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Abstract

The physical register file is an important component of a
dynamically-scheduled processor. Increasing the amount of par-
allelism places increasing demands on the physical register file,
calling for alternative file organization and management strate-
gies. This paper considers the use of value locality to optimize the
operation of physical register files.

We present empirical data showing that: (i) the value produced
by an instruction is often the same as a value produced by another
recently executed instruction, resulting in multiple physical regis-
ters containing the same value, and (ii) the values 0 and 1 account
for a considerable fraction of the values written to and read from
physical registers. The paper then presents three schemes to ex-
ploit the above observations.

The first scheme extends a previously-proposed scheme to use
only a single physical register for each unique value. The second
scheme is a special case for the values 0 and 1. By restricting opti-
mization to these values, the second scheme eliminates many of the
drawbacks of the first scheme. The third scheme further improves
on the second, resulting in an optimization that reduces physical
register requirements with simple micro-architectural extensions.
A performance evaluation of the three schemes is also presented.

1 Introduction
The physical register file is an important component of

the micro-architecture of a modern dynamically-scheduled
processor. As processors exploit more instruction level par-
allelism, even more demand is placed on the physical regis-
ter file: larger instruction windows require storing the result
of more instructions in the register file, and wider instruc-
tion issue requires higher bandwidth access to the stored
values. A straightforward approach to these demands is to
make the physical register file larger to hold the results of
more instructions (typically a physical register for each out-
standing instruction that creates a value) and add more read
and write ports to provide additional bandwidth. This ap-
proach results in large, monolithic storage arrays, and has
several disadvantages. The register file size grows linearly
with the number of registers, and greater than linearly with
increase in read and write ports [7]. Wire lengths increase

with the storage array size, increasing access latency. The
increased access latency complicates bypass paths, adding
multiple levels of bypass to functional units. It also in-
creases branch mis-prediction penalty, capacity pressure on
the register file and register lifetime. In short, increased
latency generally results in degraded performance, making
the brute-force scaling of a physical register file an undesir-
able design choice.

The lack of scalability of monolithic storage arrays has
led processor architects to explore alternative designs for
implementing a physical register file. The basis for these
alternative designs is the exploitation of locality: patterns in
references made to the register storage. Two forms of local-
ity have received a lot of attention: (i) locality of access, and
(ii) locality of communication. Localities of access have
been used to design hierarchical register files [1, 18] and
register caches [14, 21]. Localities of communication have
been used to design clustered [2, 6, 10] and banked register
files [5, 15, 19].

To date most proposals for alternative register files have
been concerned with implementations that can provide a
requisite amount of storage with desired latency and band-
width characteristics. An orthogonal approach for physical
register design is to make more efficient use of the storage
by changing the storage management strategy. Pioneering
work by González et al. proposed the concept of virtual-
physical (VP) registers [8, 12]. VP registers make more ef-
ficient use of the physical register storage by delaying the
allocation of a physical register until the time the value is
ready, as opposed to the time the architectural register is re-
named in the conventional management strategy. Following
up on the concept of VP registers, Jourdan et al., proposed
an alternative scheme for the efficient use of physical regis-
ters [9]. This scheme exploits the fact that the same value
might be present in multiple physical registers at the same
time (i.e., a form of value locality), and proposes to elimi-
nate this duplication by using only a single physical register
for a given value.

This paper further explores the use of value locality and
alternative storage management strategies to optimize the



design of a physical register file. We start out by character-
izing the form of value locality that we are interested in and
empirically evaluating its magnitude. Our first observation
(not new) is that a given value is frequently present in more
than one physical register simultaneously. We exploit this
observation with Physical Register Reuse, a scheme that is
similar in spirit to the scheme of Jourdan et al. [9] but differ-
ent in its details. This scheme, though conceptually elegant
and powerful, has practical limitations. Our second obser-
vation (new, we believe) is a special case of the first one:
of the values present in more than one physical register, 0’s
and 1’s are the most common. We exploit this observation
to come up with two new schemes for physical register man-
agement: Registerless Storage and Extended Registers and
Tags. They are special-case implementations of Physical
Register Reuse, and trade off the theoretical power of the
concept with the practicality of implementation.

