

harmonic mean H_MEAN-LG (Figure 9) that is almost the same

as that of Pthreads on the Core i7 machine, and better by 14.7%

and 18.3% on AMD 8350 and AMD 8356, respectively.

Table 1. Benchmark applications used for evaluation.

Benchmark Inputs (Small/Medium/Large)

barneshut
(1,000, 25)/(10,000, 50)/(100,000, 75)

(bodies, steps)

blackscholes 16, 384/ 65,536/ 10,000,000 options

bzip2 31MB/ 185MB/ 673MB file size

dedup 31MB/ 185MB/ 673MB file size

histogram 100MB/ 400MB/ 1.4GB bitmap size

reverse_index 100MB/ 500MB/ 1GB directory size

Table 2. Machine configurations used for experiments.

(Core i7 = Nehalem; Opteron = Barcelona)

Machine

Specs

Intel

Core i7

-965

AMD

Opteron

8350

AMD

Opteron

8356

 Sockets 1 4 8

CPUs per socket 4 4 4

Threads per CPU 2 1 1

Total contexts 8 16 32

Clock 3.2 GHz 2.0 GHz 2.3 GHz

L1 I$, D$ per CPU 32 KB 64 KB 64 KB

L2 $ per CPU 256 KB 512 KB 512 KB

L3$ per socket 8 MB 2 MB 2 MB

Total Memory 12 GB 16 GB 80 GB

Linux Kernel 2.6.18 2.6.25 2.6.25

Figure 7. (a) bzip2 kernel implemented using the proposed

model (b) sequential bzip2 kernel.

1 ..
2

3 while (blockBegin < fileSize – 1) {

4 blockBegin += updateBlock (blockBegin)

5 block = new block_t (hInfile, Length);

6

7 compress (block)

8 wr_file (hOpfile, block)

9 }

10 ..

(b)

1 ..

2 op_set->insert (hOpfile); // File wr set

3 while (blockBegin < fileSize – 1) {

4 blockBegin += updateBlock (blockBegin)

5 block = new block_t (hInfile, Length);

6 block_set->insert (block);

7 df_execute (block_set, &compress)

8 df_execute (op_set,block_set,&wr_file)

9 }

10 ..

(a)

The multi-socket Opteron machines have slower intra-socket

buses than the single-socket Core i7 (1.8GHz vs. 3.2GHz), and

even slower inter-socket buses (1GHz). They benefit more from

chunking of data than the Core i7 due to the reduced

communication-to-computation ratio and the reduced runtime

communication overheads. Hence the relative performance gains

of our model are higher on the Opterons than on the Core i7 for

LG implementations.

Figure 9 shows the scalability of the execution model as input size

changes, for the 16-core Opteron system. All applications but

bzip2 and dedup scale with larger inputs. Bzip2 and dedup

perform file compression and their performance is dependent on

the input characteristic. In this case the medium sized inputs

(same for both cases) achieved better compression ratio than the

larger sized input, and hence the dip in scalability going from

medium to larger size. All the scaling trends are similar to the

Pthreads version (not shown).

Runtime Characterization
Being a software model, the prototype has multiple sources of

storage and computational overheads as the runtime‟s interface

and mechanics add indirect calls, manage tokens and wait lists,

and shelve/schedule computations. We instrumented the runtime

to measure the overheads and frequency of events in the prelude

and postlude phases, and the execution time of functions, using

microbenchmarks (described below) and the benchmarks in Table

1. Execution time for the microbenchmarks was measured in

instructions while for the other benchmarks it was measured using

the system-wide realtime clock via the Linux

clock_gettime() function. For fine-precision analysis the

overheads were measured in clock cycles. They were obtained by

using the rdtsc instruction to read the x86 Time Stamp Counter.

To ensure accuracy we first pinned the thread to the processor and

flushed the pipeline before and after rdtsc.

First, we used a microbenchmark to invoke dataflow functions

with appropriate data sets and created various conditions leading

to the different overheads. The overheads are machine dependent.

Rounded off average measurements made on the three machines

are listed in Table 3. We discuss the results below using the 16-

core AMD 8350 data and refer to the rows in Table 3. Overheads

are the same for both read and write tokens.

