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Abstract

Future processors are expected to observe increasing rates of

hardware faults. Using Dual-Modular Redundancy (DMR),

two cores of a multicore can be loosely coupled to redun-

dantly execute a single software thread, providing very high

coverage from many difference sources of faults. This relia-

bility, however, comes at a high price in terms of per-thread

IPC and overall system throughput.

We make the observation that a user may want to run both

applications requiring high reliability, such as financial soft-

ware, and more fault tolerant applications requiring high per-

formance, such as media or web software, on the same ma-

chine at the same time. Yet a traditional DMR system must

fully operate in redundant mode whenever any application

requires high reliability.

This paper proposes a Mixed-Mode Multicore (MMM),

which enables most applications, including the system soft-

ware, to run with high reliability in DMR mode, while ap-

plications that need high performance can avoid the penalty

of DMR. Though conceptually simple, two key challenges

arise: 1) care must be taken to protect reliable applications

from any faults occurring to applications running in high

performance mode, and 2) the desire to execute additional

independent software threads for a performance application

complicates the scheduling of computation to cores. After

solving these issues, an MMM is shown to improve overall

system performance, compared to a traditional DMR sys-

tem, by approximately 2X when one reliable and one perfor-

mance application are concurrently executing.

Categories and Subject Descriptors B.8.2 [Performance

and Reliability]: Performance Analysis and Design Aids

General Terms Reliability, Design, Performance

Keywords Multicore, Dual-Modular Redundancy
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1. Introduction

As technology scales, the components of future multicore

processors become less reliable because smaller transistors

and wires are more susceptible to hardware faults. These

faults are caused by a variety of factors including high-

energy particle strikes, manufacturing process variation, de-

vice wear-out, and are affected by temperature and voltage

fluctuations [5, 6, 8, 10, 22, 24]. Hardware faults can cause

transient, intermittent, or permanent computational errors,

which then manifest within software in a multitude of ways

[15, 35].

Many circuit and microarchitectural techniques can toler-

ate hardware faults to a degree, while preserving the view of

continuous, reliable hardware operation that system and ap-

plication software have come to expect. Unfortunately these

techniques tend to either have low overhead, but only mod-

est fault coverage (e.g., [7, 25, 30]), or excellent fault cov-

erage, but high overhead (e.g., [12, 14, 19, 29]). One tech-

nique in particular, Dual-Modular Redundancy (DMR), falls

into the latter category: It can provide very high coverage

from many different sources of faults, at nearly a 4X reduc-

tion in throughput in some cases. Nonetheless, certain ap-

plications and users already desire high reliability and the

peace of mind that comes with the use of DMR — and are

willing to pay extra in terms of performance and machine

cost [1, 4, 18, 26].

Due to the degree with which chip manufacturers guard

any information concerning hardware failures, it is diffi-

cult to ascertain the fault rates of current, let alone future,

chips. But if reliability trends continue for the next decade

or longer, multicore processors without DMR will become

less and less reliable, and therefore useful for a smaller frac-

tion of applications. Eventually, manufacturing experts may

choose to push technology to a point where nearly all soft-

ware needs to run with DMR. In the meantime, however, we

expect many applications (or portions of many applications)

to remain sufficiently reliable while using only low-overhead

techniques, leading a user to run multiple applications with

differing reliability requirements at the same time.

For example, a desktop user may wish to run both a me-

dia application and a personal finance application at the same

time. Media applications tend to be insensitive to moderate



Figure 1. Mixed-Mode with a Single-OS

levels of hardware faults [23], but a user may be willing to

sacrifice a certain degree of performance to ensure the in-

tegrity of their financial data. Another example is a consoli-

dated server hosting multiple guest virtual machines (VMs)

for multiple customers with different service-level agree-

ments. Some customers may require very high reliability (at

a premium price). Other customers may demand more per-

formance at an economy price, but are willing to tolerate

occasional data corruption and down-time due to crashes.

Such scenarios result in a system where one set of ap-

plications, the reliable applications, need the protection of

DMR, while another set, the performance applications, need

the high performance available through independent utiliza-

tion of all of the computing resources. To enable such a sys-

tem, this paper proposes the design of a Mixed-Mode Multi-

core (MMM) that can execute both types of applications si-

multaneously on the same machine. The basics of an MMM

seem simple: Use DMR for reliable applications, and turn

off DMR for performance applications.

Although several architectural DMR proposals suggest

that DMR can easily be turned on and off (e.g., [19, 32]),

a key observation of this paper is that dynamically switch-

ing between DMR and non-DMR within a single system is

not as straightforward as it might appear. In particular, we

observe that 1) care must be taken to preserve the integrity

of reliable applications’ memory and register state, and 2)

the desire to execute additional independent software threads

for a performance application complicates the scheduling of

software threads to cores. As part of the solution to the first

problem, we propose to maintain a small amount of redun-

dancy for non-DMR applications by re-validating permis-

sion for any stores that miss in the L1 cache. To address

the second problem, we propose to leverage hardware vir-

tualization techniques to flexibly and quickly assign threads

to cores. The resulting MMM system is able to protect the

integrity of reliable applications needing DMR, significantly

improve overall performance of applications that do not, and

preserve a simple interface to the system software (i.e., op-

erating system or virtual machine monitor).

2. Mixed-Mode Overview

The primary objective of an MMM is simple: provide re-

liability for software that requires it, and improve the per-

Figure 2. Mixed-Mode Consolidated Server

formance of software that does not. Figure 1 depicts this

basic objective for an MMM running two applications on

a single-OS system. One application always requires high

performance, and the other requires reliability. Both the reli-

able application and the operating system must be executed

in reliable mode for reasons described in Section 3.4.2. An

MMM can also offer differentiated service to different VMs

within a consolidated server under the control of a Virtual

Machine Monitor (VMM). An example of such a system is

depicted in Figure 2. In this case, one guest Virtual Machine

(VM) (including the OS and applications) requires reliabil-

ity, while the other guest VM requires performance. Again,

the highest privileged software (in this case the VMM) must

always run in reliable mode, while less privileged software

has the option of running with higher performance.