The remainder of the paper is as follows: in section 2
we discuss the background and the general ideas behind our
proposed schemes. We describe our evaluation methodol-
ogy in section 3, and present value locality measurements in
section 4. In section 5, we discuss the different schemes for
alternate physical register file designs. We present evalua-
tions of these schemes in section 6. In section 7, we describe
related work, and we present our conclusions in section 8.

2 Background and General Idea

To set the stage for exploring alternatives for designing
a physical register file, we start out with a discussion of
value locality. We then discuss the purpose of register files
and the register rename map, making key observations that
could be exploited to devise alternate physical register file
designs. We then provide a brief introduction to our pro-
posed schemes for optimizing the use of physical registers.

2.1 The Phenomenon: Value Locality

Value locality has been the subject of extensive study in
recent years, and a variety of different types of value local-
ity have been identified. The most widely studied form con-
cerns the locality of values generated by different dynamic
instances of a static instruction. The work on value pre-
diction [11] exploits this locality to predict the outcome of
a dynamic instance of a previously observed static instruc-
tion. The work on instruction reuse [17] exploits the same
form of locality to reuse the result of a previous dynamic
instance of a static instruction.

The type of value locality that this paper investigates and
exploits is different. We are interested in the locality of the
results produced by the instructions in a dynamic window,
i.e., the results of one or more dynamic instances of instruc-
tions. This kind of value locality has very recently been ex-
ploited for value prediction [22]. Value-centric data cache

designs [20] also propose exploiting a similar form of local-
ity present in memory references.

We propose to exploit this form of value locality to re-
duce the storage requirements for the results of the instruc-
tions in a dynamic instruction window (i.e., physical regis-
ter requirements). We are also concerned with the preva-
lence of special values, namely 0 and 1, for which further
optimizations are possible.

2.2 The Enabler: Register Renaming

The purpose of a register file is to pass values from an
instruction that creates a value (a producer instruction) to
instructions that use the value (consumer instructions). The
logical register name space is used to link a producer in-
struction with its consumer instructions. Named storage is
used to hold the value created by the producer instruction,
and consumer instructions are directed to the storage asso-
ciated with the logical register to obtain the necessary value.

With physical registers, the process of passing values
from producer to consumer instructions is slightly differ-
ent. The logical register name space is still used to link
producer and consumer instructions, but the actual storage
for values is provided by a (typically larger) set of physical
registers. A register rename map provides a level of indi-
rection, redirecting accesses to a given logical register to a
particular physical register. In other words, the register re-
name map directs accesses for a given dynamic value to the
appropriate storage that contains the value.

The flexibility provided by the rename map is the key to
optimizing the use of storage that holds the dynamically-
created values. Different mapping strategies can be used
to provide different ways of storing values and different
ways of allowing consumer instructions to get the appro-
priate value. An early proposal for optimizing the use of
physical registers was the concept of virtual-physical regis-
ters [8,12]. Here a virtual name (a virtual-physical register)
is assigned to a value during the rename stage, but an actual
physical register (i.e., storage) is not allocated to hold the
value until it has been produced. Mapping tables are used
to redirect the virtual-physical register to the actual physical
register. The result is more efficient use of physical registers
since physical register storage is not allocated to a value un-
til the value actually exists (which is typically many cycles
after the corresponding instruction has been renamed).

Both a conventional physical register strategy as well
as a virtual-physical register strategy maintain a one-to-
one correspondence between instructions creating values
and storage elements used to hold the values. A conven-
tional physical register strategy allocates a storage element
for every value-producing instruction in flight, whereas a
virtual-physical strategy allocates a storage element for ev-
ery value-producing instruction that has actually produced
its value.



Front-end 64 KB Instruction cache, 64 KB gshare branch predictor, 64 entry return address stack. The front-end is
optimistic, and can fetch the full-width of the machine every cycle. All nops are removed without consuming
any machine resources.

