
104

Multiprocessing and multithreading
are becoming ubiquitous even on single chips.
With increasing cache sizes, coherence misses
in such systems will account for a larger frac-
tion of all cache misses. As communication
latencies increase, this larger fraction of coher-
ence misses will cause significant and increased
performance losses. Tuning coherence proto-
cols for specific communication patterns and
applications can reduce communication laten-
cies. However, these optimizations increase a
protocol’s design complexity, making the pro-
tocol difficult to verify. A competing approach
requires parallel programmers to tune appli-
cations to work well with simpler protocols—
for example, by padding data structures to
reduce false sharing—at the cost of decreased
programmer productivity.

Speculative execution has successfully
improved performance in various scenarios.
We propose a new type of load speculation,
called coherence decoupling. This technique
uses speculation to reduce the effect of long
communication latencies without exacerbat-
ing the programmer’s task or complicating the
coherence protocol. Coherence decoupling
breaks value communication into two con-
stituent parts: the acquisition and speculative
use of the value, and the communication of
coherence permissions that indicate the value’s

correctness and validate its use. In traditional
cache coherence systems, these two aspects are
coupled within a single protocol. This cou-
pling requires strict acquisition of the coher-
ence permissions before the use of data, thus
serializing the two aspects. Coherence decou-
pling implements separate protocols for spec-
ulative use and for the eventual verification of
values. A speculative cache lookup (SCL) pro-
tocol provides speculative values as quickly as
possible for use in further computation while
a simple backing coherence protocol operates
in parallel and eventually produces the correct
values (as defined by the memory consistency
model), along with their requisite permissions.

Separating the SCL protocol and the coher-
ence protocol enables designers to tune and
optimize them independently, accelerating
communication with less complexity than
with conventional protocol optimizations.
Separation also lets the two protocols overlap.
Figure 1 shows that, unlike a conventional
coherence protocol, coherence decoupling
uses the SCL protocol to return the specula-
tive data early. This early return occurs if a
request matches the tag in the local cache, at
which point the processor simultaneously
launches the invalid-to-shared request via the
coherence protocol. When the coherence
protocol returns the correct value and its

Jaehyuk Huh
Doug Burger

The University of Texas at

Austin

Jichuan Chang
Gurindar S. Sohi

University of Wisconsin-

Madison

COHERENCE DECOUPLING IS A MICROARCHITECTURAL MECHANISM THAT

IMPLEMENTS SEPARATE PROTOCOLS FOR SPECULATIVE USE AND FOR THE

EVENTUAL VERIFICATION OF VALUES. THE TECHNIQUE REDUCES THE EFFECT OF

LONG COMMUNICATION LATENCIES WHILE MITIGATING THE BURDENS ON THE

COHERENCE PROTOCOL DESIGNER AND THE PARALLEL PROGRAMMER.

SPECULATIVE INCOHERENT CACHE
PROTOCOLS

Published by the IEEE Computer Society 0272-1732/04/$20.00  2004 IEEE

permissions, the cache controller compares
the returned value with the speculatively used
value, which is buffered in the miss status
holding register (MSHR). If they match, the
speculation was correct, and the coherence
latency will have been partially or fully over-
lapped with useful computation (shown in
Figure 1b as best-case latency). Nonmatching
values, however, require a rollback, resulting
in a performance loss that is as great or greater
than the loss resulting from no speculation
(worst-case latency in Figure 1b). The utility
of coherence decoupling, as with all specula-
tion policies, depends on the ratio of correct
to incorrect speculations, the benefits of suc-
cessful speculations, and the cost of recovery.

We evaluated several SCL protocols with
varied speculation accuracies, while main-
taining a simple invalidation-based coherence
protocol for correctness. The basic SCL pro-
tocol merely accesses the data in the local
cache if the tag matches, which greatly reduces
performance losses resulting from false shar-
ing. A second category of SCL protocols are
variants of a write-update protocol. These pro-
tocols trade off increased speculation accura-
cy for increased interprocessor traffic, used to
distribute speculative writes. Unlike canonical
write-update protocols, which suffer from
design complexity, write-update SCL proto-
cols change data only in invalid lines, making
the protocols simple and easy to verify.

