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Abstract

Wide, deep pipelines need many physical registers
to hold the results of in-flight instructions. Simulta-
neously, high clock frequencies prohibit using large
register files and bypass networks without a significant
performance penalty. Previously proposed techniques
using register caching to reduce this penalty suffer
from several problems including poor insertion and
replacement decisions and the need for a fully-associa-
tive cache for good performance. We present novel
mechanisms for managing and indexing register caches
that address these problems using knowledge of the
number of consumers of each register value.

The insertion policy reduces pollution by not cach-
ing a register value when all of its predicted consumers
are satisfied by the bypass network. The replacement
policy selects register cache entries with the fewest
remaining uses (often zero), lowering the miss rate. We
also introduce a new, general method of mapping phys-
ical registers to register cache sets that improves the
performance of set-associative cache organizations by
reducing conflicts. Our results indicate that a 64-entry,
two-way set associative cache using these techniques
outperforms multi-cycle monolithic register files and
previously proposed hierarchical register files.

1. Introduction

The physical register file and associated bypass
networks represent a substantial barrier to the imple-
mentation of future high-performance processor cores.
Such processors are likely to be deeply pipelined (to
support high clock frequencies) and multiple-issue,
resulting in a large number of instructions in flight. To
support precise, out-of-order execution, the results of
all in-flight instructions must be maintained, demand-
ing a large number of physical registers. The clock fre-
quency, however, will limit the amount of storage that
can be addressed in a single cycle, resulting in
increased register file latency. The read latency is par-
ticularly problematic since it appears in both the
branch misprediction and load-hit speculation
loops [3]. Furthermore, to allow unrestricted issue of
dependent operations, the total number of stages in the
bypass network must increase with the register file
latency. Bypass networks are dominated by long wires
and wide multiplexors, which do not scale well to high
frequencies. A limited bypass network [1] causes the

performance impact of the register file latency to be
even more severe.

One solution to this problem is to use a small reg-
ister cache to supply the majority of values to the exe-
cution core at low latency. The problem then becomes
maintaining the right values within the cache in order
to maximize its hit rate, and, consequently, the overall
performance. Previous register cache proposals spec-
ify policies—LRU replacement, for example—that
result in poor decisions about which values should
reside in the register cache. In addition, fully-associa-
tive caches have also been specified in order to mitigate
the high conflict miss rate resulting from mapping a
large number of register values onto a small cache
structure. We have found that these schemes require
unreasonably large and/or associative caches to achieve
performance comparable to the slow, monolithic regis-
ter file they replace.

We propose use-based register cache manage-
ment, consisting of insertion and replacement policies
that determine the usefulness of a register value in
terms of the number of remaining readers of that value.
The initial number of readers is determined specula-
tively using a degree of use predictor [5]. We exploit
this information to cache only those registers with
remaining uses. Our insertion policy filters from the
cache register values that have bypassed to all of their
expected consumers, reducing cache pollution caused
by dead values. A remaining-use count, kept for each
cached register value, is updated as subsequent uses are
satisfied by the cache. When a replacement is neces-
sary, the cached value with the fewest remaining uses
(ideally zero) is selected as a victim, minimizing subse-
quent misses resulting from the replacement.

Our second major contribution is decoupled index-
ing, a new, general method for indexing set-associative
register caches to reduce conflicts. Rather than allow-
ing the cache set to be determined in an ad hoc manner
from the physical register identifier, decoupled index-
ing assigns a set to each value according to a policy
designed to minimize conflicts. This assignment
occurs as part of the normal rename process; in addi-
tion to receiving a physical register, each architectural
register is also renamed to a register cache set. We
evaluate several index assignment policies, including
some that exploit the predicted use information.
Decoupled indexing reduces conflict misses by 40% in
a two-way set-associative cache, accounting for 62% of
the performance benefit of using a four-way cache.
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In the next section, we motivate register caching
with a discussion of physical register lifetimes. We
present previously proposed register file optimizations
in this context and select a general register caching
framework upon which our policies are built.
Section 3 presents use-based insertion and replacement
policies. Decoupled indexing is presented in Section 4.
We perform an evaluation of our techniques in
Section 5 before concluding in Section 6.

2. Register Storage Hierarchies

Due to the central nature of the physical register
file in contemporary architectures, much research has
been aimed at optimizing this structure, particularly
with respect to its access time. A large portion of this
research focuses on banking a monolithic register file,
dividing its bandwidth (and sometimes capacity)
requirements among several smaller structures and/or
reducing the number of ports to each bank. This work
is generally orthogonal to our own: many of those
schemes are equally applicable to a register cache as a
register file. Instead, we focus on prior work on regis-
ter file hierarchies.

Hierarchical (or multi-level) register file schemes
all provide for different classes of registers as a means
of reducing the average register read latency. Typi-
cally, a small number of registers are available at a low
latency while a larger number are available at a longer
latency. The methods differ on such attributes as the
structure of the register hierarchy, whether inclusion is
enforced, and, most importantly, how values are man-
aged within the hierarchy. Some of these schemes
depend on explicit software assignment of values to
levels in the hierarchy [11, 13, 16]. Such schemes not
only necessitate compiler support, but also require
exposing the register file implementation to the ISA.

Hardware-managed register hierarchies exploit the
fact that a register’s contents are used for a brief por-
tion of its total lifetime. The lifetime of a physical reg-
ister may be divided into three phases, shown in
Figure 1. The first phase, or empty time, exists
between the allocation of a physical register to an
instruction and the writing of a value into the register.
The relatively short live time begins when the register
is written and ends with the last use of the result by a
consumer instruction. The dead time comprises the
time from the last use until the register is freed; during

this time, the processor can not guarantee that no addi-
tional uses will occur, so the value must be maintained.

