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Abstract

Serializing instructions (SIs), such as writes to control

registers, have many complex dependencies, and are diffi-

cult to execute out-of-order (OoO). To avoid unnecessary

complexity, processors often serialize the pipeline to main-

tain sequential semantics for these instructions.

We observe frequent SIs across several system-intensive

workloads and three ISAs, SPARC V9, X86-64, and Pow-

erPC. As explained by Amdahl’s Law, these SIs, which cre-

ate serial regions within the instruction-level parallel ex-

ecution of a single thread, can have a significant impact

on performance. For the SPARC ISA (after removing TLB

and register window effects), we show that operating system

(OS) code incurs a 8–45% performance drop from SIs.

We observe that the values produced by most control reg-

ister writes are quickly consumed, but the writes are often

effectively useless (EU), i.e., they do not actually change

the execution of the consuming instructions. We propose

EU prediction, which allows younger instructions to pro-

ceed, possibly reading a stale value, and yet still execute

correctly. This technique improves the performance of OS

code by 6–35%, and overall performance by 2–12%.

1. Introduction

For system-intensive workloads, those that spend a con-

siderable fraction of their time executing OS or hypervisor

code, the system code has a significant effect on overall

performance. Yet we observe that system code has 50–

85% higher cycles per instruction (CPI) than user code.

Researchers have often noticed this performance discrep-

ancy [1, 7, 9, 25], and shown it to be growing with new pro-

cessor generations [3,22]. This discrepancy is often blamed

on worse cache locality, TLB, and branch behavior, which

is exacerbated by user/system interference in these struc-

tures [6]. However, caches and branch predictors do not tell

the whole story. We identify serializing instructions (SIs),

such as those that write control registers and cannot be ex-

ecuted out-of-order (OoO), as an additional, major compo-

nent of poor OS performance.

OoO processors achieve parallel execution of a sequen-

tial program, albeit at the level of instructions and memory

operations. SIs introduce a short sequential section into this

parallel execution. As Amdahl’s Law explains, frequent se-

rialization can greatly limit performance regardless of the

amount of parallelism available the rest of the time.

We show that the OS performance impact of SIs rivals

the impact of misses to main memory, accounting for 25–

60% of the higher system CPI. Several additive trends are

increasing the cost and frequency of SIs, including proces-

sors which can maintain thousands of instructions in flight,

the use of speculative or redundant multithreading, and trap-

and-emulate software virtual machines.

Despite being a major performance factor, SIs have re-

ceived little public attention from academic or industry re-

searchers. This lack of attention is likely because SIs are

viewed as specific to a particular processor implementation.

In reality, SIs share many common characteristics across of

range of ISAs and processors, and thus, we believe deserve

a close examination. We aim to explore the origin of SIs

in more detail, investigate their impact on performance, and

propose solutions to mitigate this impact.

2. Serializing Instructions

Most instructions are defined by the ISA to have se-

quential semantics, even if the instructions are actually ex-

ecuted out-of-order (OoO). We use the term serializing in-

structions (SIs) to identify instructions that may require se-

quential semantics, yet make OoO execution difficult due to

complex dependencies. A processor implementation is free

to implement SIs in a manner that allows OoO execution,

but the complexities of doing so are very high and not typ-

ically undertaken, due to the belief that these instructions

are infrequent. As a result, a processor is often forced to

serialize the pipeline in order to execute these instructions.
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With the exception of Section 3.5, we focus on a generic

OoO processor and the commonalities of SIs across differ-

ent ISAs, rather than a particular processor implementation.

2.1. What are Serializing Instructions?

SIs fall into three broad categories: 1) instructions that

write to non-renamed state, 2) explicit synchronization, and

3) other complex instructions. This paper is primarily con-

cerned with the first category, though we discuss the others

as well.

Writes to Non-renamed State The scope of a variable

in a program refers to the points in the program where that

variable has meaning and can be referenced. We use the

term register scope to indicate which stages of the pipeline

a particular register has meaning and can be accessed. Most

registers, including general purpose registers and condition

codes have very limited scope: they are read and written

only at execute stage. Some registers, such as control regis-

ters, have broad scope because they are visible to, and used

by, control logic in many stages in the pipeline.

Registers with broad scope are generally not renamed be-

cause of the immense complexity required to deliver correct

values to consumer instructions and control logic at a va-

riety of pipeline stages. By not renaming these registers,

writes to them cannot execute OoO, and must serialize. The

SPARC wrpr instruction is an example of an SI when it

writes to the %pstate register. In Section 3 we provide a

list of registers for SPARC, X86-64, and PowerPC that we

consider to be non-renamed.

Dynamic instructions that trigger an exception, and in-

structions such as SPARC’s retry or X86’s iret that re-

turn from an exception handler, are SIs because they im-

plicitly write several non-renamed registers. Modifications

to other non-renamable processor state, such as TLBs, are

also SIs, because this state also has broad scope.

Explicit Synchronization ISAs may not require sequen-

tial semantics for all pairs of instructions, meaning that

younger instructions may not observe the output of certain

older instructions. Directly analogous to multiprocessor

consistency and memory barriers, programmers must then

introduce explicit synchronization, within a single thread,

to ensure correct ordering of producers and consumers. En-

forcing the programmer’s desired ordering often requires

these single-thread synchronizing instructions to serialize.

Examples include membar #sync in SPARC, cpuid in

X86, and isync in PowerPC.