Additional objectives of an MMM system are 1) to iso-

late reliable applications from any hardware faults affecting

software executing in performance mode, and 2) to perform

mixed-mode operation with only minor changes to the sys-

tem and application software.

We propose two different ways of handling high-

performance mode in an MMM system, MMM-IPC and

MMM-TP. The simpler method, MMM-IPC idles the re-

dundant cores, eliminating verification and synchronization

delays, and improving the Instructions per Cycle (IPC) of

each thread by 34-48%.1 When in high-performance mode,

MMM-TP uses all available cores to independently run ad-

ditional software threads of high-performance applications,

improving throughput by 2.5–4 times. In either system, dif-

ferent cores can be in different modes at different times.

2.1 Mixed-Mode Challenges

Although the objectives are straightforward, the implications

of running different applications in different modes on the

same machine are less so. Two key challenges in particu-

lar make building an MMM more complicated than simply

turning off DMR when high performance is required. First,

the memory and register state of reliable applications must

1 By placing idle redundant cores in a low-power sleep state, MMM-IPC

would also likely either reduce the chip’s power consumption, or allow

the remaining cores to use the excess power budget by increasing their

frequency, for example. We do not evaluate these power options in this

paper, however.



be isolated from any hardware faults that may occur when

running performance applications. Second, system software

itself must operate in reliable mode, even when performing

operations on behalf of a performance application — a feat

which is greatly complicated by the desire to run additional

software threads of a performance application. A brief dis-

cussion of these two challenges and an overview of the pro-

posed solutions are provided below.

Memory and Register Protection In an MMM, the first

key challenge is to prevent high-performance applications

from corrupting the state of reliable applications. In a fault-

free system this protection is achieved through a combi-

nation of now-standard software mechanisms and policies

(e.g., page-based memory protection) and hardware sup-

port (e.g., TLB permission checks). Further protection can

be achieved using additional software mechanisms such as

Overshadow [9]. However, these existing mechanisms make

the assumption that hardware itself is reliable.

If hardware faults do occur, these protection mechanisms

remain sufficient if the processor is always operating in

DMR mode, since the redundant execution ensures that a

hardware fault on one core is detected and corrected before

the application’s state is updated.

The problem arises when we allow the processor to avoid

DMR mode for certain software. In this case, simple faults

in certain hardware structures will go undetected, allowing

malicious, buggy, or even correct software to write to phys-

ical addresses that are not owned by the application. For ex-

ample, a bit flip in the privileged mode bit, checking logic,

or TLB array can result in the successful translation of an

invalid virtual address. If the resulting physical address con-

tains state used by other software components, such as os-

tensibly reliable applications or the system software, these

other components will become corrupted.

The primary line of defense we adopt for an MMM is

the use of a small hardware structure called the Protection

Assistance Buffer (PAB). When a core is operating in high-

performance mode, the PAB redundantly verifies the permis-

sion of stores emanating from the core. If a physical address

is presented to the memory system that is not owned by the

high-performance application, an exception can be gener-

ated to notify the system software before corruption occurs.

System Software Protection The second key challenge to

mixed-mode operation is that all privileged software must

execute in reliable mode, even when called from a high-

performance application. The reason is that when perform-

ing a system call, or other service such as paging, the system

software updates its own internal state, which is used when

performing services for both reliable and high-performance

applications. Executing privileged software in reliable mode

prevents the system from crashing due to faults, as well as

protects the integrity of system services performed on behalf

of reliable applications.

This observation has an important implication for the

scheduling of software threads on the physical cores: Every

time a thread of a high-performance application encounters

a system call, page fault, or interrupt, a mode transition is

triggered. Reliable mode must be entered when these events

occur by appropriating another core to use as a redundant

pair. As a result, transitions from performance mode to reli-

able mode must be performed with low overhead, since some

applications enter the operating system every 200k cycles

(Section 5.3). This rapid transition becomes even more chal-

lenging when the redundant cores needed for reliable mode

are currently being used to independently execute additional

software threads of a high-performance application.

To enable a high performance application to utilize all

on-chip cores, while still switching to reliable mode when-

ever the code running on a core enters the system software,

we propose to leverage our multicore virtualization tech-

niques [34]. These techniques allow the chip to decouple the

physical cores from the virtual processors onto which the

system software schedules threads, providing flexibility in

the mapping of computation onto one or more cores.

3. Mixed-Mode Implementation

The previous section outlined the objectives and challenges

of mixed-mode operation. This section presents the im-

plementation details of a mixed-mode multicore (MMM).

First, we mention basic assumptions about the target mul-

ticore and provide an overview of the Reunion DMR pro-

posal we leverage for this work [27, 29]. We then focus on

the other aspects mixed-mode implementation: the proposed

hardware/software interface, the mechanisms for protecting

memory and system state, and the use of virtualization.

3.1 Target Multicore Assumptions

For this work, we assume a 16-core processor, with out-of-

order cores and a 3-level cache hierarchy. Cores are each

provided with private, write-through L1 caches and a private

L2 cache. Similar to the IBM Power5 [13] and AMD quad-

core Opteron [11] processors, we use a shared L3 cache (on-

chip, unlike Power5) that maintains exclusion with the pri-

vate L2s. Further details of the target multicore are provided

in the methodology (Section 4).

We assume that reliable mode is implemented via Dual-

Modular Redundancy (DMR), while performance mode uses

only a single core to run each thread of an application. In

either mode, however, designers may still choose to im-

plement numerous circuit or microarchitectural techniques

within each core.