To study the bare bones token acquisition (Figure 4b, steps

leading from 1 to 3) and release (Figure 4c: 1) overheads we

created data sets such that the functions in the microbenchmark

were independent. We varied the number of objects in the data set

from 1 to 10 and measured the overheads for 10,000 such

functions. On an average it took 225 cycles to acquire (Table 3,

Table 3. Results from microbenchmark evaluation: (i)

Runtime overheads, in clock cycles per unit. (ii) Function

granularity in instructions for profitable parallelization.

Overhead

(cycles per unit)

Intel

Core

i7-965

AMD

Opteron

8350

AMD

Opteron

8356

1 Token Acquire

(Figure 4b: 1 - 3)

225 225 200

2 Token Release (Figure 4c: 1) 200 225 200

3 Token Enqueue

(Figure 4b: 1 - 4)

975 1100 2200

4 Token Pass

(Figure 4c:

1, 2)

1 object 1000 1100 2000

5 >1 object 150 250 250

6 Prelude

(Figure 3:1)

Base 1100 1650 4000

7 Token Acquire 500 550 1000

8 Token Enq. 1150 1250 2950

9 Postlude

(Figure 3:3)

Base 500 500 750

10 Token Release 550 500 1000

11 Token Pass (1) 1350 1400 2700

12 Token Pass (>1) 150 250 250

13 Granularity

(instr.)

Base 4000 12000 18000

14 Object 2000 2000 4000

0

2

4

6

8

10

12

14

S
p

ee
d

u
p

Benchmarks

Small Medium Large

Figure 9. Performance scaling with respect to input size, for

the 16-core Opteron

0

2

4

6

8

10

12

14

16
S

p
ee

d
u

p

Benchmarks

8x Nehalem (PT)
8x Nehalem (DF)
16x Barcelona (PT)
16x Barcelona (DF)
32x Barcelona (PT)
32x Barcelona (DF)

Figure 8. Speedups achieved by the proposed execution model (DF) and Pthreads (PT) on the three machines. LG = large grain;

H_MEAN = harmonic mean.

row 1) or release (row 2) a token. To study the token enqueue

overhead we created a pair of functions with the same write sets.

Thus the second function was dependent on the first and every

token request it made was enqueued in a wait list. We invoked

10,000 such pairs, varied the write set size from 1 to 10 and

measured the overheads for the second function. The enqueue

process attempts to acquire the token before logging the request in

the wait list (Figure 4b, steps leading from 1 to 4). It allocates a

data structure to hold the requester information and invokes race-

free functions to log the request in the wait list, a concurrent

queue [2]. Hence enqueue incurs a higher overhead of 1100

cycles (row 3).

To study the token passing overheads we created a set of

functions that consumed (read) data produced (written) by a

preceding function. Thus upon completion, the producing

function passes tokens to the consumers. By varying the number

of consuming functions we simulated token passing to up to 10

functions, and measured the overheads in the producing function

for 10,000 such sets. Token passing first releases the token,

traverses the wait list to pass it to waiting requesters, possibly

enqueues ready requesters in the work deque (Figure 4c: 3), and

deallocates data structures. Passing a token too involves

operations on a concurrent queue and possibly the work deque. It

incurs an overhead of 1100 cycles (row 4) for the first requester.

In the current implementation, once the wait list traversal begins,

concurrent queue processing simplifies, and hence only 250

cycles (row 5) are needed to pass tokens to every subsequent

requester.

To characterize the total overheads of prelude (Figure 3: 1) and

postlude (Figure 3: 3) phases, we used the same three set ups as

before but measured the overall costs. The total overheads can be

viewed as comprising of: (i) a base cost that is always incurred,

and (ii) an additional cost proportional to the data set size. The

prelude phase performs allocation and population of data

structures, checks for duplicates in the data set and processes

tokens. The total base overhead to delegate a function is 1650

cycles (row 6) and thereafter 550 cycles/object for an acquired

token (row 7), or 1250 cycles/object for an enqueued request (row

8). Postlude releases tokens, deallocates structures and returns to

the runtime scheduler. It requires 500 cycles in the least (row 9),

and 500 cycles/object to return a token (row 10) thereafter. If a

token is returned and passed, it consumes 1400 cycles (row 11)

for the first requester, and 250 cycles for every subsequent

requester (row 12).