Other Complex Instructions Several other instructions

with complex semantics, such as atomic read-modify-

write instructions, or instructions that synchronize multiple

threads, are also potentially SIs [8]. We assume that they

are implemented in a high-performance manner, i.e., are not

serializing, and do not consider them further.
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Figure 1. OS CPI (Ideal SPARC)

2.2. Why are SIs Important?

We motivate a more detailed analysis of SIs by briefly

examining their impact on performance, especially for OS

code. Figure 1 shows the contribution in cycles per instruc-

tion (CPI) for OS code from three sources. The lowest bar

represents the base CPI of a 15-stage, 4-issue OoO proces-

sor with a 128-entry instruction window. The base CPI in-

cludes the contribution from branch prediction and the L1

caches, but uses a perfect L2 cache and ideal execution of

SIs. This configuration uses the SPARC V9 ISA, but we

have removed the effects of register window and software

TLB traps to make the results relevant to other architectures

(details are provided in Section 4).

On top of the base CPI, Figure 1 shows the additional

CPI from a realistic L2 cache, and from realistic execution

of SIs. We see that the CPI contribution from SIs rivals the

performance impact of misses to main memory for many

benchmarks. Including user code, we observe that SIs cause

a 3–17% overall performance loss for this configuration.

High cache miss rates for system-intensive commercial

workloads are often blamed for their high CPI [7], but Fig-

ure 1 shows that SIs have a significant performance impact

as well — certainly enough to justify a detailed analysis of

SIs and an exploration of mechanisms to tolerate them.

2.3. How are SIs Implemented?

The broad scope of writes to non-renamed state forces

ISA and processor designers to make one of three choices

when implementing these instructions: 1) Provide sequen-

tial semantics for these SIs, and implement a complex set

of mechanisms to execute them OoO, 2) provide sequential

semantics, but implement a simple mechanism and serial-

ize the pipeline to execute them, or 3) execute them OoO

with a simple mechanism, but require explicit programmer

synchronization to ensure correct ordering.

Writes to most control registers are guaranteed to have

sequential semantics in SPARC, X86, and PowerPC. Be-

cause of cost and complexity, however, the first choice for
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implementing them is impractical for most SIs. Real pro-

cessors instead appear to choose the second option (see Sec-

tion 3.5). An implementation might serialize by flushing

younger instructions from the pipeline, and waiting to ex-

ecute an SI until all older instructions retire. A processor

could also block different consumer instructions at various

pipeline stages to ensure their dependencies are honored,

avoiding the flush, but still serializing (see section 5.2).

Due to the high performance cost of serialization, ISA

designers will often choose option three for certain instruc-

tions, placing the burden of correct ordering on the sys-

tem programmer. For example, none of the following are

guaranteed to have sequential semantics: loads and stores

to many Address Space Identifiers (ASIs) in SPARC V9,

reads and writes to cr8 in X86, and reads and writes to the

segment lookaside buffer (SLB) in PowerPC.

The best choice between options two and three remains

an open question. We argue, however, that requiring se-

quential semantics releases the programmer from the bur-

den and performance cost of explicit synchronization, while

allowing the processor to optimize SI execution through

novel microarchitectural innovation (see Section 5.4).

2.4. Where do SIs Arise?

SIs arise predominantly when software is exercising low-

level control over the processor — typically when executing

privileged instructions in the Operating System (OS) or hy-

pervisor (though some SIs are occasionally executed by user

code). Their impact will thus go unnoticed by researchers

and industry designers focusing on traditional benchmarks

such as SPEC CPU, or even short traces of commercial

workloads.

In this paper, we focus on system-intensive workloads —

those that spend a considerable fraction of their time execut-

ing OS or hypervisor code. We primarily study commercial

workloads in this paper, which spend 15–99% of cycles in

the OS, though we expect our results will translate to any

system-intensive application, including many desktop ap-

plications and virtual machine environments.

2.5. Trends Causing Increased Impact

Several trends are conspiring to make serializing instruc-

tions more frequent and more costly, providing additional

motivation for a rigorous study of SIs.

Large-Window Processors Several processors that can

maintain thousands of instructions in-flight have been pro-

posed by academic and industry researchers. These designs,

whether using multiple cores to effectively build one large

window [14, 29, 33], clusters of partitioned functional units

[26, 27], or relatively simple extensions to current proces-

sors [30], share two common themes. First, a larger instruc-

tion window extracts more ILP. This reduces the time be-

tween serializing events, and increases the fraction of time

spent serializing (Amdahl’s Law). Second, both the size of

the window and the latency to communicate to all compo-

nents increase the time required to drain and refill the win-

dow. While we do not expect to see processors with large,

monolithic instruction windows, we do use such a configu-

ration as a proxy for these other designs in Section 5.

Redundant Multithreading The effects of most SIs can-

not be “undone,” i.e., SIs are non-idempotent. When us-

ing redundant multithreading for reliability (e.g., [28]), all

cores must thus verify the correctness of older instructions

before executing an SI. In addition, no core can start execut-

ing younger instructions until the SI is committed, to ensure

that dependencies are honored. Smolens, et al., report that

the verification latency between cores has a dramatic impact

on performance, largely due to SIs [28].

Trap and Emulate VMMs Software virtual machines

such as VMWare, which perform trap-and-emulate and/or

binary rewriting, can increase the frequency of serializing

instructions, since they can turn one SI (for example, a write

to privileged state) into several SIs (for example, trapping to

emulation, performing the requested operations, and return-

ing from emulation) [16].

2.5.1 Still Need Single Thread Performance

Effective thread-level parallelism can improve through-

put without requiring high ILP. However, as we usher in

the era of multi- to many-core chips, we must remember

that single thread performance still matters. Sequential pro-

grams, and serial sections in parallel programs, must be ex-

ecuted quickly to provide good overall performance [12].

3. Characterizing of Serializing Instructions

In this section we examine the nature and frequency of

serializing instruction across several system-intensive com-

mercial workloads and three platforms. Before we present

this data, however, we describe the three platforms and our

simulation methodology.