As with other architecture-level reliability proposals (e.g.,

[7,12,14,19,25,27,29,33,38]),we assume that most memory

hierarchy components maintain reliability by implementing

other techniques such as Error Correcting Codes (ECC). The

exception is the private L1 caches, which are not assumed to

be reliable in this work. We believe this assumption is rea-



sonable because 1) techniques such as ECC are much more

effective for these regular, repeated structures than they are

for combinational logic within the cores, 2) the additional

delay introduced by techniques like ECC is more easily tol-

erated in the caches (especially L2 and beyond), and 3) al-

though caches have traditionally been more susceptible to

certain hardware faults than logic circuits, Shivakumar, et

al., project per-chip fault rates in logic to increase much

faster, catching and surpassing the per-chip rates for caches

and other SRAM components by 2011 [24].

3.2 Reunion Overview

Reunion [27, 29] is a form of “loose lock-stepping,” which

defines a logical processing pair as two cores that redun-

dantly execute the same instruction stream, and are pre-

sented to the system software as one logical core. The vocal

core, i.e., the master, implements full coherence, and com-

municates with other cores and caches in the system as nor-

mal. The mute core, i.e., the slave, loads data from its own

private cache hierarchy, but does not expose new values out-

side of that hierarchy.

An additional in-order pipeline stage, Check, is added to

each core after execution and before retirement. When enter-

ing Check, an instruction computes a fingerprint, or hash of

its results, and sends this fingerprint to the other core. Each

instruction waits in the Check stage until it receives the other

core’s fingerprint for the same instruction. The instruction is

then committed to the architected state of each core. A single

fingerprint can capture all outputs, branch targets, and store

addresses and values for multiple instructions.

A mute core is not required to maintain coherence with

the rest of the system. Instead, all requests emanating from

the private cache hierarchy of a mute core do not change

the state of the line in the directory or any other caches.

The cache hierarchy makes a best-effort attempt to provide

the correct value. Should that attempt fail, a fingerprint mis-

match will occur, which will be detected and corrected sim-

ilar to a transient fault.

3.3 Hardware/Software Interface

This work proposes to implement the reliability mechanisms

in a thin virtual machine layer beneath the ISA. The chip

exposes two new pieces of information to software via the

ISA. First, it exposes that the chip has multiple operating

modes with different levels of reliability. Second, it exposes

the fact that software is responsible for determining the de-

sired mode, and can do so dynamically for each OS-visible

virtual processor (VCPU).

The basis of the mixed-mode software interface is a single

register per VCPU specifying whether reliability is needed

or not. This 2-bit register specifies one of three modes: 1) op-

erate with high reliability, 2) operate with high performance,

or 3) operate with high performance only when executing

non-privileged (user or guest VM) software. This paper ad-

dresses the issues when mixing the first and third modes.

When the privileged software is about to context switch

to an application (or guest VM) which requires high per-

formance, it writes this register to indicate the requirements

of the software running on that VCPU. This register is only

writable by privileged software.

We have intentionally not defined the OS/application in-

terface for using this register. Our evaluation assumes that

an individual application runs from start to finish with ei-

ther high reliability or high performance, possibly specified

by an administrator. However, some applications may de-

sire a finer granularity of control. To support this usage, new

system calls to change the reliability mode, and system and

compiler support to specify which pages of memory can be

accessed in performance mode, would likely be necessary.

We leave a more detailed investigation for future work.

3.4 Protecting System Integrity

When performing mixed-mode reliability, a key challenge is

to protect the integrity of the system while executing in per-

formance (non-DMR) mode. As described in Section 2.1,

hardware faults can potentially allow buggy, malicious, and

even correct software operating in performance mode to cor-

rupt the state of other applications or the system software.

This section describes the mechanisms to prevent such hard-

ware faults from corrupting the integrity of the system or

applications requiring reliability.

3.4.1 Protecting Memory

The TLB maintains sufficient information to prevent any

user application from illegally accessing memory state.

However, a hardware fault in the TLB array, checking logic,

privileged registers, or L1 cache can allow such an access.

To prevent arbitrary software from accessing memory for

which it does not have permission, we propose to duplicate

the TLB protection check outside of the core before allow-

ing a core running in high-performance mode to store data to

its L2 cache.2 This check requires system software to iden-

tify pages that are only allowed to be written by reliable

applications through the proposed Protection Assistance Ta-

ble (PAT). Hardware uses this information to perform a re-

dundant check through the proposed Protection Assistance

Buffer (PAB). The PAT and PAB are described below.

An alternate option may be to replicate these structures,

or harden them by making the transistors larger, slower,

and/or liberally applying other circuit-level reliability tech-

niques. The problems with replicating or hardening are 1)

all of these structures are on the critical load path, and ap-

plying these techniques could impact the latency of every

memory access, and 2) every hardware structure that car-

ries or stores an address from the TLBs until the L2 cache

must be fully hardened or replicated, impacting area, perfor-

2 For non-malicious code, it is sufficient to only prevent erroneous stores

from illegally writing memory. For security reasons, preventing erroneous

fetches and loads from reading illegal memory addresses may also be

required, but is left for future work.



Figure 3. The Structure of the Protection Assistance Buffer (PAB)

mance, and power. Despite these drawbacks, hardening may

be a viable option for a particular design, making existing

memory protection mechanisms sufficient.

Protection Assistance Table The Protection Assistance

Table (PAT) is similar to an inverse page table: for each phys-

ical page in the system, a “1” entry indicates that page can

only be accessed by applications executing in reliable mode,

and a “0” entry indicates that page can potentially be ac-

cessed by any software, including high-performance appli-

cations. At one bit per 8KByte page, the PAT thus requires

16MBytes for one TByte of physical memory. The PAT re-

sides in cacheable memory. System software is responsible

for maintaining the PAT. It must set aside physical memory

for the PAT, and update the entries when it updates its page

table (e.g, on a page fault). We leave a detailed study of the

interactions with large page sizes for future work.