Accelerating coherent accesses
Although coherence decoupling is a new

approach, much previous work had similar
goals. The most relevant prior work falls into
three broad categories:

• customized coherence protocols that
reduce communication latency by adapt-
ing to specific sharing patterns and
applications;1

• speculative coherence operations that
predict coherence operations (not oper-
ation results) and initiate speculative
invalidations or upgrades accordingly;2

and
• speculation on the outcome of events in

a multiprocessor execution, including
speculative synchronization3 and specu-
lation on the execution’s conformance to
a strong memory model.4

Coherence decoupling differs from prior
work in that it both speculates on coherence
results (data values) and supports decoupling
performance and correctness protocols (sim-
ilar to token coherence5). The technique is
essentially a form of load value prediction,6

but one that uses a different mechanism to
obtain speculative values. (It uses invalid
cached values rather than values from a spec-
ulation table or state machine.) Using invalid
cached values permits separation of the

105NOVEMBER–DECEMBER 2004

Coherence
miss detected

Coherence
miss detected

Retried (on
misspeculation)

Verification
completed

Speculative value obtained
(SCL protocol completes)

Correct value and
permission arrive

(Coherence protocol
completes)

Best-case latency

Time

Worst-case latency

Time

Permission and value arrive
(Cache coherence operation completes)

Miss latency

Cache coherence protocol latency

Coherence protocol latency

SCL protocol latency

(a)

(b)

Figure 1. A conventional cache coherence protocol (a); coherence decoupling (b).

coherence protocol into the two protocol
classes. Coherence decoupling speculates cor-
rectly when data is falsely shared or when it is
updated by a silent store, a temporally silent
store,7 or a speculative write update.

When the SCL protocol returns a value
sooner than the coherence protocol, the com-
putation using the value can overlap the
coherence operation. Accurate SCL protocols
hide coherence latencies, allowing the use of
simpler but lower-performance coherence
protocols without a commensurate perfor-
mance penalty.

Coherence decoupling architecture
To support coherence decoupling, the sys-

tem architecture must

• split, breaking a memory operation into a
speculative read and a coherence operation;

• compute, providing mechanisms to exe-
cute with the speculative value; and

• recover, supporting an incorrect specula-
tion detection and recovery.

The first task, splitting a memory operation
into two suboperations, is straightforward.
For the second task, the same mechanisms
that support other forms of speculative exe-
cution can support speculative computation,
although the growing coherence latencies
require mechanisms that can buffer specula-
tive state across hundreds to thousands of
instructions. For the third task, the recovery
mechanism buffers the speculative value in an
MSHR, compares it with the value the coher-
ence protocol returned, and recovers if a spec-
ulation is incorrect.

Correctness of coherence decoupling
Using a speculative value from an SCL pro-

tocol—and later verifying the speculation via
the coherence protocol—is analogous to car-
rying out a memory operation speculatively,

assuming that using the speculative value will
not violate the memory consistency model.
As Martin et al. observed, implementing value
speculation correctly requires the same hard-
ware as that used for aggressive implementa-
tions of sequential consistency.8 This hardware
support permits correct implementation of
coherence decoupling without violating the
memory consistency model.