3.1. Methodology

For this study, we use Simics [20], an execution driven,

full-system simulator that functionally models various ma-

chines in sufficient detail to boot unmodified OSs and run

unmodified commercial workloads. We use Simics to func-

tionally model three CPUs that implement three ISAs: Ul-

traSPARC IIICu, which implements the SPARC V9 ISA;

AMD Hammer, which implements X86-64; and PowerPC

750 (G4), which implements the 32-bit PowerPC ISA. For

the characterization study presented in this section, we use

an idealized, one IPC processor model. Workloads are run

for several simulated seconds, and sometimes minutes, to

warm up the application and OS disk cache. Experiments

are run for one billion instructions.
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Apache
We use the Surge client [4] to drive the open-source Apache web server, version 2.0.48. We do not use any think time in the
Surge client to reduce OS idle time. Due to a bug in our version of the PowerPC Linux loader, we we unable to run Surge client
on this machine. The X86 Surge client is compiled for 32-bit mode.

MTA
MTA runs a Mail Transport Agent similar to sendmail. SPARC and X86 workloads use the postfix MTA, the PowerPC workload
uses Exim. All MTAs are driven by the postal-0.62 benchmark to randomly deliver mail among 1000 users.

NFS
NFS runs the iozone3 benchmark to perform random read/writes from NFS mounted files. The tests do not include mounting
and unmounting the filesystems.

OLTP
OLTP uses the IBM DB2 database to run queries from TPC-C. The database is scaled down to about 800MB and runs 192
user threads with no think time. DB2 is not supported on any of the X86 or PowerPC platforms that Simics models.

pgoltp
pgoltp also runs queries from TPC-C, but uses the PostgreSQL 8.1.3 database [24] driven by OSDL’s DBT-2 [23]. Unlike IBM’s
DB2, PostgreSQL performs I/O through the OS’s standard interfaces and utilizes the OS’s disk cache.

pmake
Parallel compile of PostgreSQL using GNU make with the -j 8 flag. Compilation is performed without optimizations. The
SPARC workload uses the Sun Forte Developer 7 C compiler, X86-86 and PowerPC use GCC 4.1.0 and 2.95.3, respectively.

Zeus We use the Surge client again to drive the commercial Zeus web server, configured similarly to Apache.

Table 1. Workloads used for this study

The SPARC machine runs Solaris 9, the X86-64 runs

Linux 2.6.15, and the PowerPC runs Linux 2.4.17. We

examine several system-intensive workloads across these

three platforms, which are described in more detail in

Table 1. Significant effort was undertaken to keep the

workload configurations as similar as possible across plat-

forms. Nonetheless, differences in the OS, the structure

of platform-specific code, and compiler optimizations for

a particular target make direct comparisons difficult.

SPARC Register Window and TLB Traps To isolate

the effects of SPARC’s register windows and software man-

aged TLB, our characterization includes data for both nor-

mal SPARC execution, and also for an idealized configura-

tion that ignores register window traps and uses a hardware

filled TLB. The hardware TLB causes us not to see other-

wise frequent TLB fill handlers, while still observing page

fault behavior.

3.2. Description of SIs

Below we discuss the specific instructions in each of the

three platforms that we consider to be SIs, and the registers

we consider to be non-renamed due to broad scope. But

we wish to reiterate that the registers and SIs described be-

low could be renamed or executed OoO by a particular im-

plementation, and some possibly are. However, we aim to

study SIs in general, not any one particular implementation.

Other instructions and registers that we do not observe in

our warmed-up workloads might also be non-renamed and

serializing, such as debug registers and performance coun-

ters.

SPARC V9 Non-renamed SPARC registers are listed in

Table 2, and include most privileged registers. We assume

that all general purpose registers, including all windowed

registers, alternate globals, and floating point registers are

renamed. We also assume that the integer and floating-point

condition codes, and all register window management regis-

SPARC
pstate, fprs, pcr, pic, dcr, gsr, pil, wstate, tba, tpc,
tnpc, tstate, tt, tl, tick, stick, softint set, softint clr,
softint, tick cmpr, stick cmpr, fsr, ASI-mapped

X86-64 cr0, cr2, cr3, cs, eflags, msr, msw, tr, ldtr, idtr, gdtr

PPC msr, ssr0, ssr1, ctrl, dar, dsisr, sdr1, accr, dabr, iabr

Table 2. Registers Considered Non-renamed

ters except %wstate are renamed. Excepting instructions

and exception return (done and retry) are SIs because

they implicitly write several non-renamed registers.

The SPARC ISA uses Address Space Identifiers (ASIs)

to perform a variety of operations. Though not required

by the ISA to have sequential semantics, we also examine

writes to ASI-mapped registers, which include TLB reg-

isters and hardware functions such as interrupting another

CPU. We do not consider to be serializing atomic read-

modify-write instructions (e.g. casa), writes to block ASIs

(e.g. ASI BLK PRIMARY), write to “AS USER” ASIs, or

memory barriers other than membar #sync.

X86-64 For our X86 target, the non-renamed registers are

also listed in Table 2. Some MMX control registers would

also likely be non-renamed, but we do not observe accesses

to them in our workloads. Several SIs implicitly write CS,

the code segment register, including sysenter, sysret,

iret, and the ‘far’ versions of call, ret, and jmp. We

assume segment registers contain not only the descriptor,

but also the offset and flags loaded from the descriptor table.

We assume other segment registers are renamed.