Protection Assistance Buffer A hardware structure, called

the Protection Assistance Buffer (PAB), acts as a cache of

PAT entries. It is used to redundantly verify a store’s per-

mission after the TLB, but before accessing the rest of the

system. For a core executing in performance mode, the PAB

is accessed either before, or in parallel with, the L2 cache.

When in reliable mode, the PAB is not used. A match in the

PAB (and TLB) means an access has the proper permissions;

a permission failure in either the PAB or TLB triggers an ex-

ception, which the system software can interpret as it wishes.

Thus, the PAB and TLB provide redundancy for each other.

Figure 3 shows a diagram of PAB placement and structure

for one core in the system. This structure is organized much

like a cache, with a physically tagged and indexed array con-

taining 64 Bytes (one cache-line worth) of PAT entries. The

PAB operates on physical addresses, since the virtual ad-

dress is assumed to no longer be known for a store access-

ing the L2 cache. A 128-entry PAB requires 8.2KBytes, can

map 512MBytes of physical memory (for SPARC address-

ing), and represents a storage overhead of 1.6% compared to

the private L2 cache.

L1 write-throughs can either examine the PAB in parallel

with their access to the L2 cache, aborting the L2 access

should the PAB indicate an invalid store, or wait to access the

L2 cache until the store is validated by the PAB. This serial

lookup incurs additional latency for stores, but can simplify

the L2 controller logic. Experiments in Section 5 evaluate

both parallel and serial lookups.

The PAB is kept coherent during a TLB demap opera-

tion. On a demap, the TLB sends the physical page address

of the demapped page to the PAB, which invalidates the cor-

responding entry.

3.4.2 Protecting System Software

As described in Section 2.1, software at the highest privi-

lege level is always executed in reliable mode. Privileged

software may be the OS in a single-OS system, or the soft-

ware VMM or hypervisor in a consolidated server system

(see Figures 1 and 2). As a consequence, a core operating

in performance mode cannot execute any privileged instruc-

tions without causing a transition to reliable mode.

For a consolidated server, we treat each guest VM, in-

cluding OS and applications, as a single entity. We thus pro-

tect the VMM and other, reliable guest VMs from faults oc-

curring to a high-performance VM, by ensuring that all traps

to the VMM (running at the highest privileged level) execute

in reliable mode. We assume that we do not need to protect

the OSs running inside individual guest VMs (though our

proposal could be modified to do so), since a fault in a per-

formance guest VM will not affect the reliable VMs.

3.4.3 Protecting Registers During Mode Transitions

Unprivileged software is not allowed to write most privi-

leged registers. However, a fault can cause unprivileged soft-

ware to corrupt a privileged register, or erroneously allow

buggy or malicious software to write one of these registers.

State for reliable applications is always replicated, and faults

are detected before they are committed to architected state.

To protect against such faults that might occur during per-

formance mode, care must be taken during mode transitions

to replicate and verify privileged state. Each core contains a

small hardware state machine to handle the required steps of

these mode transitions.

In MMM-IPC, two types of mode transitions can occur:

1) a pair of cores leaves DMR mode, because of a high-

performance application returning from a system call, for

example, or 2) a pair of cores enters DMR mode when be-

ginning a system call or other privileged operation, for ex-

ample. When leaving DMR, the cores need only store their



privileged state to the cache hierarchy for later use, using a

reserved portion of the physical address space (i.e., “scratch-

pad space”). Entering DMR, however, is more involved. The

vocal core (previously running in performance mode) has all

of the necessary state, but the mute core does not, since exe-

cution has progressed on the vocal core alone. The vocal core

stores all of its state to the cache hierarchy. The mute loads,

from the scratchpad space, its own previously saved (redun-

dant) copy of the privileged registers, the vocal’s copy of the

user registers, and finally the privileged registers of the vocal

core, verifying them with its own copy. This final check pre-

vents faults from corrupting the vocal core’s privileged state

when operating in performance mode. Certain registers, such

as exception conditions, can change during unprivileged ex-

ecution, and should be sanity checked instead.

For MMM-TP, the steps can be slightly different because

the hardware scheduler (described in Section 3.5) might have

scheduled an independent software thread from a different

VCPU onto the mute core while the vocal core was operat-

ing in performance mode. In particular, when leaving DMR

mode, both cores must store all (not just privileged) state to

the scratchpad space, and the mute core must flush its caches

of any incoherent data resulting from Reunion’s mute inco-

herence policy.

An interesting issue arises, however, when performing

loads and stores of a VCPU’s state during a mode switch.

These requests, even from a mute core, must be processed

as normal, even though a mute typically does not perform

coherent memory requests. This means that the cache at

a mute core can simultaneously consist of both incoherent

lines brought into the cache via normal incoherent Reunion

operation, and lines (containing VCPU state) which are co-

herent with the system. A bit is added to the state field of

the each line indicating whether or not the line is coherent

with the system.3 As a result of mixing coherent and non-

coherent lines, flushing lines when MMM-TP leaves DMR

mode may not be as simple as gang-invalidating the cache.

Instead, cache lines must be inspected one by one to see

if they are dirty and need to be written back, a potentially

costly operation (see Section 5.3).4

3.5 Scheduling and Virtualization

In any MMM, or architecture-level DMR system, the chip

exposes a certain number of virtual processors (VCPUs) to

the operating system (OS), and is then responsible for map-

ping those VCPUs onto the physical cores. In the case of a

standard DMR system, the chip statically (e.g., [12]) or dy-

namically (e.g., [14]) maps one VCPU onto a pair of cores.

The two MMM systems we propose in this paper, MMM-

IPC and MMM-TP, perform this mapping in two different

ways. Like a traditional DMR system, MMM-IPC statically

3 A Coherent bit must also be added to each request sent to the L3.
4 The number of dirty lines will never exceed the size of the VCPU state,

about 2.3KBytes for SPARC.

maps one VCPU to a pair of cores, and then simply idles the

redundant core when the software running on that core en-

ters performance mode. By eliminating the verification and

synchronization latency of DMR, MMM-IPC can improve

the IPC of each VCPU running in performance mode.