Next we assessed the minimum task granularity needed to achieve

speedups with the model. We invoked 10,000 functions from the

microbenchmark and increased the total number of dynamic

instructions in them until the parallel execution achieved lower

execution time than the sequential version. We also varied the

data set sizes from 0 to 10. With empty data sets, functions at

least 12000 dynamic instructions long (measured counting actual

executed instructions) are profitable to parallelize (row 13). Their

size needs to grow by about 2000 instructions for every object

added in the data set (row 14), to be profitable. The granularity

results are similar to other task-based models [16].

Finally we analyzed the benchmark-specific characteristics of the

runtime, using large-sized inputs. Resource management to limit

program unfolding was not applied in these experiments. We

present the data for the 16-core AMD 8350 system here in Table 4

(the other two machines showed similar trends). Column 1 shows

the total number of functions delegated in each benchmark.

Columns 2 and 3 give their average size in ms and clock cycles

(Figure 3: 2), respectively. Of the total functions delegated,

columns 4, 5 and 6 show the fraction that were shelved, the

fraction that were delegated for execution while a function earlier

in the program order was on a shelf (out-of-order), and the

fraction that were delegated when no prior functions were on the

shelf (in-order). Due to the very fine-grained tasks, blackscholes

shelves relatively fewer functions, 5.86%, as compared to over

60%, mostly file writes, by blackscholes-LG, bzip2, bzip2-LG and

dedup which use coarser-grain tasks, allowing following functions

to proceed. Only one (the very first) function in blackscholes,

blackscholes-LG, bzip2, bzip2-LG and dedup was executed in-

order and remaining executed out-of-order. No functions needed

to be shelved in the other applications, and hence all executed in-

order. In case of reverse_index, file read overlaps with

computations. A pipeline of block reads followed by

computations is created. Each block is read in the main program

context, the computation on it is delegated after the read

completes, hence there are no shelved functions. Although large

numbers of functions were shelved in the benchmarks, the

maximum at any given time was only 80 (column 7), in bzip2.

Column 8 gives the average number of functions that were on the

shelf, when sampled at the end of every prelude phase (Figure 3:

1). The most were 26.9, also in the case of bzip2.

Column 9 shows the total number of tokens requested by each

benchmark and column 10 gives the average size of write and read

sets for each function in the benchmark. Columns 11 and 12 give

the fraction of total tokens requested that were granted

immediately upon request (TGOR) and passed to shelved

functions in the waiting list (TPWL). Since only blackscholes,

bzip and dedup shelve any methods, only they require any token

passing, proportional to the number of shelved functions. Fine-

grain blackscholes acquires over 90% of the tokens immediately,

due to the small task sizes, while the coarser-grain blackscholes,

bzip2 and dedup acquire only about 25% immediately. Functions

in the other three benchmarks acquire tokens immediately.

Small data set sizes of the functions (column 10) resulted in quick

token acquisition and release. Columns 13 and 14 show the

average CPU cycles needed to acquire (Figure 3: 1.1) and release

(Figure 3: 3.1) all tokens for a function. Compared to the average

function size, 23us-307ms (column 2), the average token

processing time is extremely small (125ns to 6.7us). Note that the

token-release to token-acquire ratio is larger for benchmarks in

which functions were shelved, since in these cases token return

includes the overhead of passing the token, checking for and

processing ready functions.