An important observation is that values are only
read during their live time. Prior to this point, the
value does not exist, and afterwards, it is not read.
Given the short duration of the physical register live
time compared with its full lifetime, the number of val-
ues that may be read at any time should be small com-
pared with the number of physical registers. Figure 2
compares cumulative distributions of the number of
simultaneously live values and the number of allocated
physical registers in an aggressive out-of-order proces-
sor (details in Section 5.1). The median number of live
values is less than 20% of the number of allocated
physical registers. These results also show that 90% of
the time, 56 storage locations are sufficient to contain
all live values. The various hardware-managed
schemes may be differentiated by what phase of the
register lifetime they attack to achieve this reduction in
the number of registers required.

2.1. Reducing value storage lifetimes

González et al. proposed virtual-physical registers
to avoid the allocation of a storage location until the
value is available [7]. This delay eliminates the regis-
ter empty time, allowing the physical register file to be
smaller. Unfortunately, there are complications in
translating from a virtual-physical register to an actual
physical register (required to read the value) and in
avoiding deadlock from overcommitting the actual
physical registers. Because no additional structure
keeps values for recovery purposes, this scheme is not
strictly a hierarchical register file; however, it does
illustrate the reduction in register file size possible by
eliminating the register empty time.

Balasubramonian et al. take a different approach,
choosing instead to target the physical register dead
time [2]. Registers determined to be dead are moved

Figure 1. Lifetime of a physical register divided into three
phases. The number above each phase represents the average of the
per-benchmark median lengths of that phase in clock cycles deter-
mined by timing simulation (see Section 5.1).
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Figure 2. Comparison of allocated and live registers. Cumulative
distributions over the sequential execution of the SPECint 2000
benchmarks showing physical registers allocated and those contain-
ing live values.  The 90th percentile point is labeled.



from the main (L1) register file to a backup (L2) regis-
ter file, reducing the capacity demands on the L1 file.
A register is eligible for transfer when it has no pend-
ing (renamed but unexecuted) consumers and its archi-
tectural register has been reassigned. This latter
requirement reduces the fraction of the register dead
time that can be eliminated. Control mis-speculations
and exceptions require some L1 registers to be recov-
ered from the L2. To avoid high recovery penalties,
values are moved only when the number of free L1 reg-
isters falls below a threshold. This scheme requires
substantial extra hardware for tracking the locations of
different values and complex recovery procedures in
the event of a mis-speculation.

The short average register live time indicates the
existence of temporal locality in register accesses, sug-
gesting that a cache would be beneficial. By storing a
subset of register values, a register cache [3, 6, 15] can
avoid both the empty time and dead time associated
with physical registers. As register cache entries are
allocated when they are written, they do not have any
empty time. Also, the natural replacements that occur
as new values are written reduces the dead time. By
storing values during their live times only, a small, fast
cache can still supply most of the values required for
execution. Register caching schemes, then, may be
differentiated by how they determine the set of live val-
ues. The next section covers register caching in more
detail, presenting a framework that encompasses our
scheme and two previous register caching proposals.

2.2. Register cache framework

Figure 3 depicts a pipeline diagram illustrating the
relationships among dependent instructions from issue
through writeback in a machine with a register cache
and a two-cycle register file. Operands are communi-
cated through either the bypass network (dotted lines)
or storage (solid lines). The bypass network supplies
values until they are available from storage (register

file or cache). Without a cache, the bypass network
would need more stages to cover the longer register file
read and write latencies; otherwise, issue restrictions
would be necessary to ensure that no instructions
required a value not available from either the register
file or bypass network.

Adding a register cache reduces the read latency
for most instructions (I1-I4a). The register cache takes
the place of the register file, providing the access band-
width required by the execution core. Each instruction
implicitly assumes that its inputs reside in the register
cache, which is accessed in the cycle after an instruc-
tion is issued (e.g., cycle 3 for I2). Register cache
writes occur immediately after execution (e.g., cycle 5
for I2). Also, note that register cache entries must be
invalidated when their corresponding physical registers
are freed to prevent incorrect values from being sup-
plied.

Live values may be evicted from the register cache
at any time due to conflicts or capacity limitations.
Within this framework, the register file assumes the
role of ensuring that no values are lost; therefore, all
values must be written to the register file (the same is
not true of the cache). Thus, we refer to the register file
as a backing file when coupled with a register cache.
The backing file must be able to support the full write
bandwidth of executing instructions, although its
latency is not critical. Because the register cache filters
the vast majority of reads from the backing file, in
those rare instances in which a value must be obtained
from the backing file, a single read port (which can be
shared with one of the write ports) suffices. By virtue
of the significantly lower number of ports—as little as
one-third of the original number—a backing file will
be smaller and faster than a register file of the same
capacity operating without a cache.

Some fraction of instructions will not be able to
obtain an input operand from the register cache, result-
ing in a register cache miss. Referring to Figure 3, we
see that instructions issuing more than two cycles (i.e.,

Figure 3. Operation of a single-cycle register cache with a two-cycle backing file. Dotted lines indicate bypassed values; solid lines, values
communicated through storage (i.e., register file or cache). I2-I4 are data-dependent on I1 only; I5b is data-dependent on I4b. A two-stage bypass
network supplies the inputs for I2 and I3. Instructions issuing with and after I4 can obtain the value through the register cache. I4a shows the nor-
mal hit case. The star indicates a register cache miss on I4b (i.e., the value from I1 is not present in the cache). By the time the cache miss is
detected, I5b has issued. I4b goes to the file for the result while instructions issued in cycle 5 (I5b) are squashed. Instructions dependent on I4b
become eligible for reissue as the register file read finishes, and they obtain their input value from the bypass network at the beginning of cycle 9.

execute

I2

I3

write
Rcache

write
regfile

read
Rcache

issue execute
write

Rcache
write

regfile
read

Rcache

issue execute
write

Rcache
write

regfile
read

Rcache

issue execute
write

Rcache
write

regfile
read

Rcache

issue execute
read

regfile
write

Rcache
write

regfile
read

Rcache

issue execute
write

Rcache
write

regfilesquash

issueI1

I4a

I4b

I5b

read
regfile

reissue

P

Cycle 1 2 3 4 5 6 7 8 9 10 11

read
Rcache



the number of bypass stages) after a parent instruction
can experience a register cache miss on the communi-
cated value. Because the backing file stores all values,
correct execution is guaranteed by retrieving the
needed value from the backing file. Once obtained, the
value is placed in the register cache (to avoid subse-
quent misses) in parallel with its use by the instruction
that caused the miss (e.g., I4b’s input is written into the
register cache during cycle 8).