MMM-TP, on the other hand, aims to also improve

throughput by scheduling an independent VCPU to run on

the otherwise idle core. To enable this flexibility, while pre-

serving a simple interface to the system software, MMM-TP

employs our previously proposed multicore virtualization

techniques [34]. The reason such multicore virtualization is

useful for MMM-TP is that the number of cores required to

execute each VCPU changes dynamically depending on the

whims of the system software’s scheduler: It can schedule

software requiring reliability on all VCPUs, software requir-

ing performance on all VCPUs, or any combination, which

can rapidly change.

In MMM-TP, a hardware/firmware layer manages the

mapping of VCPUs to cores similar to, but much simpler

and at a lower level than, a traditional software Virtual Ma-

chine Monitor (VMM). Hardware supported multicore vir-

tualization provides two important services. First, hardware

support for maintaining VCPU state enables low-overhead

migration of a VCPU from one core (or pair of cores) to

another, unbeknownst to the system software. Second, vir-

tualization allows the cores to be overcommitted, such that

more VCPUs are exposed to system software than there are

available pairs of physical cores. When many VCPUs wish

to execute in DMR mode, some of them must be paused. But

when many VCPUs do not require DMR, all of the cores can

be used for independent VCPUs to increase throughput. An

overcommitted mixed-mode system is depicted in Figure 4.

Here, one VCPU (V2) is executing a software threads that re-

quires reliability, and is executing redundantly on cores C2

and C3. V3 is paused since there are no cores available to

execute it. The other VCPUs are all executing threads that

require performance. This technique operates in the same

manner whether the system software is a single OS, or a

software VMM in its own right, performing another layer of

virtualization among its guest VMs. A major advantage of

choosing Reunion as the DMR system for an MMM is that

it allows any core to operate as a vocal or mute for any other

core, significantly easing the scheduling challenges that arise

from MMM-TP.

4. Experimental Methodology

4.1 Simulation

For the experiments in Section 5, we use Virtutech Sim-

ics [16], an execution driven, full-system simulator which

functionally models a SunFire 6800 server in sufficient de-

tail to boot unmodified operating systems. We use Simics as

a functional simulator only, and model timing using Simics

MAI with our own cycle-accurate processor and memory hi-

erarchy module.



Figure 4. Improving Throughput in a Mixed-Mode Multicore by Overcommitting Cores

We model each core as having an 8-stage pipeline, out-

of-order, 2-wide issue, an 128-entry instruction window, and

operating at 3 GHz. The load/store queue contains entries for

32 loads and 32 stores. The pipeline is 9 stages when using

Reunion. The chip consists of 16 cores. Located with each

core is a split 16k, 2-way, write-through I&D caches, and

a unified 512k, 4-way private L2. We also model an 8MB,

16-way, shared L3 that is exclusive with the L2s, and has a

55-cycle load to use latency. Cores maintain coherence via a

MOSI directory protocol over a point-to-point interconnect

with an average 10 cycle latency. The L2 directory uses

shadow tags, which are co-located with each L3 bank. Main

memory is 350 cycles load-to-use, with 40 GB/sec of off-

chip bandwidth. In order to not overstate the penalty of

DMR, we model a hardware-filled TLB, like [29].

A dedicated fingerprint network with a 10-cycle latency is

assumed, as was done in the original Reunion proposal [29].

Reunion’s “sync requests” are not implemented through L2

directory protocol modifications, but rather through direct

messages sent from the vocal to the mute core.

The first set of experiments in Section 5.2 assumes a

parallel PAB and L2 access. A PAB latency of two cycles

is used for serial PAB access in the second set. Although the

full software overhead of PAT manipulation is not modeled,

it is expected to be very minimal, since it should only be

necessary only when page mappings change.

To implement virtualization, we evaluate a thin virtual-

machine layer implemented primarily in hardware, similar

to [34]. We do model the overhead of maintaining VCPU

state. This task is performed by storing the running VCPU’s

state in a portion of cacheable physical memory and loading

it later from the same or a different core. The state can

be transparently migrated to other cores using the on-chip

coherence protocol.

Applications We use several workloads for these exper-

iments, all of which are running on Solaris 9. Apache

and Zeus are static web servers driven by the Surge [2]

client. We do not use any think time in the Surge client.

OLTP is a TPC-C-like workload using IBM’s DB2 database.

The database is scaled down from TPC-C specification to

about 800MB and runs 192 concurrent user threads with

no think time. pgoltp uses the PostgreSQL database ver-

sion 8.1.3 [21] to run TPC-C-like queries from the OSDL

dbt2 test suite [20]. The database is scaled similarly to

OLTP. pgbench runs TPC-B like queries on the Post-

greSQL database [21]. pmake is a parallel compile of Post-

greSQL using GNU make and the Sun Forte Developer 7 C

compiler. We do not include serial phases.

Each simulation runs for 100 million cycles. Due to work-

load variability, we simulate multiple runs and report aver-

age results with 95% confidence intervals. We use committed

user instructions as our metric for ’work’ in all experiments.

User commits has been shown to correlate well with other

‘work’ metrics, such as workload transactions [37].

Consolidated Server Experiments Experiments in Sec-

tions 5.2 and 5.3 evaluate a mixed-mode consolidated server

where one guest VM is running an application that requires

reliability, and a second guest VM is running an application

that required performance (similar to Figure 2).

Each consolidated workload combines two guest VMs

running the applications described above. In each work-

loads, the same application is running in both guests. Each

guest VM is configured with its own I/O devices and phys-

ical memory space, but VMs dynamically share the proces-

sors and caches. We are assuming the use of a software

VMM, similar to VMWare ESX Server, which virtualizes

I/O, memory, and privileged instructions. Since we do not

have access to a software VMM which supports our simu-

lated SPARC platform, we are unable to model the overhead

of virtualizing memory or I/O. The two guest OSs are allo-

cated enough physical memory so that the VMM does not

need to swap real memory. This methodology for simulat-

ing consolidated servers is similar to that used by in prior

research [17, 34].