Tokens and wait lists can also impose storage burden on the

system. Storage overhead of tokens is proportional to the number

of shared objects. The maximum wait list size among all

benchmarks was 80 (column 15), in case of bzip2 which delegated

a total of 1566 functions. Note that although a total of 11.7M

functions were shelved in blackscholes, only a maximum of 33

were shelved at any given instance. For barneshut, barneshut-LG,

histogram and reverse_index the wait list sizes are zero since no

methods are shelved. In all cases that shelve functions, except

dedup, the maximum wait list size is the same as the maximum

functions found on the shelf (column 7). In dedup, different

functions shelve due to dependences on different objects, and

hence no one list holds all shelved functions. In others, all shelved

functions are dependent on at least one common object (the file

pointer) causing its wait list to always hold all shelved functions

at any given time, and hence the parity in those cases. The average

wait list size, sampled at the end of the prelude (Figure 3: 1) of

every function, was less than 0.5 functions (column 16) for any

application, indicating that wait lists are generally empty.

To track a shelved function the runtime maintains a data structure

similar in size to an activation record of the function without the

locals. With only a maximum of 80 functions shelved at any given

time the storage overheads of wait lists and shelved functions are

very reasonable.

When the access pattern of a group of objects is the same

throughout the program, a single proxy object may be used to

represent the group. Thus the runtime need manage only the proxy

instead of each object in the group, thereby considerably reducing

the total token and wait-list related overheads. For example, in

blackscholes-LG and barneshut-LG data was chunked. We used a

proxy object per chunk and identified it as the shared object.

5. RELATED WORK
The computing community has made much effort to extract

function-level parallelism from programs. We divide the work

into two broad categories based on the programming model

employed, statically-parallel or statically-sequential.

A wide range of statically-parallel programming models have

been proposed to exploit task/thread-level (TLP) parallelism.

MPI, Pthreads, OpenMP, Cilk-5 [11], and TBB [16] are some of

the more common interfaces. They use imperative languages to

create parallel programs. The models can be deployed on a variety

of CMPs or multithreaded processor platforms. Transactional

Memory [15] has also been proposed to help ease programming

by not requiring explicit synchronization. It ensures atomic

execution of designated regions of code, which are executed

speculatively. TM resorts to rollback if speculation fails. Unlike

our model, in all of these solutions except TM, the onus is on the

programmers or software tools to statically encode independence,

synchronize accesses to shared data between parallel tasks, and

reason about their correctness. If ordered execution is needed,

such as for file I/O, user intervention becomes essential. Non-

determinism is perhaps the biggest challenge in such models.

In another approach [7] a programming framework assisted by

tools is proposed to extract parallelism from sequential code.

However, it assumes a three-phase dependence pattern in loops

and performs non-deterministic speculative execution of programs

in contrast to our dataflow approach.

Proposals such as Multiscalar [23], Stanford Hydra CMP [14] and

Program Demultiplexing [4] exploit speculative TLP from

sequential programs on multicore architectures. These designs

divide a program into tasks. Regardless of dependences, they

speculatively execute tasks on different hardware contexts.

Additional support is needed to track and recover from

misspeculation. While our proposal also divides a sequential

program into functions, it determines the data dependences

between the functions and schedules them in a dataflow fashion,

precluding the need for speculation and the concomitant support.

SMPSs [21] is a recent sequential program-based framework that

achieves function-level dataflow execution. It requires the user to

identify function parameters on which dependences may occur,

using pragma directives. Although similar in philosophy, SMPSs

builds a dynamic task-flow graph, during execution, based on

memory locations accessed by them while we maintain an object-

based dataflow graph. SMPSs renames data, potentially incurring

high memory usage, whereas we employ the token protocol to

handle WAW dependences. SMPSs uses a master thread to farm

out work to other threads whereas we employ a decentralized

scheduler. Since no characterization data is provided we are

unable to compare performance artifacts. Task Superscalar [10], a

more recent proposal is the hardware version of SMPSs. It

emulates a superscalar processor by treating cores as execution

units and adding additional eDRAM-based centralized structures

analogous to register file, renaming table, reservation stations,

queues, etc. We on the other hand map dataflow principles on

existing multicores, and use distributed resources and mechanisms

to account for the challenges posed by the scale. The almost direct

correspondence to superscalar in Task Superscalar may be less apt

Table 4. Model characteristics on the 16-core Opteron: (1) Total functions delegated; (2, 3) Average function execution time in

ms and clock cycles; (4-6) Fraction of functions shelved, executed out-of-order, and in-order; (7, 8) Maximum and average

number of functions shelved at a time; (9) Total number of tokens requested; (10) Average write, read set sizes per function;

(11-12) Number of tokens granted at the time of delegation (TGOR) and by passing to the wait list (TPWL); (13, 14) Cycles

required to process token acquire and release; (15-16) Maximum and average occupancy of wait lists.