Register cache misses cause further complications
because, by the time a miss is detected, subsequent
dependent operations may have already issued assum-
ing their parent would find its inputs in the register
cache. When this assumption fails, these instructions
must either stall until their parent completes or replay
(i.e., reissue at a later time). This situation is analo-
gous to the result of a data cache miss under load-hit
speculation [14]. Stalling the dependent instructions is
difficult because the issue pipelines must buffer them
while allowing other, independent instructions to pass
them. Replay-based solutions are also complicated
although several different processors have already
implemented them to support load-hit speculation (e.g.,
the Alpha 21264 [10]). The consequences of a register
cache miss and the miss model are explored in more
detail in Section 5.2.

The register caching framework just presented
makes no assumptions about the organization of the
register cache, its policies (e.g., replacement policy), or
how it is accessed. Previously proposed caching
schemes that fit within this framework [6, 15] suffer
from two primary shortcomings. The first is their use
of fully-associative register caches. Using such caches
for an 8-wide machine requires 24 associative ports
(two read and one write per issue port), resulting in
access latencies that may not provide enough advan-
tage over the direct-mapped, full-sized register file the
caches were intended to replace. The larger issue,
however, is their use of an LRU strategy to manage the
cache contents, which, as we will show in Section 5.4,
fails to capture the behavior of register accesses. In the
next two sections, we present our policies for manag-
ing and indexing register caches more intelligently.

3. Use-Based Register Cache Management

The critical issue in the design of any caching
scheme is what needs to be cached. Our key observa-
tion is that only values that have yet to be read by unex-
ecuted consumers need to be cached. Given perfect
a priori knowledge of the upcoming uses of values,
only live values need be maintained in the cache,
reducing the required cache size. In this section, we
propose new insertion and replacement policies that
attempt to keep only live values in the cache.

Central to these policies is the ability to determine
the “liveness” of a given value. A live value is one that
has outstanding uses; knowledge of upcoming uses
enables us to assess the need to cache each value. Our

scheme tracks the remaining uses for values while the
values are present in the bypass network or register
cache. Each entry within the register cache is aug-
mented with the number of uses of the stored value
remaining. As the value is supplied to consumers by
the cache, the remaining-use count is reduced. When
the count is zero, the value is no longer live and its
cache entry may be reclaimed when needed. The inte-
gration of the augmented register cache into the issue-
execute pipeline is illustrated in Figure 4.

The rest of this section details use-based register
cache management. The insertion and replacement
policies are the topics of Section 3.1 and Section 3.2,
respectively. The process of tracking the number of
remaining uses for each value is detailed in
Section 3.3. Section 3.4 covers the implications of
incorrect use information.

3.1. Register cache insertion policy

The register cache insertion policy seeks to avoid
caching values that will never be read from the cache.
Since the bypass network supplies many input values
(57% in our simulations), our policy simply avoids
writing those values that have no uses left after bypass-
ing. Referring back to the pipeline diagram of
Figure 3(b), we see that prior to an executing instruc-
tion (e.g., I1) writing its result into the register cache,
any consumers that issued one cycle later (e.g., I2) are
reading from the register cache. Simultaneously, the
bypass circuitry detects that their input value is on the
bypass network rather than in the cache. If these con-
sumers comprise all of the predicted consumers of the
parent instruction, the results of the parent instruction
need not be written into the register cache.

Only next-cycle consumers can affect the cache
write decision of a parent instruction. By the time a
consumer instruction issuing two cycles after its parent
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Figure 4. Register cache read pipeline. The register cache (dark
gray) is accessed after an instruction issues. On a hit, the value is
supplied to the ALU and the use count of the cached value is decre-
mented. On a miss, the tag is sent to the backing register file, and the
issue port is stalled; an arbiter is used to resolve simultaneous misses
on multiple values by delaying some misses.



(e.g., I3) obtains its input from the bypass network, the
parent instruction will have already commenced writ-
ing into the register cache. Despite this limitation, we
find that many values can avoid writing the register
cache using this mechanism due to the high proportion
of consumer instructions that issue immediately after
their parents and the low average number of uses of
each value.

This policy is very similar to a heuristic proposed
by Cruz et al. [6] with an important advantage. Their
heuristic, labeled non-bypass, wrote a value into the
register cache if it was not bypassed to any instructions
prior to the write occurring. Since most values have a
single consumer, this scheme was intended to keep
these values from polluting the register cache when
that consumer was satisfied from the bypass network.
However, values with many consumers that bypass to
only some of their consumers prior to the write are also
filtered from the cache, resulting in additional misses.
In effect, this scheme uses bypassing as a rough proxy
for the number of remaining uses; our scheme tracks
the remaining uses explicitly.

3.2. Register cache replacement policy

While we would ideally like to be able to cache all
values with remaining uses, the capacity and/or organi-
zation of the cache may preclude this. Therefore, a
replacement policy is also necessary. As we will show
in Section 5.4, LRU is a poor choice as a replacement
policy for a register cache. However, the availability of
future use knowledge (in the form of remaining-use
counts) allows for use-based victim selection.

To minimize the number of register cache misses,
we select the victim with the smallest number of
remaining uses. In the event of a tie, we fall back on
LRU or an approximation thereof. Most of the time
(84%), the victim selected in this manner has zero
remaining uses, and evicting the value does not result
in a cache miss. For victims with one or more uses
remaining, at least one miss will result from the evic-
tion (provided the use information is accurate).
Although a value is brought back into the register
cache after a miss, the use count is lost and assumed to
be zero (see the discussion in Section 3.3), making it
the first choice for subsequent replacements. Thus, the
greater the number of remaining uses a value has, the
more misses it can cause.