SCL protocols for coherence decoupling
Backed by a simple and easily verifiable

coherence protocol, many different perfor-
mance-improving SCL protocols are possible.
Each SCL protocol has a read component and
an update component (which might be null).
The read component obtains speculative val-
ues, and the update component speculatively
sends writes to invalid cache lines (possible
sharers) to improve the accuracy of future
speculations. As long as the system can recov-
er from an invalid value that changed, it is
always safe to speculatively write into lines
that are also in an invalid state. Table 1 sum-
marizes the SCL protocols that we evaluated.
Many other protocols are possible; evaluations
for some appear in the literature.9

SCL protocol read component. The first read
component policy simply returns the value in
the local cache if the block is present (that is,
if the invalid cached tag matches that of the
load) even though the coherence state is
invalid. We call this basic coherence decou-
pling (CD). This protocol speculates correct-
ly if the accessed word is falsely shared or if it
is updated by a silent store or temporally silent
stores, thus simplifying the programmer’s task
of code-tuning to reduce false sharing.

The next read policy, called CD-F, in which
F stands for filter, adds a program counter-
indexed confidence predictor to throttle low-
confidence speculations. It reduces the
number of times the system uses speculation

106

MICRO TOP PICKS

IEEE MICRO

Table 1. SCL protocol components.

SCL component Coherence decoupling policy Description
Read Basic (CD) Use the locally cached value
Read Filtered (CD-F) Add a PC-indexed confidence predictor to filter speculations
Update Invalidation-all update (CD-IA) Use invalidation piggyback to update all invalid blocks
Update With N writes (CD-N) Update sharers after N writes to a block (N = 5 in evaluation)

but improves the average speculation accura-
cy over that of the CD protocol.

In general, an SCL protocol’s read compo-
nent could return a value from an invalid (or
valid) line anywhere in the system. The pro-
tocol’s usefulness depends on the read laten-
cy and accuracy. In a directory-based system,
for example, the SCL protocol could first
access the local invalid line and then the home
memory, or even a geographically proximate
remote cache in a hierarchical multiprocessor
built from chip multiprocessors. In this work,
we consider flat, snooping symmetric multi-
processors (SMPs) only, because our simula-
tion infrastructure cannot evaluate large-scale
or hierarchical systems.

SCL protocol update component. An SCL pro-
tocol includes an update component to
improve the speculation accuracy for truly
shared data. SCL updates achieve this benefit
by writing updates to invalid lines around the
system. The extra bandwidth consumed is a
trade-off for increased speculation accuracy.

A simple update policy, CD-IA (where IA
stands for update at all things invalidated), pig-
gybacks the write value along with the writer’s
invalidation message. In a bus-based system,
CD-IA updates the value in all caches that have
the block in an invalid state, not just those tran-
sitioning from a shared to an invalid state. The
other update policy, CD-N, broadcasts the
dirty line after the writer has made N writes.
Such updates require additional messages.

Both protocols are variants of a write-

update protocol, having different bandwidth
requirements and offering different levels of
accuracy. They differ from a canonical write-
update coherence protocol because the spec-
ulative updates are completely nonblocking
for the writer and also because the updates
could be dropped at any point in the system
without affecting correctness.

Performance evaluation
We ran our experiments on MP-Sauce, an

execution-driven full-system multiprocessor
timing simulator, limiting the simulations to
16-node SMP systems. We simulated three
commercial applications and five scientific
shared-memory benchmarks from the Splash2
suite.

Coherence decoupling accuracy
Figure 2 shows the ratio of correct to incor-

rect CD speculations (for all coherence miss-
es) using a 4-Mbyte cache with 128-byte
blocks, for the policies described in Table 1. In
the CD-N experiment, we updated the invalid
sharers after the first five writes to a line.

All SCL protocols except for CD-F specu-
late on every coherence miss. CD-F uses the
confidence filter to avoid issuing speculations
that are likely incorrect. The base CD proto-
col makes more correct speculations than CD-
F, but at the expense of more mispredictions.
However, because of silent stores and false shar-
ing, this simple protocol provides accuracy lev-
els approaching those of many update
protocols. For three commercial benchmarks

107NOVEMBER–DECEMBER 2004

SPECWeb99 TPC-W SPECjbb2000 Barnes Ocean Water-Nsq FFT Radix

0

C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N C
D

C
D

-F
C

D
-I

A
C

D
-N

20

40

60

80

100

A
cc

ur
ac

y
(p

er
ce

nt
ag

e)