Execution Core 4-wide machine with the number of instruction window entries decided according to physical register file size.
The pipeline depth is 14 stages. Available functional units include 4 simple integer units, 1 complex integer
unit, and 2 load/store ports, all fully pipelined. Separate register rename maps and physical register file. Queue-
based register free list management.

Memory Hierarchy First-level instruction and data caches are 2-way set-associative 64KB caches with 64 byte lines and a 3-cycle
access latency, including address generation. The L2 cache is a 4-way set-associative 2MB unified cache with
128-byte lines and 6-cycle accesses.

Table 1: Simulated processor parameters

One can conceive of alternate mapping strategies. One
such strategy could map the values produced by multiple in-
structions to a single storage element (assuming, of course,
that the values are the same), such as in [9]. Another strat-
egy could choose to not use a physical register to hold the
result of an instruction, providing some other means for
consumer instructions to get the appropriate values. Such
mapping strategies could permit the passing of values from
producer to consumer instructions to be carried out in ways
that reduce the burden on the physical register storage, and
are the crux of the novel physical register usage schemes
that we propose in this paper.

2.3 The Outcome: Novel Physical Register Usage

We propose three schemes to optimize the usage of phys-
ical registers. The proposed schemes reduce the physical
register requirements by eliminating or reducing the dupli-
cation of values. An overview of the schemes follows; de-
tails are presented in section 5.

In the first scheme, Physical Register Reuse, a single
physical register is used to hold a given value; multiple
instructions producing the same value have their destina-
tion logical registers mapped to the same physical register
(many-to-one mapping). This scheme is similar in spirit
to the scheme proposed by Jourdan et al. [9], but the pro-
posed implementation is different. This scheme reduces the
number of physical registers required to hold values since
it eliminates duplication, but requires a lot of hardware, is
very complicated, and is of questionable value. Nonethe-
less, it serves as a benchmark for comparing our other two
schemes which are much more practical, but only reduce
the duplication of values, not eliminate it entirely.

The second and third schemes optimize the storage
and communication of selected values only. While these
schemes could, in general, be used for arbitrary sets of se-
lected values, we focus on the two most common values,
namely 0 and 1. These schemes are based on the obser-
vation that the full functionality of a physical register file
is overkill for storing and passing such values between in-
structions. If alternative methods could be used for them,
the burden on the physical register file could be reduced.
In Registerless Storage, the register map table is directed to
assign 0’s and 1’s to specific physical registers (e.g., P0 and

P1). In this case the name of the storage element is suffi-
cient to know the value; no access to the storage element
needs to be performed. The third scheme, Extended Reg-
isters and Tags, extends each physical register by two bits,
and uses a special tag naming scheme that can refer to the
physical register and its two bit register extension either as
a combined entity or as separate entities. This scheme over-
comes a potential drawback of the other two schemes: the
need to re-broadcast the tag of a remapped register. The Ex-
tended Registers and Tags requires little additional micro-
architectural support and is a practical and effective way of
partially exploiting the value locality that we observe.

3 Methodology
The results presented in this paper are generated from a

timing simulator. The simulator is based on the Alpha ISA
definitions and system call emulation of SimpleScalar [3],
with a detailed out-of-order timing model. The simulation
parameters are listed in table 1, and model pipeline of the
core is shown in figure 1(a).

Our experiments were performed on all integer and
floating-point programs in the SPEC CPU2000 benchmark
suite that were compiled with the Compaq C compiler (with
flags -arch ev6 -fast -O4). All programs were run
to completion on reference inputs except for the results pre-
sented in section 4.1. The experimental setup for that result
is described later. Value locality results presented in section
4 are based on the values that get written into the physical
register file. We exclude accesses to special logical registers
(such as logical register r31 in Alpha that always holds 0),
since they are not renamed, and hence are never part of the
physical register file.