3.3. Counting remaining uses

The use-based policies we have just described
depend upon knowledge of a value’s future uses, which
we can obtain through prediction. Degree of use
prediction [5] employs a history-based predictor that
associates the number of consumers of an instruction’s
result with that instruction’s address and some branch
information. When subsequent instances of the
instruction are observed, the predictor recalls the num-

ber of uses of the instruction’s result that occurred pre-
viously, which can be used to initialize the remaining-
use count. The degree of use predictor used for this
work achieves an average accuracy of 97%.

Predictions are unavailable for some values
because the predictor is finite and must be trained prior
to being able to supply predictions. For these values,
we assign an implicit prediction, which we call the
unknown default. A similar situation arises after a reg-
ister cache fill because the backing file does not contain
use information. Maintaining use counts in the back-
ing file adds significant complexity (the need to update
the backing file on every use) for little benefit (since
fills are infrequent). As in the case of an unknown ini-
tial degree of use, we set the remaining-use count to an
algorithm parameter called the fill default. Any differ-
ence between the actual number of remaining uses and
the default assumed in these cases manifests in the
same way as an initial degree of use misprediction (see
Section 3.4). The effect of these default values is dis-
cussed in Section 5.3.

Once the remaining-use count has been initialized,
it must be updated both before and after a value is writ-
ten into the register cache. The process of updating the
remaining-use counts for cached registers is straight-
forward because the reads must access the cache.
However, special care must be taken to maintain the
use counts for values that are bypassed prior to being
written into the register cache.

Finally, we note that it is desirable to pin high-use
values in the register cache. The degree of use predic-
tor uses the maximum representable number of uses to
denote that and all higher numbers of uses. If a single
value has millions of uses, subtracting from the satu-
rated maximum is not the desired behavior due to the
high cost of evicting that value. Therefore, for values
with the maximum predictable degree of use, the
remaining-use count is not updated. Such values
remain pinned in the cache until the corresponding
physical register is freed. The effect of varying the
maximum degree of use is studied in Section 5.3.

3.4. Incorrect use information

Inaccurate remaining-use counts arise from degree
of use mispredictions, the use of unknown and fill
defaults, and the counting of wrong-path uses resulting
from control-flow mis-speculation. These events result
in disagreements between the number of remaining
uses recorded in the register cache and the number
actually outstanding. The differences manifest in two
ways. First, a value might be present in the register
cache with predicted remaining uses that will never be
observed. We refer to these as stale values. The stor-
age of stale values inflates the number of register cache
entries required. Alternatively, the cache state could
indicate that a value has no remaining uses even though
that value is still live. These falsely-dead values can
lead to register cache misses if the values are evicted.



The impact of stale values is limited by two fac-
tors. Most importantly, the invalidation of register
cache entries when the corresponding physical regis-
ters are freed (necessary to ensure correctness) bounds
the lifetime of stale values in the register cache to the
dead time of the physical register (see Section 2).
Also, most stale values have only a small number of
specious remaining uses once their actual uses have
been counted, making them susceptible to the normal
replacement process.

The potential cost of falsely-dead values is also
mitigated in practice for two reasons. First, values
remain in the cache—even if their remaining-use count
reaches zero—until they are explicitly chosen as a vic-
tim by the replacement policy. Thus, unless there is
actual contention among live values for entries in the
same set as the falsely-dead value, the cache will con-
tinue to supply the value. Second, on a wide-issue
machine, many consumer instructions obtain their
inputs from the bypass network. Therefore, especially
for values with few uses, all of those uses may be satis-
fied without incurring a register cache miss, even if the
predicted number of uses was too low.

4. Decoupled Indexing

As we will see in Section 5, conflict misses are a
significant portion of all register cache misses, result-
ing in performance that is highly dependent on cache
associativity. Previous schemes have addressed this
issue by using fully-associative structures [3, 6, 15],
which are expensive in both area and latency. Also, the
implementation of our replacement policy requires that
the entry with the fewest remaining uses be identified,
a costly task when the associativity is high.

These factors motivate our proposal of decoupled
indexing, a technique that assigns register cache set
indices intelligently to improve the performance of set-
associative register caches. In this section, we describe
why standard indexing methods are inappropriate for
register caches. Then, we present a general mechanism
that enables an arbitrary register cache set to be
assigned to a value at the same time a physical register
is assigned (i.e., well before the value exists). Finally,
we discuss specific algorithms for making these assign-
ments with the goal of reducing conflict misses. As in
the register cache policies of Section 3, use informa-
tion will play an important role.

4.1. Cache indexing

All caching schemes demand that values have a
unique identifier so that the presence of the desired
value in the cache may be ascertained. A standard
indexing scheme uses a portion of this identifier to gen-
erate the set index. For example, the low order bits of
an address (the identifier) serve as the index for a data
cache; the remaining identifier bits comprise the tag
that is stored in the cache itself.

For a memory cache, deriving the cache set index
from the value identifier (i.e., the address) works well
because of spatial locality: consecutive memory loca-
tions are likely to be used together, so consecutive
addresses should be mapped to sets that will not con-
flict. However, there is no spatial locality in physical
register identifiers—they are simply assigned from a
freelist. Thus, it makes no sense that the index into a
register cache should be related in any way to the phys-
ical register identifier. Fortunately, nothing precludes
the use of an index completely independent of the iden-
tifier. Using an independent index allows arbitrary
assignment of identifiers to sets within the cache in
order to avoid conflicts. In addition, the technique also
trivially enables the use of non-power-of-two-sized
caches. We refer to this scheme as decoupled indexing.