Incorrect CorrectNo speculation

Figure 2. Coherence decoupling accuracy.

and Barnes, the base CD protocol can predict
correct values for more than 70 percent of
coherence misses. SCL Update protocols may
occasionally lose accuracy by sending an
update too early. For example, a speculative
update may write a new value into an invalid
line, following which the writer changes its
local value back (a temporally silent store) but
does not broadcast the update. In this case, the
speculative reader will read the (now incorrect)
first update and not the correct second update,
whereas in a non-update protocol the reader
would have read the original value, which
would also have resulted in a correct specula-
tion. Overall, coherence decoupling appears
more accurate for the commercial workloads,
with the simplest CD protocol performing as
well as the more complex protocols, except on
a few of the simpler scientific codes.

Coherence decoupling timing results
Table 2 shows the speedups over the base-

line system (that is, the simple invalidation
protocol with no coherence decoupling or
speculation). We modeled a flushing mecha-
nism to recover from misspeculations. The
mechanism flushes all instructions younger in
program order than the misspeculated one
when the violation is detected (a rolling flush)
rather than waiting until the violation reach-
es the head of the reorder buffer.

Table 2’s rightmost column places an upper
bound on the performance of coherence
decoupling in the simulated system. This
model treats all cache accesses that would have
been coherence load misses as hits.
SPECWeb99 and Ocean show large ideal ben-

efits (34.6 and 34.5 percent), but Barnes
shows a mere 1.4 percent because of its neg-
ligible level-two cache miss rates.

Coherence decoupling accuracy rates are
high, partially or fully tolerating a third to one
half of coherence misses. The speedups reflect
those results for several benchmarks;
SPECjbb2000 in particular reaches more than
half of its ideal performance improvement for
most of the policies. Overall, with only sim-
ple mechanisms, the base CD policy achieves
a mean speedup of 6.6 percent, which is more
than a quarter of the ideal speedup. In larger-
scale systems (and particularly cache-coher-
ent, nonuniform memory access systems), the
speedups will likely be much higher. In those
systems, remote coherence latencies—espe-
cially those that take multiple hops across the
network—will have a more deleterious effect
on performance.

Coherence decoupling is one of a set of
new microarchitectural techniques that

ease the burden on the parallel programmer,
in addition to improving performance. Future
work in this area focuses on two main direc-
tions: improving SCL protocols to further
increase speculation accuracies and enabling
more efficient recovery from misspeculations.
Another open direction is the utility of coher-
ence decoupling for both hierarchical multi-
processors and multiprocessors with
directory-based cache coherence. MICRO

Acknowledgments
This work was supported in part by the US

Defense Advanced Research Projects Agency
under contracts NBCH30390004 and
F33615-03-C-4106; the National Science
Foundation under grants EIA-0071924,
CCR-0311572, and CCR-9985109; the Intel
Research Council; an IBM Faculty Partner-
ship Award; and the University of Wisconsin
Graduate School.

References
1. D. Lenoski et al., “The Stanford DASH Mul-

tiprocessor,” Computer, vol. 25, no. 3, Mar.
1992, pp. 63-79.

2. A.R. Lebeck and D.A. Wood, “Dynamic Self-
Invalidation: Reducing Coherence Overhead
in Shared-Memory Multiprocessors,” Proc.
22nd Int’l Symp. Computer Architecture

108

MICRO TOP PICKS

IEEE MICRO

Table 2. Speedups for coherence decoupling

protocols over traditional protocols (as a

percentage), by policy.