4 Register Value Locality
In this section we study the value locality that provides

the basis for the register file optimizations that we consider
in this paper. We start out by determining the common val-
ues generated by program instructions, observing that 0 and
1 are the two most frequent values. We then consider the
value locality in a window of recently-committed instruc-
tions, and in writes to the physical register file. We con-
clude this section with a measurement of the duplication of
values in physical registers.



bzip2 crafty gap gcc gzip mcf ammp art equake
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

4831843632 7 2 4 4 5368778784 5368710000 2 5368718454
5368712376 3 81 4831839248 32 5 2560 4.59187e+18 1.05557e+14

62914560 5369648560 5 3 2 4831863760 1884672376 4.58549e+18 24577
65536 8 5369767936 52 3 10 3584 3 4831893495

5368712432 2 8 -1 5368758224 32 6656 5370448344 2
32 5369777344 3 59 16 2 5632 3 32
2 6 4 7 -1 49 48 7 1.84467e+19
3 5368862128 16 5 8 -1 14848 10 10

Table 2: Ten most commonly created values for some SPEC CPU2000 integer and floating-point benchmarks

4.1 Common Values

Table 2 presents the ten most common values cre-
ated by six integer benchmarks (bzip2, crafty, gap,
gcc, gzip and mcf) and three floating-point benchmarks
(ammp, art and equake) (we don’t present results for all
benchmarks in this table to improve the readability of the
table). Unlike the remainder of the data presented in this pa-
per, the data in the table is gathered by sampling, since the
data structures required to track values produced by all in-
structions are prohibitively large. The results were obtained
by sampling at ten evenly-spaced phases during the execu-
tion of the program. Each phase collected the occurrence
of values for ten million instructions. The values on the top
of the table are the most frequently produced values. How-
ever, the order does not strictly correlate to the frequency of
occurrence of these values in the entire program run, due to
sampling inaccuracies.
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Figure 1: (a) Model processor pipeline. Illustrations on how
we measure: (b) value locality in recently committed instruc-
tions, (c) value locality in register writes, and (d) value dupli-
cation in physical registers

From table 2, we see that the most frequent values across
all benchmarks are 0 and 1 (this statement is also true for
the benchmarks not presented in the table). This suggests
that special hard-wired optimization schemes to deal with
these two common values may be appropriate, since they
are likely to benefit most, if not all, programs. Other fre-
quent values differ among the benchmarks. Values such as
2, 3, and 4 are frequent in some benchmarks (likely gen-
erated by induction variables in short loops), but not in
others. The large integer values correspond to addresses
of frequently-used variables and these are very likely to be
different for different programs. Exploiting these would re-

quire optimization schemes that track such common values
dynamically.

4.2 Value Locality in Committed Instructions

The results in table 2 show the common values occur-
ring in a dynamic execution of program, but do not show
the locality of these values. Figure 2 presents the percent-
age of committed instructions that produce a result that is
the same as the value created by one of the past N com-
mitted instructions, for N equal to 64, 128 and 256. Due
to space constraints, we present only the average percent-
ages for integer and floating-point benchmarks. Figure 1(b)
illustrates the measurement.

We see that a large percentage of values are the same
as those generated by recent instructions, suggesting op-
portunities for optimizing the storage to hold these values
(similar data has also been presented for the IA-32 architec-
ture in [9]). Each bar separates the contribution due to 0,
1, and other values. For integer benchmarks, about 48% of
all instructions produce a value that is the same as a value
produce by one of the previous 64 instructions. About 12%
of the values are 0’s and about 6% are 1’s.

4.3 Value Locality in Physical Register Writes

The data of figure 2 are somewhat misleading if we are
interested in getting a feel for the potential of physical reg-
ister usage optimization schemes. This is because the data
correspond only to instructions that are committed whereas
physical registers are used to store values not only for in-
structions that are committed, but also for mis-speculated
instructions that end up being discarded. Any strategy for
optimizing physical register usage would have to consider
all the values that would normally get written into physical
registers.