Benchmark

Function Processing Token Processing

Total

Avg

Size

(ms)

Avg

Size

(cycle)

On

Shelf

(%)

DF

OO

(%)

In

Order

(%)

Max

on

Shelf

Avg

on

Shelf

Total

W,R

per

Fn

TGOR

(%)

TPWL

(%)

Req.

(cycle)

Rel.

(cycle)

Max

WL

Size

Avg

WL

Size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

barneshut 7.5M 0.16 0.32M 0 0 100 0 0 7.5M 1, 0 100 0 1284 693 0 0

barneshut-LG 6000 119 238M 0 0 100 0 0 6000 1, 0 100 0 1430 2835 0 0

blackscholes 200M 0.02 0.05M 5.86 94.14 0 33 2 300M 1, 0.5 92.8 7.2 250 4696 33 0

blackscholes-LG 4096 231 462M 61.9 38.1 0 20 5.6 6144 1, 0.5 25.4 74.6 739 7835 20 0

bzip2 1566 251.3 503M 62.1 37.9 0 80 26.9 2349 1, 0.5 25.5 74.5 4099 13312 80 0.05

bzip2-LG 1174 307 2348M 62.4 37.6 0 62 24.6 1761 1, 0.5 25.3 74.7 4616 13194 62 0.07

dedup 1008 62 2016M 68.6 31.4 0 34 17.5 1344 1, 0.3 23.7 76.3 3558 14915 29 0.1

histogram 16 283 32M 0 0 100 0 0 16 1, 0 100 0 2255 4198 0 0

reverse_index 78356 0.53 1.06M 0 0 100 0 0 78356 1, 0 100 0 282 520 0 0

in multicores due to differences in granularities of computation

and data sharing, need for data privatization, etc., necessitating a

rethinking of the optimum hardware-software division. It is likely

to be the subject of future research.

Deterministic Parallel Java (DPJ) [5], Jade [22] and Yada [12]

provide language-specific extensions to help users write

deterministic parallel programs by specifying access

characteristics of shared data. DPJ performs compile-time type

checks while Jade and Yada perform run time checks to ensure

access types are not violated. We provide a runtime library for a

standard language that ensures dataflow execution. Serialization

Sets (SS) [1] is a sequential program-based, determinate model

that dynamically maps dependent (independent) computations

into a common (different) “serializer”. Computations within a

serializer are serialized while from different serializers are

parallelized. Our model is similar to SS in philosophy and the

programming interface. In fact, we build upon SS to achieve an

even more dataflow-like execution and exploit higher degrees of

concurrency.

6. CONCLUSION
In this work we have presented a novel execution model that

achieves function-level parallel execution of statically-sequential

imperative programs on multicore processors. Parallel tasks

(program functions) are dynamically extracted from a sequential

program and executed in a dataflow fashion on multiple

processing cores using tokens associated with shared data objects,

and employing a token protocol to manage the dependences

between tasks. We thus combine the benefits of sequential

programming and dataflow execution.

Rather than evaluate the model using simulation, we built a fully

functional software prototype in the form of a runtime library.

The paper described its architecture and implementation. We

showed that benchmarks were easy to develop, and achieved

performance similar to the traditional approach, despite the

overheads of an all-software implementation.

Going forward, we expect the field to move away from traditional

techniques, which require statically-parallel programs, towards

techniques like the one proposed in this paper, to achieve the

parallel execution of programs on multicore processors. We

believe that this will have a significant impact on how multicore

processors are architected and used in the future.

7. ACKNOWLEDGMENTS
This material is based upon work supported, in part, by the

National Science Foundation under Grant CCF-0963737. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

Authors thank Matthew Allen and Srinath Sridharan for

discussions related to this work.