Due to the nature of physical register handling, it
is straightforward to apply decoupled indexing to a reg-
ister cache. When a physical register is allocated, the
physical register tag obtained from the freelist is aug-
mented with a register cache index from another
source. The index is tracked and provided to consum-
ers of the value using the standard rename process: the
map table is widened to include the register cache
index for the current mapping of each architectural reg-
ister in addition to the associated physical register
number. From the perspective of the rename map, the
combination may be treated as a wider physical regis-
ter identifier. Like the rest of the map table contents,
these indices must be recovered on a mis-speculation.
This mechanism does not introduce a level of indirec-
tion: the index is immediately available to all potential
consumers, and it does not change until the associated
physical register is freed and reallocated. Finally,
because the cache index no longer has any relationship
to the physical register identifier, the full identifier for
each value must be stored in the register cache as a tag.
This process is illustrated in Figure 5.

4.2. Set-assignment algorithms

The generality of the decoupled indexing mecha-
nism allows for the implementation of many index
assignment policies. Note that the register cache set
for a value must be assigned far in advance of the writ-

Figure 5. Decoupled indexing. p denotes the physical register, s
the corresponding register cache set, and u the predicted number of
uses remaining. Each architectural register is renamed to both a
physical register and an independent register cache set. Subsequent
consumers obtain the set index along with the physical register tag.
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ing of that value into the cache. Thus, in order to be
successful, the set assignment algorithm must be able
to anticipate the state of the register cache. Fortu-
nately, the predicted use information available for
renamed instructions provides useful hints to make
accurate guesses. Values with larger numbers of uses
are more likely to be placed in the register cache and
remain there longer. Another source of information is
the sequential rename order, which, due to data depen-
dencies is related to the order of their execution. We
describe three policies for set assignment: minimum,
round-robin, and filtered round-robin.

The minimum policy tracks, for each set, the sum
of the predicted number of uses of all values assigned
to that set. An instruction generating a result is
assigned the set with the minimum sum, increasing that
sum when the instruction is renamed and decreasing it
when it retires. This algorithm reduces the likelihood
of long-lived (high-use) values being evicted from the
cache by subsequent assignments to the same set.

While conceptually simple and appealing, the
actual implementation of the minimum policy would
be quite difficult. The round-robin policy forgoes all
use information for the sake of simplicity and merely
assigns sets sequentially to instructions as they are
renamed. This scheme relies upon the correlation
between instruction rename and execution sequences to
avoid assigning the same set to the results of instruc-
tions that will execute together.

Our final policy, filtered round-robin, attempts to
add some notion of use information to the round-robin
scheme. A count of high-use values assigned to each
set is maintained, and sets for which the count exceeds
a certain threshold are skipped in the normal round-
robin order, reducing conflicts in sets with high-use
values. Counts need only be updated on the rename or
retirement of high-use values, a relatively infrequent
occurrence. We have found empirically that defining
high-use values to be those with greater than five pre-
dicted uses and using a threshold equal to half the asso-
ciativity (number of entries per set) works well.

5. Evaluation

We now perform a detailed evaluation of use-
based register caching. We begin with a description of
our simulation infrastructure and benchmarks in
Section 5.1. In Section 5.2, we discuss some of the
important details surrounding the accurate modeling of
register caching. Section 5.3 investigates the impact of
the various cache parameters on performance to select
a design point for further study. Section 5.4 performs
this detailed study, presenting many non-performance
metrics (e.g., hit rate and occupancy) and comparing
them with results for previously proposed caches. We
conclude the section with a performance evaluation in
Section 5.5.

5.1. Simulation methodology

We generated our results using a detailed execu-
tion-driven simulator of the Alpha ISA. Only user-
level code is simulated. The system call and functional
execution portions of the simulator come from the Sim-
pleScalar v3.0 tool suite [4], while the timing simulator
has been written to accurately model real hardware
limitations. For our benchmarks, we use the SPEC
2000 integer suite. The benchmarks were compiled
using the Compaq Alpha compiler at optimization level
–O3. Simulation results were generated by executing
the first two billion instructions (excluding nops) of
each benchmark on the training inputs.

We have chosen a processor configuration
designed to reflect an aggressive out-of-order processor
for which the read latency of a monolithic register file
would be a performance issue. The processor has a
deep pipeline, and the front end, execution resources,
and cache hierarchy are aggressive. The processor
attributes are summarized in Table 1.

We distinguish between a register file (no register
cache) and a backing file (used to back up a register
cache). Register file latency does not affect our tuning
or characterization, but sets the baseline performance

Table 1: Simulator configuration

Pipeline 4-stage fetch (next address+I-cache), 2-stage decode, 3-stage rename, 2-stage dispatch (write into
instruction window), 1-stage issue, 1-stage register cache read/write, 1- to 18-stage execution, 3-cycle
RF latency, 2-cycle backing RF latency (see text).  15 cycle min. branch mis-speculation loop

Front-end 8-wide fetch (nops skipped) with perfect BTB and up to one taken branch per fetch block, 12KB YAGS
conditional branch predictor, 64-entry return address stack, 32 KB cascading indirect branch predictor

Issue 128 entries with 512 entry reorder buffer, 8-wide issue, oldest ready first, 512 physical registers, 8-wide
retirement (2 stores per cycle maximum), 128-entry load queue, 128-entry store queue

Execution 6 integer ALUs, 1-cycle latency, 2 branch resolution units, 2-cycle latency, 2 integer multipliers, 4-cycle
latency, 4 floating point ALUs, 3-cycle latency, 2 floating point multiplier/dividers, 4/18 cycle latency, 2
load units, 4-cycle load to use latency on L1 hit, 2 store units, 3-cycle execute to earliest retirement; all
units fully-pipelined.  Two-stage bypass network (ALU feedback + register cache write to read).