Figure 3 presents the integer and floating-point averages
of the percentage of executed instructions which create a
value that is already present in a live physical register. Fig-
ure 1(c) illustrates this measurement. The results are pre-
sented for three physical register file sizes of 80, 128 and
160 registers. The contribution due to 0, 1, and other val-
ues are separated. The locality observed is lower than that
suggested in figure 2 (note the different scales). The height
of the bars is a direct measure of the percentage of regis-
ters that could be reassigned with Physical Register Reuse
(described in section 5.1).
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4.4 Value Duplication in Physical Registers

The data of figure 3 indicates that a significant number of
instructions create values that already exist in the physical
register file. For example, in integer benchmarks, with 80
physical registers, an average of 49% of the values written
into the register file already exist in it; almost half of all
writes create a duplicate value, unnecessarily consuming a
physical register.

While this data is a direct indicator of the number of
physical register mappings that could be reassigned to a dif-
ferent physical register (and yet get the same value), it is not
a true indicator of the percentage reduction in the number
of physical registers that we could hope to achieve. This
is because some of the registers that are counted as hold-
ing duplicate values in figure 3 might shortly end up being
returned to the free list anyway, as part of a conventional
physical register management discipline. Optimizing for
such cases is not very effective in reducing the physical reg-
ister requirements. For example, consider that P3 contains
the value 2, and P19 is assigned to a later instruction that
also creates the value 2. The results of figure 3 would con-
sider P19 to hold a duplicate value, and thereby be counted
towards the possible reduction in physical register require-
ments. But suppose that, shortly after the value 2 has been
written to P19, the normal physical register discipline re-
turns P3 to the free list. P19 no longer holds a duplicate
value. Over the long run returning P19 to the free list and
holding on to P3 does not noticeably reduce the physical
register requirements as compared to holding on to P19 and
returning P3 to the free list a few cycles later. A more accu-
rate measure of the exploitable locality would therefore be
the percentage of live physical registers that hold duplicate
values.

These results are presented in figure 4 (again, we present
only the average percentages for integer and floating-point
benchmarks), and an illustration of this measurement is
shown in figure 1(d). The data is less impressive than the
results in figures 2 and 3. However, it is a more realistic
measure of the register value locality that we can exploit.
With a scheme that assigns only a single physical register
to a value we can expect to get by with a smaller fraction
of registers corresponding to the data in the figure. For ex-

ample, starting with a base case of 80 registers, a scheme
that assigns a single physical register to only 0’s, to 0’s and
1’s, and to all duplicated values, could reduce the physi-
cal register requirements by an average of 11%, 15% and
24%, respectively, for integer benchmarks, and 10%, 13%
and 15%, respectively, for floating-point benchmarks. Note
that the duplication of values other than 0’s and 1’s is lower
for floating-point benchmarks. A similar trend can also be
seen in the previous two measurements (figures 2 and 3).

5 Exploiting Value Locality
We now present three schemes that exploit the value lo-

cality presented in previous section to optimize the opera-
tion of the physical register file. The schemes — Physical
Register Reuse, Registerless Storage, and Extended Regis-
ters and Tags — are discussed in sections 5.1, 5.2, and 5.3,
respectively.

5.1 Physical Register Reuse

The idea of Physical Register Reuse is to avoid using
multiple physical registers to hold the same value. The
scheme works as follows. The physical register allocation
and register renaming start out conventionally: a physical
register is allocated for the result of an instruction, and the
destination logical register is mapped to this physical reg-
ister. When the result of the instruction becomes available,
a check is performed to see if the value already resides in
the register file. If it does, the destination logical regis-
ter is remapped to the physical register that contains the
value. Actions are taken to ensure that dependent instruc-
tions read from the remapped register, and the previously-
allocated physical register for the result is returned back to
the free pool. If the value is not present in the register file,
no special actions are taken. Several options are possible to
accomplish this remapping of dependent instructions. We
discuss one implementation here, an illustration of which is
shown in figure 5.