For evaluating MMM-IPC, two guest VMs are running,

each of which exposes 8 VCPUs to the VMM. The first VM

runs redundantly on all 16 cores, and the second runs in per-

formance mode using only 8 cores. Guests are gang sched-

uled using a 1ms (3 million cycle) timeslice. Using a longer

timeslice with this methodology can create performance in-

consistencies due to OS timers and interrupts.

For evaluating MMM-TP, we again model two guest

VMs. The reliability VM runs 8 VCPUs on 16 cores, and the

performance VM runs 16 VCPUs on all 16 cores. To avoid



comparing results using different workload checkpoints, we

implement the 16 VCPU guest as two co-scheduled 8 VCPU

guests running the same application. This methodology pes-

simistically inflates the memory requirements of the high-

performance guest, but optimistically assumes linear scaling

of applications.

Given our SPARC infrastructure, there is also no way of

evaluating switches to and from the system VMM. Thus con-

solidated server workloads only switch to or from reliable

mode during at the end of each VMs timeslice, however, we

do investigate the overheads of more frequent switching in

Section 5.3.

5. Evaluation

In this section, we first analyze the throughput and IPC over-

heads of DMR. We then demonstrate the effectiveness, and

examine several design trade-offs, of mixed-mode reliability.

We use a mixed-mode consolidated server for this analysis,

but also present results to gauge the benefits and overheads

of mixed-mode operation on a single-OS system.

5.1 Overhead of Dual Redundancy

To determine the performance overheads of DMR, this sec-

tion compares three systems. The first, No DMR 2X repre-

sents a non-DMR system using all 16 cores for running in-

dependent OS-visible VCPUs. The second No DMR, rep-

resents a non-DMR system running eight VCPUs on only

eight cores. The other eight cores are idle. The third is our

re-implementation of Reunion [29], which is running the

same eight VCPUs as No DMR, but running them redun-

dantly across all 16 cores.

Figure 5 examines the performance of these three sys-

tems. Data are normalized to the No DMR 2X configuration.

Figure 5(a) shows the per-thread IPC impact, and Figure 5(b)

shows the overall throughput impact. In Figure 5(a), per-

thread IPC is measured as the average of each active VCPU’s

User IPC, or the number of User instructions committed

divided by the total number of cycles. The No DMR con-

figuration, running only 8 VCPUs, observes 8–15% higher

IPC than the No DMR 2X configuration, since it has ap-

proximately half of the bandwidth and capacity pressure on

the shared cache and network resources. Reunion, however,

sees a 22–48% decrease in the IPC of each VCPU compared

to No DMR 2X. The performance penalty of using Reunion

is 34–53% compared to the 8 VCPU No DMR configura-

tion. The reason for this overhead arises primarily from three

sources: additional instruction window pressure, L2 cache-

to-cache transfers, and serializing instructions. Each of these

three is discussed in more detail below.

While this reduction in per-thread IPC is part of the pic-

ture, the impact on throughput created by the need to use

twice as many core to run the same number of threads is

even larger. Figure 5 shows this overall throughput impact,

and the results are dramatic. As expected, throughput lost by

No DMR, when not running VCPUs on all cores, is nearly

half that of No DMR 2X. The throughput for Reunion is ap-

proximately one third to one quarter that of No DMR 2X, due

not only to half as many VCPUs running, but also to the fact

that each of those VCPUs slows down significantly.

Instruction Window Utilization The first overhead affect-

ing DMR execution is capacity pressure on the instruction

window and load/store queue (LSQ). In our experiments,

Reunion observes full structures for approximately twice as

many cycles as does the baseline. This pressure arises pri-

marily from two sources: 1) the requirement that instructions

wait in the Check stage before releasing their instruction

window resources, and 2) the use of sequential consistency

(SC), which causes stores to wait in the instruction window

until they are committed to the cache. The original Reunion

proposal used TSO memory consistency [29], which allows

the use of a store buffer, relieving some of this pressure.

Cache-to-Cache Transfers A second part of the overhead

of Reunion results from increases in L2 cache-to-cache

(C2C) transfers. C2C transfers increase by 20–50% for all

benchmarks exceptpmake (pmake has very few C2C trans-

fers in the baseline, and thus observes a 220% increase).

Due to our use of an exclusive L3 cache (like the IBM

Power5 [13] and AMD quad-core Opteron [11] processors),

when the vocal core acquires the line first from any source,

the mute core’s later request is likely to receive it via a C2C

transfer from the vocal core. These 3-hop transfers incur ad-

ditional latency compared to a 2-hop L3 hit.

Serializing Instructions Finally, OS-intensive workloads

typically encounter frequent Serializing Instructions (SIs)

that cannot execute out of order [29, 36]. With Reunion the

impact of these instructions is significant because 1) younger

instructions must be committed before an SI executes, but

the Check stage incurs additional delay before commit, and

2) the SI itself must be validated before younger instructions

can enter the pipeline, incurring an additional comparison

delay. When using Reunion, SIs stall fetch in our experi-

ments for 15–46% of cycles. We serialize most of the SIs

considered by Wells and Sohi [36], similar to the kinds of

instructions serialized on a Pentium M (though for a very

different ISA). Smolens, et al., consider most of the same

instructions to be serializing [28], and also report a signifi-

cant performance impact of SIs [29]. Also like Smolens, et

al. [29], and the Ideal SPARC from Wells and Sohi [36], we

simulate a hardware-filled TLB to avoid over-inflating the

number of SIs.