Memory 32KB, 2-way L1-I and D caches, 64-byte lines, perfect TLBs; 1 MB, 4-way unified L2 cache, 128-byte
lines, 12-cycle latency, critical word first; 64-entry unified prefetch/victim buffer on each of L1 and L2;
16-entry coalescing store buffer; 180-cycle memory latency; opportunistic unit-stride prefetcher

Use predictor 9KB: 4K-entry, 4-way set-assoc., 2-bit confidence, 6-bit future control flow, 6-bit tag, 4-bit prediction



against which register caching is evaluated. Based on
the pipeline depth and other latencies assumed in our
simulation model, we assume a register file with two
bypass stages and a latency of three cycles (each for
read and write). Performance with other register file
latencies are superimposed on many of the figures in
this section. Except where varied in Section 5.5, we
have used two cycles as the latency for the backing reg-
ister file. As discussed in Section 2.2, the two-thirds
reduction in the number of ports when used behind a
cache allows a backing file to be faster than the equiva-
lent-capacity register file.

5.2. Register cache simulation

There are two important issues to consider in the
accurate evaluation of a register cache. The first of
these is the overall structure of the pipeline and the sec-
ond is the handling of register cache misses. These
details contribute to a larger miss penalty in our evalua-
tion than has been previously suggested for register
caching; we believe this may account for the significant
difference in the performance advantage of register
caching presented here versus in prior work.

As discussed in Section 1, the implementations for
which a register cache are likely to be beneficial are
wide machines with deep pipelines. Therefore, it is
important to evaluate register caching in a deeply-pipe-
lined, wide-issue machine; the simulator configuration
outlined in Table 1 reflects this consideration.

Regarding register cache misses, we assume that a
miss necessarily results in the replay of all instructions
issuing in the cycle after the missing instruction issues
(equivalent to the model implemented by the Alpha
21264 [10]). Instructions independent of the missing
instruction may then reissue in the following cycle,
while the dependent instructions are delayed. The
delay experienced by an instruction that misses in the
register cache also depends on both the register file
read and write latencies. Besides additional delay
caused by contention for a backing file read port, the
instruction may have to wait to ensure that the desired
result has finished writing into the register file. Our
simulator accounts for both of these effects.

5.3. Tuning

In this section, we explore the parameter space of
the register cache to find a good design point for fur-
ther study. For each parameter except the cache size
and associativity, we choose the value that maximizes
the mean performance over our benchmarks. Increas-
ing cache size and/or associativity always increases
performance, so we choose the best-performing organi-
zation that is likely to have a single-cycle latency given
the full register file latency and its size relative to the
register cache.

We begin with the selection of cache organization.
For this experiment, we presciently select the final val-

ues used for the maximum use count (7), the unknown
default (1), and the fill default (0). Figure 6 presents
the results. The most striking feature of the data is the
impact of the associativity on register cache perfor-
mance. Two-way set-associativity is probably the min-
imum for reasonable performance. Direct-mapped
register caches, even beyond 80 entries, fail to break
even with the performance of the baseline machine
with a three-cycle register file. Associativity continues
to make a noticeable impact all the way up to a fully-
associative design, especially for caches with fewer
than 64 entries. The flattening of the fully-associative
curve at around 56 entries is hardly surprising given
that this was also the 90th percentile number of live
values that we determined earlier (see Figure 2). Based
on these data, we propose the use of a 64-entry, two-
way set-associative design.

The strong dependence of performance on associa-
tivity indicates that conflict misses are problematic.
Figure 7 explores the various decoupled indexing algo-
rithms proposed in Section 4.2. As expected, the two
use-based set assignment schemes (filtered round-robin
and minimum) perform the best. Filtered round-robin
increases performance by 1.9% on a two-way set-asso-
ciative register cache. Minimum performs nearly as
well, but is much more complex. Even round-robin set
assignment improves performance measurably over the
baseline scheme. As expected, advantages are more
pronounced for less associative register caches.

The performance behavior versus the maximum
number of uses tracked is straightforward: a lower
maximum leads to lower performance. Note that it is
not the cache’s ability to distinguish between a value
with (say) six and eight predicted uses that makes a
higher limit perform better; rather the higher limit
reduces the number of values that are pinned in the
cache (recall that use counts are not updated for entries
with predicted counts equal to the limit) until their

16 24 32 40 48 56 64 72 80 88 96

Number of entries

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

P
er

fo
rm

an
ce

 (
IP

C
)

Fully associative
8-way
4-way
2-way
Direct mapped

 2

 3

 4

Figure 6. Register cache size and organization. Each datapoint
represents the average performance of that configuration on all
benchmarks. All caches use standard indexing. Dotted lines show
the performance of a machine without a register cache for varying
register file latencies.



physical registers are freed, reducing capacity pressure.
Experimental data (not shown) indicate higher limits
are beneficial up to about 12; performance falls off rap-
idly for limits below six. Given that three bits can rep-
resent up to seven uses and this number is
approximately at the knee of the performance curve,
we employ a maximum use limit of seven uses for the
remainder of our evaluation.

We also gathered data on the effect of the
unknown and fill defaults (not shown). If either default
is too low, it results in premature evictions; too high,
and the resulting stale values increase register cache
occupancy, leading to evictions of other useful values.
An unknown default of one use gives the best perfor-
mance for most configurations; this is intuitive given
that the majority of values are used once. We find that
a fill default of zero maximizes performance over the
range of cache sizes studied. While this may seem
non-intuitive, it actually is reasonable since any given
use of a value (i.e., the one that caused the fill) is most
likely to be its last. Also, since values with zero
remaining uses can remain in the cache for long peri-
ods, the value may still satisfy additional consumers
beyond the one that caused the miss.

5.4. Characterization

Having selected a design point for our register
cache, we are now in a position to evaluate it in more
detail and compare it with other hardware-managed
register hierarchies. Our reference designs are also
register caches, differing from our scheme only in their
policies for insertion, replacement, and indexing. LRU
refers to an implementation of the basic idea put forth
by Yung and Wilhelm [15] in which all values are writ-
ten into the register cache and the LRU entry is
selected for replacement. The non-bypass design [6]
avoids writing values into the register cache if they
bypass to any consumers prior to the cache write (as

for our cache, only first-stage bypasses affect the write
decision). Again, the LRU entry is selected for
replacement. Unlike the original design, we allow an
instruction that experiences a register cache miss to
receive the value directly from the register file; thus,
the fill takes place in parallel with the instruction’s first
execution stage. In this section, we focus on non-per-
formance metrics specific to caching schemes—rela-
tive performance figures are presented in the next
section.