To determine the presence of a value in the physical reg-
isters we maintain a Value Cache. The cache is looked up
immediately after the instruction is executed (shown in fig-
ure 5). The cache is a CAM structure that contains mapping
of values to physical register tags; a match returns the tag of



the physical register that contains the value. If no match is
found, an entry is added to the cache. The size of the cache
is bounded by the number of physical registers. Appropri-
ate invalidation actions are taken when a physical register
is returned back to the free list or when a register can no
longer be reused (described next).
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Figure 5: Processor pipeline with Physical Register Reuse

To account for the many-to-one mapping of logical to
physical registers, each physical register has a reference
count associated with it. The counter is incremented when
the physical register is mapped and decremented when it is
freed. The register is returned back to the free list when the
counter is zero. If the counter saturates, the physical regis-
ter should no longer be reused (the corresponding entry in
the Value Cache is invalidated).

Actions need to be taken to handle instructions depen-
dent on a register that has been remapped to a different
physical register. Dependent instructions that have not yet
entered the instruction window are taken care of by updat-
ing the rename map when remapping a physical register;
these instructions get the identity of the new physical reg-
ister directly from the updated rename map. There are two
options to handle dependent instructions that have been re-
named before the execution of their parent instruction. Both
options are initially best thought of as modifications to the
traditional wakeup operation; in addition to waking up the
waiting instructions the operation will also update some ad-
ditional state information. Later, we will see that we might
need a separate wakeup-like operation for these state up-
dates, thus leaving the normal wakeup operation as is.

The first option is to broadcast both the old and the
new physical register tags during wakeup. Instructions that
match the old physical register tag update their source phys-
ical register tag with the new tag, and then use this tag to
get their value from the physical register file when they are
scheduled for execution. Modern micro-architectures, how-
ever, use the notion of speculative scheduling—dependent
instructions are woken up not when an instruction com-
pletes but when an instruction is scheduled for execution—
so that dependent instructions can execute in back-to-back
cycles. This poses a problem as the result of an instruc-
tion, and therefore a potentially new physical register tag,
is not available at the time of the broadcast for instruction
wakeup. We can solve this problem with two broadcasts:

a conventional broadcast to wakeup dependent instructions
for speculative scheduling, and a re-broadcast with the new
physical register tag so that dependent instructions that have
yet to be scheduled can update their source tags. Dependent
instructions that have already been scheduled get their val-
ues from bypass paths in either case, and typically do not
access the register file anyway. Since the broadcast for in-
struction wakeup is not modified, no overhead is added to
the critical path of instruction scheduling. However, the
broadcast paths of the processor need to be enhanced to
broadcast both the old and the new physical register tags
during re-broadcast.

The second option is to use an Alias Table, a structure
that contains <instruction id, old physical register, new phys-
ical register> tuples. This table is used to redirect references
for <old physical register> to <new physical register>. The
size of the table is bounded by the product of the number of
times a physical register can be reused and the number of
physical registers in the register file. An entry is added to
the table when a physical register is remapped1. The broad-
cast for instruction wakeup happens as before. Likewise, a
re-broadcast is used to inform dependent instructions that
their source physical register has been remapped. Unlike
the first option, however, this re-broadcast does not include
the new physical register tag. Rather this re-broadcast is
used to inform the (matching) source operand identifiers
that they need to consult the Alias Table to get the identity
of the new physical register. This option trades off the de-
gree of modification to the broadcast paths with the need to
access an Alias Table for these dependent instructions (with
a possible increase in the latency to access operands due to
the level of indirection).

We next describe the steps that need to be taken to re-
cover from exceptions. Reference counts of the physical
registers are kept consistent by saving the counts of the
mapped physical registers during the commit stage. This
handling mechanism is similar to that for the architectural
rename map, which is also maintained at the commit stage
for recovery from exceptions. The Value Cache and Alias
Table structures are kept consistent by validating only those
entries that have physical register tags mapped to a logical
registers during exception recovery.