We consider instructions invd, invalidate caches, and

invlpg, invalidate TLB, to be SIs . Other instructions are

defined by the ISA to be serializing, such as cpuid and

rsm, and various instructions that load the descriptor table

registers. Like SPARC, exceptions and return instructions

(e.g., iret) are SIs. We do not consider the variousfence

instructions to be SIs.
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(a) Fraction of dynamic instructions that are SIs

Bench OS Inst OS SIs

Ideal SPARC

Zeus 75.1% 94.0%
OLTP 15.1% 64.9%

Apache 60.7% 89.0%
MTA 50.2% 93.7%
NFS 99.8% 99.9%

pgoltp 13.5% 88.5%
pmake 12.2% 93.3%

X86-64

Apache 47.3% 91.9%
MTA 38.3% 96.5%
NFS 99.6% 100%

pgoltp 6.9% 94.4%
pmake 8.4% 94.8%

PowerPC

MTA 33.8% 98.2%
NFS 66.6% 96.8%

pgoltp 17.9% 92.1%
pmake 3.8% 91.4%

(b) Instr. and SIs from OS

Figure 2. Fraction of dynamic instructions that are serializing

PowerPC Non-renamed PowerPC registers are listed in

Table 2, however, the only non-renamed registers for which

we actually see accesses are msr, ssr0, and ssr1. Sim-

ilar to the other target architectures, isync is serializing,

but the other memory barrier variants are not. Instructions

that read and write the segment registers sr0-15 are not

required to have sequential semantics, though we examine

them as well. Dynamic exceptions and exception returns

(rfi) are SIs.

3.3. SI Frequency

Figure 2(a) shows the number of dynamic instructions

that are serializing for each of the three platforms, including

idealized and normal SPARC. Bars are broken down into

writes to non-renamed registers, exceptions, explicit syn-

chronization, and other instructions (mostly TLB manipu-

lations in SPARC and PowerPC, and cache invalidations in

X86).

We observe that writes to non-renamed registers (the bot-

tom two bars) comprise a significant fraction of SIs for

all platforms except normal SPARC. Nearly two, and of-

ten more, non-renamed register writes occur every thousand

instructions for all platforms and workloads except pmake

and pgoltp (the two that spend the smallest fraction of time

in the OS).

We separate writes to enable/disable interrupts from

other register writes, since these are the most common non-

renamed register writes for all three platforms. Frequent

updates to the Interrupt Privilege Level register have also

been observed on the VAX architecture [16]. It is debatable

whether or not such writes would need to be serialized, but

X86 is the only platform for which these particular writes

can be identified at decode time, since it uses a special op-

code. In SPARC and PowerPC, the interrupt enable field is

part of the non-renamed %pstate or msr register, respec-

tively. The following SPARC code sequence, from Solaris

9, illustrates the problem:

1: rdpr %pstate, %o5

2: andn %o5, 2, %o4

3: wrpr %o4, 0, %pstate

The first instruction reads the %pstate register, the second

clears a bit, and the third writes the entire contents of %o4

back to %pstate. Without looking at the whole sequence,

the decode logic cannot distinguish this write (which simply

turns off interrupts) from other writes to %pstate which

do need to serialize. PowerPC register writes are dominated

by these interrupt writes, though they are a much smaller

fraction of X86 and SPARC writes. The Interrupt Reg cate-

gory also includes SPARC’s %pil.

For normal SPARC execution, excepting instructions are

very frequent. The other three platforms observe infre-

quent exceptions (primarily when making system calls or

observing hard page faults). Both explicit synchronization

and Other SIs occurs infrequently for all platforms except

normal SPARC. But it is interesting to note that 1) most

of the Other instructions do not require sequential seman-

tics, and thus often need explicit synchronization to ensure

correct semantics, and 2) the frequency of Explicit order-

ing SIs and these unordered Other SIs is similar for many

workloads. These facts imply that there is minimal benefit

from the choice of avoiding sequential semantics for some

instructions.

The table in Figure 2(b) shows the fraction of dynamic

instructions and SIs that are from the OS. Many of these

applications spend a considerable fraction of their instruc-

tion in the OS. All workloads incur a large majority of their
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SIs in the OS. OLTP, which frequently writes the SPARC

%fprs register, is the only application with more than 12%

of SIs coming from user code. “Normal” SPARC is not

shown in the table, but despite the difference in SI fre-

quency, all values are within 1% of the Ideal SPARC.

3.4. Examining Useful Consumption

The most frequent SIs for idealized SPARC, as well as

X86 and PowerPC, are writes to non-renamed registers.

Further analysis, however, reveals that many of these writes

are effectively useless (EU). EU writes are those that do not

observe consumers whose execution is affected by the write.

EU writes occur, among other reasons, when only one field

of a control register is updated by the write. For example,

the mask field in the SPARC %gsr register is only used by

one instruction, bmask. Like the interupt enable field dis-

cussed previously, updates to mask cannot be distinguished

at decode from writes to other fields. All SPARC VIS in-

structions are thus consumers of the %gsr register even

though that consumption is often useless.

We also examine the difference between explicit con-

sumers, those that name the register they consume as an

operand, and implicit consumers, those that do not. Im-

plicit consumers often read their registers at various pipeline

stages (i.e., they create the broad scope of control registers),

and are the primary reason these registers are not renamed.

Figure 3 shows the cumulative distribution of the num-

ber of committed instructions between the producer (e.g.

wrpr) and the consumer (e.g. rdpr) of values written to

non-renamed registers. We only show data for Zeus on ide-

alized SPARC, though all benchmarks on this platform are

similar. The solid lines include both implicit and explicit

consumers, and demonstrate the difference between a con-

sumption (the top line), and a useful consumption of the

value (the lower solid line). The dichotomy is striking: 50%

of writes are consumed within 16 instructions, but only 5%

of those writes are useful to the first 16 instructions.
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Figure 4. Use Distance of MMU Writes

The dashed lines only consider implicit consumers. The

top dashed line, Implicit Consumption, shows that 71%

of values are read by implicit consumers. But more no-

tably, the bottom dashed line, Implicit Useful Consumption,

shows that only 43% of writes are ever useful to implicit

consumers, and less than 25% of writes are useful within

1024 instrutions. Processors serialize these writes to ensure

implicit consumers observe the new value, but this serializa-

tion is rarely necessary for a particular dynamic instance of

the write. We take advantage of this observation in Section

5.4 to improve the performance of these writes.