Comparison to Prior Work The IPC impact we identify is

in contrast to the published Reunion work [27, 29], which

reports a single thread’s IPC loss of 5–10%. The reason for

this discrepancy arises from increased impact in each of the

three sources identified above. The original Reunion pro-

posal uses a 2-level (inclusive) cache hierarchy, which is not

likely to incur additional C2C misses. They also use a larger



Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 P
er

−
th

re
ad

 U
se

r 
IP

C

0

0.2

0.4

0.6

0.8

1

1.2

No DMR 2X No DMR Reunion

(a) Single Thread Performance

Apache OLTP pgoltp pmake pgbench Zeus

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0

0.2

0.4

0.6

0.8

1

No DMR 2X No DMR Reunion

(b) Overall Throughput
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(256-entry) instruction window and a TSO memory consis-

tency model, reducing the resource pressure of store latency,

both on the instruction window and in the presence of SIs. In

fact, Smolens reports that SC reduces the performance of Re-

union by 30% on average [28], likely making this the largest

contributor to the discrepancy. While both target configura-

tions can potentially represent realistic systems, the reader

should keep in mind that, even with a different configura-

tion, per-thread IPC is only a small part of the motivation for

mixed-mode operation. The original Reunion work did not

examine throughput overheads.

5.2 Performance of a Mixed-Mode Multicore

A mixed-mode consolidated server can provide differenti-

ated service to different VMs, as described in Section 2. Fig-

ure 6(a) demonstrates the per-thread performance of mixed-

mode operation. The striped bars at the bottom represent the

normalized per-thread IPC of the guest VM that requires the

high reliability of DMR. The solid, top bars represent the

guest VM that does not require such high reliability.

In a traditional consolidated server, if one guest VM re-

quired reliability, then all guests would need to run with

DMR to protect the integrity of the reliable VM. The left

set of bars (labeled DMR Base) thus represents the base-

line, where reliable, DMR mode is used for both VMs. The

second set of bars, labeled MMM-IPC, represents the first

MMM scheme where unused redundant cores are allowed to

idle. Due to the IPC overhead of DMR execution, the high-

performance guest VM observes 25–85% speedup over the

full DMR configuration. The runtime of the reliable VM is

virtually unchanged, though pgoltp observes a 6.5% slow-

down due to the performance application more quickly dis-

placing the reliable application’s data in the shared L3 cache.

Although we do not capture the effect on application’s user-

request latency, this per-thread IPC provides an indication of

expected improvements.

The third set of bars, labeled MMM-TP, represents the

second MMM system, which can better utilize all avail-

able cores to execute additional VCPUs. In this case, the

per-thread IPC of those VCPUs still increases, though since

more VCPUs are executing and consuming cache resources,

the speedup of the high-performance VM is 24–67%, some-

what less than that of MMM-IPC.

Per-thread IPC is only part of the picture, however, since

MMM-TP is using those otherwise-idle cores to execute

more VCPUs. Figure 6(b) shows the overall system through-

put, similarly normalized to the always-DMR baseline, and

broken into throughput from each guest VM. The through-

put of MMM-IPC is the same as the per-thread IPC speedup

from Figure 6(a), since the same 8 VCPUs are executing

in either mode. However, for scalable applications, such as

these commercial workloads, improvements in throughput

can be significant using MMM-TP, where the first VM now

independently executes 16 VCPUs. This high-performance

VM observes speedups of 2.4–3.6 due to the combined effect

of per-VCPU IPC increase, and additional throughput from

more VCPUs. Speedup of this VM over the static MMM

configuration are 1.8–1.9. The throughput of the machine

overall increases by 1.7-2.3X.

Effect of PAB Latency In previous results, we have as-

sumed that the PAB was accessed in parallel with the L2

tags, causing no additional latency for any memory opera-

tions. We have also examined the impact of a 2-cycle PAB

lookup in serial before accessing the L2 cache. Serialized

accesses can possibly reduce the complexity of the cache

controller. Since only store write-throughs are stalled by

this serial lookup, the performance impact arises primar-

ily through increased pressure on the instruction window
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and other structures. Detailed results (not shown for brevity)

demonstrate that serial PAB lookups reduce the IPC of the

application in performance mode by 3–10%. Such a small

performance penalty is easily justified by the approximately

3X throughput gained by the ability to run in performance

mode. The reliable application does not use the PAB, and

therefore its performance does not change.

5.3 Overhead of Mode Switching

In addition to the PAB, mixed-mode operation can in-

cur overhead during mode transitions. For the consolidated

servers in the previous section, these transitions are infre-

quent, and their cost is easily amortized. However, with a

trap-and-emulate software VMM, or if performing mixed-

mode in a single-OS system, mode transitions need to occur

much more frequently: Every time a guest VM attempts to

perform a privileged operation, or a performance application

enters or exits the operating system (e.g., for a system call),

a mode switch occurs. To understand the expected overheads

of mixed-mode operation in such systems, this section first

examines the cost of entering and leaving dual-redundancy,

and then examines the frequency that mode switching would

be necessary. We show that the overheads are low enough

that even frequent mode switches can be easily outweighed

by the benefits of mixed-mode operation.

Switching Overhead Table 1 presents the average over-

head (in cycles) for each VCPU to perform a mode switch.

This data is taken from MMM-TP, which has higher aver-

age overhead than MMM-IPC because it must flush the L2

cache. As shown in the table, the overhead of the Enter DMR

mode switch is approximately 2.2k cycles for all bench-

marks. The overhead includes the cost of context switching

out the state of the performance VCPU, switching in the state

Enter DMR Leave DMR

Apache 2.4k 10.4k

OLTP 2.4k 10.3k

pgoltp 2.3k 10.2k

pmake 2.2k 9.9k

pgbench 2.3k 10.2k

Zeus 2.4k 10.3k

Table 1. Mixed-Mode Switching Overheads (cycles)

User Cycles OS Cycles

Apache 59k 98k

OLTP 218k 52k

pgoltp 210k 35k

pmake 312k 47k

pgbench 554k 126k

Zeus 65k 220k

Table 2. Cycles Before Switching Modes for Single-OS

of the newly scheduled reliable VCPU, and synchronizing

the vocal and mute cores. The overhead of Leave DMR in-

cludes the cost of synchronizing, context switching out the

reliable VCPU, flushing the L2 cache, and context switching

in the newly scheduled VCPU running a high-performance

application. This overhead is much larger due to the cost of

flushing the L2 cache, which takes approximately 8k cycles

since we pessimistically assume that only one cache line can

be flushed or written back to the shared L3 per cycle.