Figure 8 depicts the register cache miss rate,
which has a first-order impact on the overall perfor-
mance. For both standard and filtered round-robin
indexing, the figure breaks down the misses into those
caused by (1) avoiding the initial write of the value,
(2) evicting the value due to capacity limitations, or
(3) conflicts. The LRU cache writes all values into the
register cache as they are generated; the other designs
attempt to reduce capacity and conflict misses by
avoiding the writes of certain values. The data show
that write filtering is effective at reducing these misses
at the expense of causing misses on filtered values. In
the case of the non-bypass scheme, these new types of
misses cause the aggregate miss rate to exceed that of
the simple LRU scheme for this cache size. Use-based
filtering, however, results in a substantially lower total
miss rate. In all schemes, cached values are only
evicted due to capacity limits or conflicts. Therefore,
the use-based replacement policy, which evicts fewer
useful values, further reduces misses in these catego-
ries beyond that obtained from filtering only.

Figure 8 also illustrates the 30-40% reduction in
conflict misses attainable from decoupled indexing.
Because this benefit is independent of the policies that
differentiate the three caches, we use decoupled index-
ing on all three caches in the remainder of our evalua-
tion. The two reference designs will use round-robin
decoupled indexing, which does not require use infor-
mation, while our design will use filtered-round-robin
indexing.

The average read and write bandwidths to both the
register cache and register file are depicted in Figure 9.
The non-bypass and use-based schemes demonstrate
reduced cache write bandwidth versus the LRU-man-
aged cache because of write-filtering. The register file
read bandwidth is approximately proportional to the
miss rate since the register file is only read on a cache
fill (i.e., a miss). Both the cache read and register file
write bandwidths essentially track the performance.
This behavior is expected since (to first order) the same
number of values are read and written by all configura-
tions. Because the register file sees all writes and the
register cache sees all reads, shorter execution time
increases these bandwidths.

The effects of write filtering are also evident in
Figure 10. The non-bypass and use-based schemes
attempt to filter only those values that are thought to be
dead at the time of the cache write, significantly reduc-
ing the number of values written to the cache that are
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not subsequently read (cached dead values) versus
LRU. A live value may also be classified as cached
and never read if it is evicted prior to being used: this
will necessarily result in a later conflict or capacity
miss. Therefore, use-based replacement, which
reduces these types of misses beyond use-based write
filtering alone, shows the lowest fraction of cached and
never read values.

The difference in values not written initially and
those never cached is also enlightening. The use-based
caching scheme filters a higher proportion of initial
writes than does the non-bypass scheme. Along with
the bandwidth data in Figure 9, this demonstrates that
the lower miss rate on filtered values (Figure 8) is not a
result of less aggressive filtering. The overall better fil-
tering decisions result in a larger fraction of values that
never occupy the cache at all.

Table 2 presents additional data comparing the
caching algorithms. More effective schemes keep val-
ues that have more uses in the cache, resulting in a
greater number of reads per cached value. Ideally, the
number of times each value is cached (the cache count)
should be as low as possible for a given miss rate. The
LRU scheme is guaranteed to have an average cache
count of at least one (every value is cached)—the
extent to which this metric exceeds one depends on the
number of fills for evicted, useful values. Write filter-
ing reduces the average cache count below one for the
other two schemes. The cache occupancy and entry
lifetimes are also affected: the fewer values that are
written to the cache, the lower the average occupancy
and the longer the lifetime of each entry. Note the low
average occupancy relative to cache size (64 entries).

This data explains both the negligible contribution of
capacity misses (Figure 8) and the small performance
change with cache size for fully-associative caches
larger than 32 entries (Figure 6). Thus, the use of a 64
entry cache over a smaller design is primarily benefi-
cial because it provides more sets (reducing conflicts).

5.5. Discussion

Now we wish to ascertain when it is beneficial to
use a register cache and the relative advantage of use-
based register caches over other register hierarchies. In
this section, we introduce an additional reference
design, labeled two-level. This design is not a register
cache, but is an optimistic version of the two-level reg-
ister file proposed by Balasubramonian et al. [3] (see
Section 2). We made the following changes: (1 the
L1-L2 bandwidth is increased from one to four values
per cycle, (2) L2-L1 register transfers after exceptions
are explicitly modeled,† (3) the L2 register file is
assumed to be infinite, and (4) the floating-point and
integer register files are unified. All of these changes
except the last improve the performance over the origi-
nal design, the first two significantly. The final change
was necessary to incorporate this scheme into our sim-
ulator, and represents an L1 capacity penalty equal to
31 architected floating-point registers for our mostly-
integer benchmarks. Therefore, we compare each reg-
ister cache of a given number of entries against the
two-level register file with an L1 containing that num-
ber plus an additional 32 entries. Because the L1 regis-
ter file is direct-mapped rather than set-associative, it
can contain a larger number of entries and potentially
remain competitive with a cache-based scheme.

We begin with a performance comparison of the
different algorithms versus register cache/L1 size in
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Figure 8. Register cache misses. Contribu-
tion of different types of misses to the overall
miss rate under standard indexing (left bar)
and filtered round-robin indexing (right bar).
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Figure 9. Average access bandwidth.
Accesses per cycle by type and structure.
Cache write bandwidth includes initial writes
and fills. In each case, the fill bandwidth por-
tion equals the register file read bandwidth.

Figure 10. Filtering effects. The bar groups
from left to right depict the percentage of all
cached values not read before invalidation or
replacement, of initial writes filtered from the
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Table 2.  Comparison of register cache metrics

Average LRU Non-
bypass

Use-
based

Reads per cached value 0.67 1.18 1.67
Times each value is cached 1.09 0.61 0.44
Cache occupancy (entries) 36.66 28.84 26.60
Cache entry lifetime (cycles) 25.18 36.34 43.58

† L2-L1 transfers occur at four registers per cycle in parallel with
the pipeline refill; the pipeline is stalled if the register transfers
are incomplete by the time the new instructions reach the
rename stage.