Dynamically-dead writes, meaning that no intervening

consumers appear before another write occurs to the same

register [5], are a subset of EU writes. Silent writes, mean-

ing that it wrote the same value currently in the register [18],

are also a subset. Dynamically-dead writes occur 17.5% of

the time, corresponding to the rightmost point of the top

line. Fourteen percent of writes are silent, and 4% are both.

Looking at the Useful Consumption line in Figure 3, we

see that virtually all non-silent, non-dead writes (73%) are

eventually useful. However, the novelty of the EU charac-

terization lies in the fact that it takes several thousand in-

structions for most values to become useful.

Writes to TLB State A second class of frequent SIs in

both SPARC and PowerPC are manipulations of TLB state.

TLB demap operations are particularly common for Pow-

erPC. Writes to the idealized SPARC TLB include demaps,

insertions after a page fault, and changes to the context reg-

ister. We observe that nearly all memory operations are im-

plicitly dependent on changes to the TLB state, but again

expect that not all writes to TLB state will actually be useful

to future memory operations. For example, unless the pro-

gram attempts to access a virtual address previously trans-

lated by the demapped entry, the TLB values changed by

the demap will not actually be used.

Similar to Figure 3, the top lines in Figure 4 show, for

ideal SPARC, the number of instructions between a TLB
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write and an implicit consumption of that write. We are only

able to observe TLB consumers within 127 instructions of

the write, so we limit the range of the graph. We almost

never observe explicit consumption within the window, so

all lines represent implicit consumers only. Figure 3 shows

that all TLB writes are consumed almost immediately. They

become useful, however, only after the new value causes

a different translation for younger instructions. The lower

set of lines show the distance before the first use happens.

Compared to non-renamed register writes, TLB writes are

generally useful much more quickly. Nonetheless, there is a

large discrepancy between the pessimistic expectation that

all consumers need the value of the write versus only those

that actually find it useful. Again in Section 5.4, we use this

observation to improve the performance of this class of SIs

as well. The NFS workload has many more demaps than

the rest, and thus observes fewer useful consumptions.

3.5. SIs in Real Implementations

When studying SIs using simulation we are forced to

make assumptions about which instructions are likely to be

SIs in a realistic implementation. Though we have care-

fully chosen which instructions to consider, we also exam-

ine three processor manuals for further insights.

UltraSPARC III Cu Using a table of instruction laten-

cies and conditions that block dispatch, it appears that the

UltraSPARC III Cu serializes atomic memory instructions

(e.g. casa), reads and writes to many privileged registers,

done and retry, and certain memory barriers [31]. The

V9 architecture does not require sequential semantics for

stores to most ASI-mapped registers and their dependent

instructions, instead requiring software synchronization.

Pentium M The X86-64 ISA implemented by Simics’

AMD Hammer functional model is virtually identical to that

implemented by Intel processors. All of the SIs described

in Section 3.2 are defined by the ISA to be serializing. The

segment registers are not defined to be serializing (except

the CS register), and the Pentium M family does provide

special-purpose hardware to handle OoO execution with

pending reads and writes to these registers. However, it has

only two copies of these registers, thus multiple writes in

the window will force subsequent instructions to stall [13].

Alpha 21264 The Alpha 21264 (EV6) uses Privileged Ar-

chitecture Library (PAL) code to explicitly access privi-

leged registers [10]. In the case of a write to a privileged

register, the EV6 uses a scoreboard mechanism to only se-

rialize instructions that may be dependent on that register.

We investigate a similar mechanism in Section 5.2. Inter-

estingly, earlier Alpha processors did not require sequential

semantics for reads and writes to any of these registers, forc-

ing the OS developer to avoid dependencies by scheduling

instructions with full knowledge of pipeline latencies or us-

ing explicit serialization.

Width 4 instructions / cycle
Integer pipeline 15 stages

Instr. window 128 entries (Large Window: 1k)
Branch pred. 12kB YAGS
Ld/St queues 32 entries each (Large Window: 256)

Ld/St pred. 1k entry “safe distance”
L1 instr. cache 32kB, 4-way, 2-banks, 2-cycle latency
L1 data cache 32kB, 4-way, 2-banks, 2-cycle, write-back

L2 unified cache 1MB, 8-way, 14 cycle load-to-use, inclusive
Main Memory 265 cycles load-to-use

Table 3. Baseline processor parameters

Summary Though the implementation details for these

processors are not available, the processor manuals provide

a good indication of the performance implications of partic-

ular SIs, and we believe these implementations align well

with our assumptions. In particular, the UltraSPARC ap-

pears to implement SIs much like our baseline processor,

while the EV6 appears to use a similar mechanism to one

that we examine in Section 5.2. It is unclear how SIs are

implemented in the Pentium M, but many instructions are

said to be serializing. The PowerPC 750 manual provides

no new insights beyond those in Section 3.2.