To summarize, the micro-architectural changes proposed
for this scheme are non-trivial: reference counts and their
management, a Value Cache, an Alias Table, and signifi-
cant modifications to other logic. This complexity and ad-
ditional overhead is perhaps the reason why the concept of
mapping multiple logical register to a single physical regis-
ter has not received much attention since the initial work of

1A corner case exists where a physical register that is remapped and
freed could be assigned to a subsequent instruction and again be remapped.
This could introduce multiple entries in the Alias Table with the same <old
physical register>. We handle this case with <instruction id>, but do not
discuss this in the paper.



Jourdan et al. [9]. However, the framework of this scheme
provides us with an upper limit: assuming that the addi-
tional structures do not degrade the latency of normal oper-
ation and there are no limits on the number of times a phys-
ical register can be reused, this scheme completely elimi-
nates the duplication of values in the physical register file
and serves as an ideal implementation of Physical Register
Reuse. The next two schemes trade off the ability to elimi-
nate the duplication of arbitrary values with the complexity
of the hardware required.

5.2 Registerless Storage

The objective of Registerless Storage, is to avoid dupli-
cation of selected values that we have decided a priori. For
our purpose these values are 0 and 1 since, as we observed
in section 4, these values are the most common and account
for a significant portion of the duplicate values in the phys-
ical register file. We describe this scheme using the frame-
work of Physical Register Reuse that we developed in the
previous section. We will see that by concentrating on val-
ues that have been selected a priori, most of the complex-
ities of Physical Register Reuse are eliminated. The draw-
back, of course, is the restriction that only the duplication
of these pre-selected values (i.e., 0’s and 1’s) can be elimi-
nated.

We start out by reserving physical register tags for the
special values (e.g., P0 for 0 and P1 for 1). If the result
of an instruction is 0 or 1, its destination logical register
is remapped to P0 or P1, respectively, and the previously-
mapped physical register is freed. Since we are only inter-
ested in tracking the duplication of 0’s and 1’s, a dynamic
tracking mechanism that can check for the duplication of ar-
bitrary values (i.e., a Value Cache) is not needed. Moreover,
since only physical registers containing 0 and 1 are going to
be remapped, reference counts are not needed for physical
registers that hold other values. Finally, since P0 and P1 are
never going to contain other values, they are not going to
be returned to the free list, and therefore they do not need
reference counts either. We refer to P0 and P1 as physical
registers solely for purposes of explanation. They are sim-
ply a way of naming the values 0 and 1, and if there are
other more convenient ways of naming these values (e.g.,
state bits), those could be used instead.

We now consider providing values to dependent instruc-
tions. We add two state bits to the source operands of wait-
ing instructions; these bits track whether the operand is <0>,
<1>, or <some other value>. These bits are initially set to
<some other value>. As in Physical Register Reuse, the
broadcast for instruction wakeup happens as before but the
two options for re-broadcast effectively collapse into one.
The re-broadcast operation broadcasts the old physical reg-
ister tag and the value of these state bits, which are <0>, <1>
or <some other value> if the result is 0, 1, or some other

value, respectively. Source operands that match the tag up-
date their state bits accordingly; the old physical register
tag is left unchanged. When the instruction is scheduled,
the state bits are used to determine if the operand value is
0, 1, or should be read from the physical register file. Since
there is no redirection of physical registers, an Alias Table
is not needed.

From the above description we see that if we are only
interested in exploiting value locality of the most com-
mon values (0’s and 1’s) the micro-architectural changes
required are greatly simplified. Over a traditional physi-
cal register file mechanism, we need only: (i) the ability to
update the register rename map when the result of an in-
struction is one of these selected values, (ii) additional state
bits to the instruction window entries to keep track of the
selected values, and (iii) suitable modifications of the con-
trol logic. However, in addition to the normal broadcast for
instruction wakeup, a re-broadcast is still necessary when a
physical register is remapped.