Benchmark CD CD-F CD-IA CD-N5 Optimal
SPECWeb99 13.8 11.0 13.2 14.9 34.6
TPC-W 1.2 2.6 2.3 1.4 17.8
SPECjbb2000 16.6 15.8 13.5 17.1 26.3
Barnes 0.6 0.4 0.7 0.8 1.4
Ocean 6.9 4.7 8.2 6.0 34.5
Water-Nsq 2.1 1.7 2.8 0.7 17.4
FFT 5.1 4.2 6.1 4.6 21.4
Radix 6.8 3.6 7.6 6.3 42.4
Mean 6.6 5.5 6.8 6.5 24.5

(ISCA 95), IEEE CS Press, 1995, pp. 48-59.
3. R. Rajwar and J.R. Goodman, “Speculative

Lock Elision: Enabling Highly Concurrent
Multithreaded Execution,” Proc. 34th Int’l
Symp. Microarchitecture (Micro 34), IEEE
CS Press, 2001, pp. 294-305.

4. K. Gharachorloo et al., “Memory Consisten-
cy and Event Ordering in Scalable Shared-
Memory,” Proc. 17th Int’l Symp. Computer
Architecture (ISCA 90), IEEE CS Press, 1990,
pp. 15-26.

5. M.M.K. Martin, M.D. Hill, and D.A. Wood,
“Token Coherence: Decoupling Perfor-
mance and Correctness,” Proc. 30th Int’l
Symp. Computer Architecture (ISCA 03),
IEEE CS Press, 2003, pp. 182-193.

6. M.H. Lipasti, C.B. Wilkerson, and J.P. Shen,
“Value Locality and Load Value Prediction,”
Proc. Architectural Support for Programming
Languages and Operating Systems (ASP-
LOS 96), ACM Press, 1996, pp. 138-147.

7. K.M. Lepak and M.H. Lipasti, “Temporally
Silent Stores,” Proc. 10th Int’l Conf. Archi-
tectural Support for Programming Lan-
guages and Operating Systems (ASPLOS
02), ACM Press, 2002, pp. 30-41.

8. M.M.K. Martin et al., “Correctly Implement-
ing Value Prediction in Microprocessors that
Support Multithreading or Multiprocessing,”
Proc. 34th Int’l Symp. Microarchitecture
(Micro 34), IEEE CS Press, 2001, pp. 328-337.

9. J. Huh et al., “Coherence Decoupling: Mak-
ing Use of Incoherence,” Proc. 11th Int’l
Conf. Architectural Support for Programming
Languages and Operating Systems (ASP-
LOS 04), ACM Press, 2004, pp. 97-106.

Jaehyuk Huh is a PhD student in computer
science at The University of Texas at Austin.
His research interests include microarchitec-
ture, multiprocessors, and operating systems.
Huh has a BS from Seoul National Universi-
ty, Korea, and an MS from the Department
of Computer Sciences at The University of
Texas at Austin. He received an IBM PhD
research fellowship in 2004.

Doug Burger is an associate professor of com-
puter sciences at The University of Texas at
Austin. His research interests include high-
performance, power-efficient, technology-
scalable microprocessors. Burger has a BS
from Yale University and an MS and a PhD

from the University of Wisconsin, all in com-
puter science. He is an Alfred P. Sloan Foun-
dation Fellow, a senior member of the IEEE,
and a member of the ACM.

Jichuan Chang is a PhD student in comput-
er sciences at the University of Wisconsin-
Madison. His research interests include
multiprocessor cache coherence and specula-
tion in chip multiprocessors. Chang has a BS
and an MS from Beijing University, both in
computer sciences.

Gurindar S. Sohi chairs the Computer Sci-
ences Department at the University of Wis-
consin-Madison. His research interests include
the design of high-performance computer sys-
tems. Sohi has a BE in electrical and electron-
ics engineering from the Birla Institute of
Science and Technology, Pilani, India, and an
MS and a PhD in electrical and computer
engineering from the University of Illinois. He
is a Fellow of the ACM and the IEEE.

Direct questions and comments about this
article to Doug Burger, Department of Com-
puter Sciences, The University of Texas at
Austin, 1 University Station C0500, Austin,
TX 78712; dburger@cs.utexas.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

109NOVEMBER–DECEMBER 2004