4. Performance Evaluation Methodology

For the performance study, we have developed a detailed,

out-of-order processor and memory model, for the SPARC

platform only, using Simics Micro-Architectural Interface

(MAI). This model consists of a functional simulator (Sim-

ics) and a timing simulator (our OoO processor and mem-

ory). Simics MAI imposes its own serializing instructions,

and other limitations on the timing of certain instructions,

which prevents us from modeling a microarchitecture more

aggressive than Simics. To alleviate these problems, we

run Simics MAI as a dynamic trace generator. Our tim-

ing simulator steps the MAI functional model through all

stages of an instruction’s execution when the timing model

first attempts to fetch an instruction. Unlike static traces,

these dynamic traces adapt to changes in timing (e.g., due

to OS scheduling decisions) that arises due to microarchi-

tectural effects. Since the timing model requests particular

instructions from the functional model, as opposed to the

functional model feeding instructions to the timing model,

the simulator faithfully models wrong-path events including

speculative exceptions.

Methodology Due to inherent variability in the commer-

cial workloads, we add small, random variations in main

memory latency and run multiple trials per benchmark [2].

We show the 95% confidence interval using error bars in ad-

dition to the sample mean. All commercial workloads are

warmed up and running in a steady state. We run these de-

tailed timing simulations for one billion instructions. While

IPC is a poor metric for multiprocessor simulations with

these workloads, it is adequate for a uniprocessor since we

observe no spinning or idle time.
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Microarchitecture We conduct our experiments using

two processor configurations. Our baseline processor is

intended to loosely represent a modern, standard high-

performance core. The second is an optimistic large win-

dow processor intended solely to illustrate the impact of

some of the future trends discussed in Section 2.5. The pa-

rameters for both processors are shown in Table 3.

Both processors serialize all of the SPARC V9 SIs dis-

cussed in Section 3.2, except for writes to ASI-mapped reg-

isters for which the ISA does not require sequential seman-

tics. They pessimistically treat all younger instructions as

consumers of an SI. Thus, when a SI is detected, all younger

instructions in the window are squashed and fetch is stalled.

Typically SIs are detected at decode, though it can be later

in certain cases such as exceptions. The SI is executed after

all older instructions retire.

Register window management is handled entirely within

the rename logic; saves and restores do not introduce any

synchronization. Block (64-byte) loads and stores are

“cracked” at decode so that they can be handled within the

existing load-store-queue mechanisms. We assume special

hardware to detect virtual address aliases that occur when

using AS USER ASIs (ASIs which the OS uses to copy in

or out of user data structures). While not serializing, reads

to certain non-renamed registers, particularly those written

by hardware such as interrupt status registers, execute non-

speculatively.

5. Microarchitectural Improvements for SIs

In this section we evaluate the performance impact of

SIs on our baseline microarchitecture using the SPARC V9

platform, and then explore three mechanisms to reduce the

number and cost of serializing instructions. The first, score-

boarding reduces serializing instructions by handling de-

pendencies for non-renamed registers. The second, late-

squash is a simple prefetching technique to reduce the cost

of serializing instructions. The third, effectively useless pre-

diction optimizes writes that are not actually useful for con-

sumers. It is quite possible that these first two techniques

have been implemented in real processors, though the third,

to our knowledge, is a novel technique taking advantage of

new observations.

5.1. Performance Impact

We examine the difference between a baseline imple-

mentation, which serializes all SIs except ASI-mapped reg-

ister writes, and a hypothetical implementation that does

not serialize any instructions. This hypothetical implemen-

tation is unrealistic because it assumes hardware exists to

handle all explicit dependencies, and it ignores any timing

constrains imposed by implicit dependencies.

For the modest, medium-window processor, we break

down the non-serial speedup into that observed by user code
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Figure 5. OS vs. User Non-serial Speedup

and by OS code. For all workloads, user code observes only

minor improvement, but the OS observes a 8–45% increase

in performance. The labels below the bars indicate the over-

all non-serial speedup including user and OS.

5.2. Scoreboarding Non-renamed Regs

Inspired by a reference to scoreboarding PAL code regis-

ters in the Alpha EV6 processor manual [10], we investigate

a mechanism to reduce the frequency and cost of serializ-

ing writes to non-renamed state. Instead of completely se-

rializing, or somehow providing multiple copies of broadly

scoped registers, we apply a concept similar to scoreboard-

ing from the CDC 6600 [32] to selectively block instruc-

tions that have a dependence with an outstanding write.

Scoreboarding takes advantage of the fact that many writes

will not observe consumers while they are in the window

(∼40% of the time for Zeus, from Figure 3).

The scoreboard performs two primary functions for im-

proving performance: 1) for each decoded instruction, the

scoreboard determines whether the instruction is indepen-

dent of all older SI writes, and can thus proceed, possibly

OoO with respect to those writes, and 2) for each instruction

that is dependent on an older write, the scoreboard deter-

mines which pipeline stage the consumer reads the register,

allowing the instruction to proceed until that stage. In our

implementation, the scoreboard is a table that tracks up to

one outstanding write to each register. To ensure writers

are non-speculative, we force them to be the head of the in-

struction window when they execute, which handles WAR

hazards without any need to track consumers. WAW haz-

ards cause the second write to block at decode.

5.3. Late Squash

Blocking the front-end while waiting for an SI can en-

sure all implicit dependencies are met. But we observe that

instructions can speculatively enter the window behind a SI

if they are later squashed and rerun through the pipeline to

ensure they observe any updates from the SI. We refer to this

scheme as late-squash. Late-squash allows instructions as
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Figure 6. EU Prediction Mechanisms

well as loads and stores to prefetch their cache lines. Since

few instructions actually require the value from the SI for

correct execution, an accurate prefetch trace is generated.

5.4. EU Prediction for Non-renamed Regs

In Section 3.4, we observed that most control register

writes are consumed within a few instructions, but those

values are effectively useless to the first several hundred in-

structions after the write. We propose effectively useless

prediction to allow a majority of EU writes and their (use-

less) consumers to execute OoO. Using simple hardware

extensions, we can then guarantee that non-faulting con-

sumers executed correctly even after receiving a stale value.