Switching Frequency The cost of the mode transitions in

Table 1 is relatively small if these transitions occur infre-

quently, as is the expected case for a mixed-mode consol-

idated server using some hardware virtualization support

(e.g., [31]), or para-virtualized guests (e.g., [3]). However,



when performing mixed-mode operation on a single-OS sys-

tem, transitions become necessary whenever the user appli-

cations enters the kernel, e.g., for an interrupt or system call.

Transitions may also be frequent when using a trap-and-

emulate software VMM.

To examine the impact the switching latencies would

have in a single-OS system, Table 2 presents the average

number of cycles before switching from a user application to

the OS, and from the OS back to the user application. This

data is for each thread of the baseline, non-DMR system. All

benchmarks except Apache and Zeus spend at least 200k

cycles in user mode before entering the OS. Including the

time spent in the OS itself (the sum of the two columns),

all benchmarks except Apache make a set of transitions

into and out of the OS only every 245k cycles or more (for

Apache it is approximately 160k cycles).

The cost of switching into and out of DMR mode, from

Table 2 is approximately 13k cycles for all benchmarks. The

implication of this data is that switching modes in a single-

OS system would result in an 8% overhead for Apache,

and less than a 5% overhead for the other benchmarks. For

applications similar to SPEC CPU2000 that encounter a

system call and subsequent mode switch less often, this

overhead would be even less.

The bottom line, even in a single-OS mixed-mode system

running applications with frequent OS activity, is that the

IPC and throughput benefits of high-performance mode are

expected to far outweigh the overhead of mode transitions.

6. Related Work

Many circuit- and microarchitectural-level techniques for

tolerating various hardware faults have been proposed. Of

primary interest to this work is a multitude of recent microar-

chitectural DMR proposals, which join together two cores to

reliably execute one VCPU [12, 14, 19, 29, 33, 38]. Two of

these in particular suggest that DMR can easily be turned

on and off [19, 32], however, they do not investigate the is-

sues involved in doing so. There is nothing inherent in any

of these DMR proposals that is incompatible with the mod-

ifications for mixed-mode execution proposed in this paper.

However, as this paper demonstrates, running some applica-

tions in DMR mode and some in high-performance mode is

not as straightforward as it might first appear.

Walcott, et al., observe that the continuous use of redun-

dant multithreading (RMT), within a single SMT core, can

lead to significant IPC overheads [32]. They report over-

heads of 43% for one benchmark. To combat this overhead,

they propose to toggle RMT on and off for a given applica-

tion to achieve the desired level of vulnerability from faults.

They address how to decide when RMT is and is not neces-

sary, given the Architectural Vulnerability Factor (AVF) of

the processor and application, but do not address the other

issues relating to mixed-mode execution.

Overshadow is a software VMM-based memory encryp-

tion technique that can protect application data from a

security-compromised OS [9]. Similar techniques could be

used to provide additional levels of protection among differ-

ent applications, or different guest virtual machines. Over-

shadow may be able to detect certain cases when an applica-

tion’s data is modified due to hardware faults that may occur

when another application is executing through data integrity

checks. However, it cannot prevent the corruption from oc-

curring in the first place.

Configurable Isolation [1] is a technique to reconfigure

around permanent hardware faults while losing the use of

only a small fraction of the available core, cache, and net-

work resources. In addition, they partition physical memory

between different color domains, and use redundant hard-

ware to maintain isolation between partitions.

7. Summary

As the underlying hardware becomes less reliable, system

designers will seek to include higher-level redundancy tech-

niques such as Dual-Modular Redundancy (DMR) in their

multicore designs [12, 14, 19, 29, 38]. DMR provides excel-

lent coverage from a variety of sources, yet it comes with

high performance overheads.

In this work, we build on the observation that some ap-

plications even today, and likely more in the future, require

the high reliability of DMR. Yet for the foreseeable future,

many applications will still not require such high hardware

reliability, but will instead continue to require high perfor-

mance. To address this diversity in needs, even among ap-

plication simultaneously running on the same machine, we

propose and design a Mixed-Mode Multicore (MMM). An

MMM enables applications that need extra reliability to run

in an extra-reliable mode, while applications that need high

performance can avoid the high cost of that reliable mode.

Though conceptually simple, two key challenges arise in

designing an MMM. First, care must be taken both during

execution, and during a mode switch in order to protect

reliable applications from any faults that may occur to a

high-performance application. The second key challenge is

that the need to protect the integrity of the system software,

even when running a performance application, complicates

the scheduling of software threads to cores.

After addressing these challenges, an MMM system is

shown to improve the throughput of a high-performance

application by 2.5–4 times compared to a system that always

operates in reliable mode. An MMM can improve overall

system throughput of a system with one reliable and one

performance application by 1.9-2.1 times.

If reliability trends continue for the next decade or longer,

multicore processors without DMR will become less and

less reliable, and therefore useful for a smaller fraction of

applications. Eventually, manufacturing experts may choose

to push technology to a point where nearly all software



needs to run with DMR. In the meantime, however, Mixed-

Mode Multicore processors can help ease this transition by

letting the user run more applications in DMR mode with

every processor generation, rather than switching all at once

from running no applications in DMR mode to incurring

significant performance loss for all applications.
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