Figure 11. Due to its lower miss rate, use-based regis-
ter caching outperforms the other caching schemes
across a large range of capacities. The miss rate results
from the prior section account for the performance
advantage observed versus the two other caching
designs. The lower performance of the two-level
scheme results primarily from rename stalls, although
delays in copying registers after mis-speculations also
contribute, in spite of the generous L1-L2 bandwidth
provided. Due to the nature of the two-level scheme,
its L1 register file must contain at least one more regis-
ter than the number of architected registers; in practice,
an even larger number is required to prevent stalls for
lack of rename registers, which cause performance to
fall off rapidly as the L1 size decreases. The two-level
scheme requires the difficult determination of when
values should be moved to the L2—too soon, and the
recovery cost dominates; too late, and the pipeline
stalls frequently for lack of registers. Both the recov-
ery time and the ability to maintain free L1 registers
are highly dependent on the L1-L2 bandwidth: with a
more realistic bandwidth of two register moves per
cycle, the performance of the two-level register file
drops over 2%, putting it below that of even an LRU
cache over the entire cache/L1 size range.

The performance advantage of use-based caching
over the other caches increases as the caches get
smaller—for small caches, it is crucial to minimize
unnecessary writes to the cache and to select the proper
victims. The filtering performed by the non-bypass
and use-based caching algorithms is nearly indepen-
dent of cache organization and results in a miss rate
approximately constant versus capacity. Therefore, the
advantage of these schemes over LRU diminishes as
the cache gets larger. For large enough register caches,
misses due to filtering will always dominate capacity

and conflict misses, and the LRU scheme will perform
the best. However, caches of this size are unlikely to
have a single-cycle latency.

Figure 11 also shows the performance of a four-
way set-associative use-based register cache for com-
parison. This organization achieves equivalent perfor-
mance to the 64-entry two-way baseline with only 48
entries, and it exceeds the performance of the three-
cycle monolithic register file with fewer than 32
entries. Data we have not shown indicate that use-
based caching also benefits more from increased asso-
ciativity than the other caching schemes due to the
intelligent replacement policy. The advantage of four-
way associativity comes at the expense of complex vic-
tim selection and potentially greater cycle time.

At this point, we take a brief detour to discuss the
relative performance of the non-bypass and LRU
schemes. We were surprised by the lower performance
of the non-bypass scheme, especially since the heuris-
tic is based on sound principles (the low average
degree of use and the likelihood of bypassing to all of
the consumers). Many of the non-performance metrics
indicate that the non-bypass heuristic has the desired
effects versus LRU—lower write bandwidth, occu-
pancy, and cache count, and greater entry lifetime and
reads per value. However, these benefits are overcome
by an increase in overall misses since the number of
new misses due to write filtering exceeds the reduction
in capacity and conflict misses. As the cache size
decreases, non-bypass performs relatively better than
LRU because capacity and conflict misses increase
while the number of misses due to write filtering
remains approximately constant. Other data (not
shown) indicate that the performance of LRU and non-
bypass break even around 20 entries.

Relative performance versus the latency of the
backing file (L2 file for the two-level scheme) appears
in Figure 12. Use-based caching exhibits much lower
performance degradation with increasing backing file
latency than the other two caching schemes. The two-
level register file is less sensitive still to its L2 register
latency, which is only observed on some mis-specula-
tions, but the performance is lower than that of use-
based caching through backing/L2 file latencies of 4
cycles, in spite of the extra storage and L1-L2 copy
bandwidth. Until the backing file latency makes the
register cache miss penalty exceedingly large, the cost
of misses, which delay only a small number of instruc-
tions, is less than the cost of the pipeline stalls intro-
duced by the two-level scheme, which delay all of the
instructions in the front end.

A use-based register cache provides a performance
advantage over a three-cycle monolithic register file
even for backing file latencies up to five cycles. With a
two cycle backing file, a use-based cache performs 6%
better than a three cycle register file, recovering over
half of the performance lost from a single-cycle regis-
ter file. The advantage over a multi-cycle register file
increases as the latency of the register file increases.
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Figure 11. Performance versus cache/L1 size. All caching
schemes use a two-cycle backing file and round-robin (LRU, non-
bypass) or filtered round-robin indexing (use-based). Caches are
two-way set-associative, except that a four-way use-based cache is
also shown (solid triangles). The L1 file of the two-level scheme
uses the indicated number of entries plus 32. Dotted lines show the
performance without a register cache for varying register file laten-
cies and two bypass stages.



Provided the backing file can be made just one cycle
faster than the original register file (by virtue of having
one-third lower number of ports), use-based register
caching outperforms all multi-cycle register files.

6. Conclusions

Register caches are small structures that store a
subset of the contents of the full register file, enabling
them to supply values to the execution core at lower
latency. Register caching schemes proposed to date
have used ineffective heuristics, resulting in the need
for fully-associative caches to avoid high miss rates.

This work introduced two new techniques to
improve the performance of register caches. Whether a
value has outstanding uses is the single most relevant
piece of information in deciding whether it should be
in the cache. Use-based cache management consists of
insertion and replacement policies that track the
expected number of uses remaining to manage the
cache contents. Decoupled indexing eliminates the
connection between indexing a register cache and the
physical register tags of the contents, allowing for
more intelligent assignment of values to cache sets to
reduce conflict misses in set-associative caches.
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Figure 12. Performance versus backing file/L2 latency. Hierar-
chical register files with different backing/L2 file latencies. All cach-
ing schemes use round-robin indexing (LRU, non-bypass) or filtered
round-robin (use-based). The caches have 64 entries while the L1
file of the two-level scheme has 96. As in Figure 11, dotted lines
depict non-cache performance.