5.4.1 Prediction Mechanisms

Our implementation of EU prediction for control regis-

ters requires two simple structures. First, the EU Prediction

Table (EUPT) consists of 512, non-tagged, 1-bit entries in-

dexed by the SI’s PC. Each entry indicates whether this SI

is likely to be EU during the time it is in-flight. This table

is shown in Figure 6.

Second, we utilize the Outstanding Write Table (OWT),

which contains several entries for each control register, cor-

responding to the number of allowable outstanding writes to

that register (we observe that three entries per register is suf-

ficient). Entries consist of a pointer to the instruction win-

dow entry for the write (WritePtr); a Pred bit (P), indicat-

ing whether this write was predicted to be EU; a Consumed

bit (C), indicating whether any implicit consumer has po-

tentially accessed the register; and a Blocked Front-end bit

(B), indicating whether this write has caused the front end

to block. An OWT allowing only one write per register is

depicted in Figure 6. The figure shows writes to two regis-

ters: the first is predicted EU, and the second is not.

We also add one bit to each instruction window entry.

For all instructions, the R bit indicates that the instruction

has potentially Read any of the control registers with older

outstanding writes. Note that an SI can also be a consumer.

Below, we enumerate the steps for performing EU predic-

tion at decode and commit for both SIs and consumers.

SI Decode At decode, for each SI write to a control reg-

ister, we use the EUPT to predict whether the write will be

effectively useless during the time it is in-flight. We update

the Pred bit with this prediction, update the WritePtr, and

clear the B and C bits.

Consumer Decode When an implicit consumer is de-

coded, it checks each input control register for any outstand-

ing writes in the OWT that are not predicted to be EU. If one

is found, the consumer is squashed, the Blocked Front-end

bit is set, and fetch is stalled until the write commits. This

was the case for the second write in Figure 6 (the consumer

is no longer in the window). If outstanding writes exist, but

they are all predicted EU, then the Consumed bit is set for

each write, the Read bit is set for the consumer, and the in-

struction can proceed. This case happened for both the load

and the second wrpr with respect to the %pstate write.

SI Commit When a write commits, it locates its OWT en-

try and checks its Consumed bit. If not set, it updates the

EUPT to indicate that it was EU. If the write’s Consumed

bit is set (and the Pred bit is also set), then consumers po-

tentially accessed a stale value. We then compare the new

value to the previous contents of the register, and determine

whether younger instructions that potentially read the stale

value were correctly executed (see below).

If a predicted EU write is found to have made useful

changes to the register and has observed potential con-

sumers (C bit), all younger instructions are squashed, and

the write commits before re-fetching the consumers, who

will now observe the updated value. In the case of multi-

ple outstanding writes to the same register, any of them can

trigger a squash.

If the Blocked Front-end bit is set, fetch is restarted. The

OWT entry is cleared after commit. The entry must also be

cleared if writes are squashed due to a branch misprediction,

for example.

No additional actions are necessary at consumer commit.

Determining Correctness of Stale Values We can eas-

ily guarantee that implicit consumers receiving a stale value

were correctly executed under two circumstances: 1) if the

write was silent (∼14% of the time for Zeus), or 2) if the

write changes fields in ways that only affect excepting in-

structions (∼50% of the time). For example, if the FEF

(floating-point enable) field of the %fprs register is zero,

then any floating-point instruction would generate an excep-

tion. If a write to this register sets the bit to one, younger

instructions can observe the stale value of zero. However,

these consumers will either not be affected by the register,

or will cause an exception. The same thing is true for sev-

eral other, though not all, frequently written registers. Thus,

this simple mechanisms conservatively assumes a minority

of EU writes are useful.
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Exceptions When an instruction with its Read bit set in-

curs an exception, it may have been affected by an outstand-

ing control register write. It is squashed, fetch is blocked

until the window is empty, and the instruction is (re)fetched

and executed with correct inputs.

Explicit Dependencies Once we have a mechanism to

properly synchronize implicit consumers, handling explicit

consumers is easy, since they simply need their input values

delivered to the functional units the same as most instruc-

tions. Since control registers have very limited scope with

respect to explicit consumers, they can actually now be re-

named to satisfy explicit dependencies. Explicit consumers

may thus receive their values OoO, but the architected reg-

ister contents are updated (and become visible to implicit

consumers) only at commit — just like normal registers.

5.5. EU Prediction for TLB Writes

As shown in Figure 4, several instructions can execute

after a TLB write without affecting their translations. In

addition, using a realistic processor model, we often ob-

serve events, such as returns from system code, that al-

ready prevent younger instructions from entering the win-

dow and executing early. Thus, in practice, more than 95%

of TLB writes end up being useless for instructions in the

window (though this also makes the benefits of optimizing

TLB writes much less).

We again use the EUPT to predict useless TLB writes, al-

low predicted EU write to execute only when they become

non-speculative, and allow younger instructions to execute

OoO. To verify this prediction, instructions present in the

window with a TLB write retranslate their virtual addresses

at commit. If a translation is different, or if a TLB fault

occurs, the consumer (which turned out to be a useful con-

sumer) and all younger instructions are squashed.

Our baseline microarchitecture does not serialize writes

to ASI-mapped registers, since SPARC does not require se-

quential semantics for them. However, as noted in Section

2.3, an implementation could provide sequential semantics,

eliminating the need for explicit synchronization. Though

not guaranteed to be the case, in our evaluation we assume

that all membar #sync instructions are used to order ASI

writes (as well as I/O, etc). We provide sequential seman-

tics for all instructions by serializing, while optimizing TLB

writes using EU prediction, and elide membar #sync in-

structions. (While not shown for brevity, serializing these

ASI-mapped registers in the baseline instead of serializing

explicit synchronization has very similar performance.)