8. REFERENCES
[1] Allen, M.D., Sridharan, S., and Sohi, G.S. Serialization sets:

a dynamic dependence-based parallel execution model.

PPOPP, (2009), 85–96.

[2] Allen, M.D. Data-driven Decomposition of Sequential

Programs for Determinate Parallel Execution. Doctoral

Thesis. Computer Sciences Department, University of

Wisconsin-Madison, (2010).

[3] Arvind, K. and Nikhil, R.S. Executing a Program on the MIT

Tagged-Token Dataflow Architecture. IEEE Transactions on

Computers 39, (1990), 300–318.

[4] Balakrishnan, S. and Sohi, G.S. Program demultiplexing:

Data-flow based speculative parallelization of methods in

sequential programs. ISCA, (2006), 302-313.

[5] Bocchino, R.L., Adve, V.S., Dig, D., et al. A type and effect

system for deterministic parallel Java. OOPSLA ’09, (2009),

97-116.

[6] Booch, G., Maksimchuk, R., Engle, M., Young, B.,

Conallen, J., and Houston, K. Object-oriented analysis and

design with applications, third edition. Addison-Wesley

Profession, (2007).

[7] Bridges, M.J., Vachharajani, N., Zhang, Y., Jablin, T., and

August, D. Revisiting the Sequential Programming Model

for Multi-Core. MICRO, (2007), 69-84.

[8] Culler, D.E. and Arvind. Resource requirements of dataflow

programs. ISCA, (1988), 141–150.

[9] Denning, P.J. and Dennis, J.B. The resurgence of parallelism.

Communications of the ACM 53, 6 (2010), 30-32.

[10] Etsion, Y., Cabarcas, F., Rico, A., et al. Task Superscalar:

An Out-of-Order Task Pipeline. MICRO, (2010), 89–100.

[11] Frigo, M., Leiserson, C.E., and Randall, K.H. The

implementation of the Cilk-5 multithreaded language. PLDI,

(1998), 212–223.

[12] Gay, D., Galenson, J., Nail, M., and Yelick, K. Yada:

Straightforward parallel programming. Parallel Computing

37, 9 (2011), 499-652.

[13] Gilchrist, J. Parallel Data compression with Bzip2.

http://compression.ca/pbzip2/.

[14] Hammond, L., Hubbert, B.A., Siu, M., Prabhu, M.K., Chen,

M., and Olukotun, K. The Stanford Hydra CMP. MICRO,

(2000), 71–84.

[15] Harris, T., Larus, J., and Rajwar, R. Transactional Memory,

2nd edition. Synthesis Lectures on Computer Architecture,

M. Hill, Ed., Morgan Claypool Publishers, (2010).

[16] Intel Thread Building Blocks: Reference Manual. Intel,

(2011).

[17] Karp, R.M. and Miller, R.E. Properties of a Model for

Parallel Computations: Determinancy, Termination,

Queueing. SIAM Journal on Applied Mathematics 14, 6

(1966), 1390-1411.

[18] Lee, E.A. The Problem with Threads. Computer 39, (2006),

33-42.

[19] Mattson, T.G., Sanders, B.G., and Massingill, B.L. Patterns

for Parallel Programming, Addison-Wesley, (2005).

[20] Moshovos, A. and Sohi, G.S. Microarchitectural innovations:

boosting microprocessor performance beyond semiconductor

technology scaling. Proceedings of the IEEE 89, 11 (2001),

1560-1575.

[21] Perez, J.M., Badia, R.M., and Labarta, J. A dependency-

aware task-based programming environment for multi-core

architectures. 2008 IEEE Intl. Conf. on Cluster Computing,

(2008), 142-151.

[22] Rinard, M.C., Scales, D.J., and Lam, M.S. Jade: a high-level,

machine-independent language for parallel programming.

Computer 26, 6 (1993), 28-38.

[23] Sohi, G.S., Breach, S.E., and Vijaykumar, T.N. Multiscalar

processors. ISCA, (1995), 414–425.

[24] Sutter, H. and Larus, J. Software and the Concurrency

Revolution. ACM Queue 3, 6, (2005), 54–62.