5.6. Why not Value Prediction?

We have investigated value prediction [19] for SIs that

write non-renamed registers, and have observed that last

value prediction can be modified to accurately predict the

values of many SIs. Value prediction can potentially avoid

serializing all non-renamed register writes, not just those

that are EU. Unfortunately, SI value prediction has one ma-

jor problem: using a predicted value requires that prediction

to be delivered to every stage of the pipeline where it could

be used. Yet the complexities of doing so are exactly the

reason SIs are serialized in the first place. EU prediction, in

contrast, requires only one predicted bit to be delivered to

one stage (decode).

5.7. Performance of SI Mitigation

The rightmost bar of Figures 7 and 8 shows the speedup

of the hypothetical non-serializing configuration for the

modest and large window processors, respectively. For the

modest processor, avoiding serialization increases perfor-

mance by 3–17%. For the large window processor, the im-

provement is 5–33%.

The second bar for each benchmark shows the speedup

over the baseline when scoreboarding accesses to non-

renamed (including ASI-mapped) registers. Scoreboarding

results in a 0–5% performance improvement for the stan-

dard window, and 0–10% for the large window. This mech-

anism is relatively straightforward, and seems to attain a

performance/complexity trade-off that makes it plausible

for recent processors to have implemented it.

The third bar shows the performance of late-squash.

Apache and Zeus, which incur many off-chip misses, each

observe 5% and 13% speedups for the modest and large

window processors, respectively. Other benchmarks see lit-

tle benefit. To give a rough idea of extra power and front-

end bandwidth required, we observe that benchmarks fetch

6–28% more instructions, and execute 3–14% more instruc-

tion on the modest proessor. Thus, for Apache, 28% more

fetches and 14% more executions translate into 5% perfor-

mance. While late-squash is relatively simple to implement,

it is unlikely that the additional power is justified.

The performance of EU prediction for control registers

and TLB writes is shown as the fourth bar in Figures 7 and

8. EU register and TLB prediction on the modest proces-

sor perform within 5% of the ideal non-serializing config-

uration for all workloads. For the large window processor,

however, EU prediction only comes within 10% of the ideal

non-serial configuration. Closing this remaining gap would

require mechanisms to handle both non-EU writes, and im-

plicit writes to non-renamed registers (such as exceptions

and returns). Though not shown, EU prediction improves

OS performance on the modest processor by 15–18% for

Zeus, Apache, MTA, pgoltp and pmake, by 35% for OLTP,

and 6% for NFS. EU prediction for TLB writes incurs an

additional 0.2–1.0% of TLB lookups for instructions exe-

cuted behind a TLB write.

Using a 512-entry non-tagged EUPT, we observe con-

flicts on 0.5–4% of updates to the table with the standard

processor. The EUPT predicts that 60–95% of non-renamed
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Figure 8. 1k-Entry Instruction Window Processor (Idealized SPARC)

register writes are EU based on the previous execution of

that PC, and 99.1–99.8% of those prediction are correct. A

256-entry table observes conflicts on 15–18% of updates, an

accuracy of 92–97%, and marginally worse performance.

6. Related Work

Chou, et al., briefly mention SIs in the context of atomic

instructions and memory barriers for synchronizing multi-

ple threads [8]. While such instructions are potential SIs,

we focus on instructions within a single thread. Smolens,

et al., also briefly mention SIs, and report that the verifica-

tion latency between dual-redundant cores has a dramatic

impact on performance, largely due to SIs [28].

Similar to late-squash, runahead [11, 21] is a prefetch-

ing technique to continue execution during a cache miss.

Unlike the late-squash mechanism, runahead mode is not

entered until the missing instruction reaches the head of the

window, and thus, is unlikely to provide benefit for SIs.

Zilles, et al., [34], Keckler, et al., [17], and Jaleel, et

al., [15] each propose mechanisms for handling exceptions

without serializing. Such mechanisms are especially impor-

tant for software TLBs, and are orthogonal to our proposals.

7. Conclusions

We present, to the best of our knowledge, the first anal-

ysis of serializing instructions (SIs) in system-intensive

workloads. SIs, such as writes to control registers, have

many complex dependencies, making OoO execution of

these instructions difficult. SIs thus introduce a short se-

quential section into the instruction-level parallel execution

of a single thread. As Amdahl’s Law explains, frequent seri-

alization limits performance despite a processor’s ability to

extract parallelism the rest of the time. We analyze the fre-

quency of SIs across three ISAs, SPARC V9, X86-64, and

PowerPC, and conclude that frequent SIs are a major con-

tributor to the high CPI of operating system code, rivaling

the performance impact of misses to main memory. Sev-

eral additional factors are making the future outlook for SIs

even worse, including proposals for large instruction win-

dow processors, speculative and redundant multithreading,

and trap-and-emulate software virtual machines.

We examine the use of register values produced by SIs

and discover that 90% of control register writes are ef-

fectively useless (EU) within the first 128 instructions —

i.e., any consumers are unaffected by the new value of the
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write. We propose EU prediction, a novel technique that

speculatively allows consumers to execute OoO, and read a

stale control register value, but guarantees correct execution

nonetheless. With this technique, we improve OS perfor-

mance by 6–35%, and overall performance by 2–12%.

We further make two observations about ISA design.

First, avoiding sequential semantics, but instead requiring

programmer synchronization, provides little benefit. Ex-

plicit ordering can even hurt if execution of those SIs can

be optimized in some way. Second, providing a way to

identify, through the instruction opcode, which fields of a

control register are written by a particular static instruction

would eliminate a majority of EU writes.
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