5.3 Extended Registers and Tags

The goal of our third scheme, Extended Registers and
Tags, is to eliminate the re-broadcast operation of Register-
less Storage by using a novel physical register organization
and naming scheme. Associated with each physical regis-
ter (64 bits in our case) is a two-bit wide register extension.
One bit of the register extension is a value bit, used to hold
a 0 or 1, and the second bit is a valid bit, to indicate if the
register extension is being used to hold a value. The idea in
this scheme is to hold the result of an instruction in a regis-
ter extension if it is 0 or 1, freeing up the associated physical
register to hold the result of another instruction. The novel
storage naming scheme directs dependent instructions to ei-
ther the physical register or the register extension, without
having to alter the source register tags of those instructions.
As the tags do not need to be altered, a re-broadcast opera-
tion is not needed.

(c) Register
Read Operation

(b) Register
Write Operation

(a)

Used if
MSB = 0 and Result is 0 or 1

Used if

Read if

(d) Tag Assignment

Obtain MSB by looking up valid bit of the Step 2:

Step 1: Obtain <tag> from free list

corresponding (<tag>) register extension

MSB = 0 and Result is not 0 or 1
MSB = 1 (or)

MSB = 1 (or)
MSB = 0 and Extension Invalid

Read if
MSB = 0 and Extension Valid

t     a     g

n+1 bits

MSB

Physical
Registers

Register
Extensions

Figure 6: Illustration of: (a) tag, (b) register write operation,
(c) register read operation, and (d) tag assignment in Extended
Registers and Tags scheme



We describe the operation of the scheme in several steps.
First, we present the changes to the register tags. Then, we
see how they are used to direct write and read operations
to the appropriate storage location (the physical register or
the register extension). Finally, we consider free list and tag
management.

The size of the register tags is increased by one bit,
from n to n+1 bits (figure 6(a)); n bits are used to select
a <physical register, register extension> tuple, and the MSB
is used to decide whether to refer to: (i) the physical reg-
ister (MSB=1) only, or (ii) to either the physical register or
its corresponding register extension (MSB=0). The MSB is
used to direct write and read accesses to the storage tuple as
we see next.

Write operations proceed as illustrated in figure 6(b). If
the result of an instruction is 0 or 1, we would like to use the
register extension to hold the value if possible, and free the
associated physical register. Thus, the value is written into
the selected register extension if it is available (i.e., its valid
bit is currently not set). The valid bit is then set to indicate
that the register extension is being used. The n-bit tag for
the tuple is returned to the free list, thereby permitting the
physical register associated with the tuple to be used to store
the results of other instructions. If the result is a value other
than 0 or 1, or if the result is 0 or 1 but the register extension
is not available, the value is written into the selected (64-bit)
physical register as normal; the register extension is left as
is.

Read operations proceed as illustrated in figure 6(c). If
the source tag of an instruction’s operand refers to a phys-
ical register (MSB=1) within the selected tuple, the oper-
ation proceeds normally. If it refers to a physical register
or its register extension (MSB=0), further information is
needed to direct the read to the appropriate storage in the
selected tuple. This information is the valid bit of the cor-
responding register extension. If the register extension is
valid, the read is directed to the register extension; other-
wise it is directed to the physical register.

We now consider free list and tag management. The free
list contains n-bit tags that refer to a <physical register, reg-
ister extension> tuple. When a tag is assigned to the desti-
nation register of an instruction during the rename process,
one of the corresponding storage elements (physical register
or the register extension) is where the result of the instruc-
tion will eventually reside. The MSB is prepended based
upon where in the extended register the result may reside.
If the valid bit of the corresponding register’s extension is
set, the register extension is already being used to hold 0 or
1, the result of some prior instruction. In this case, the full
physical register must hold the result, and an MSB of 1 is
prepended. Otherwise, an MSB of 0 is prepended indicat-
ing that either the physical register or the register extension
can be used to hold the result; which one of these is ac-

tually used will be determined when the result is available
(i.e., when the corresponding write operation happens, as
above). This set of operations is outlined in figure 6(d).

When a physical register is freed, the corresponding n-bit
tag is returned to the free list as usual. Note that a physical
register can be freed while its register extension is still in
use. The register assignment scheme we have described en-
sures that subsequent users of the physical register will not
be eligible to use the extension. Consumers of the exten-
sion will have a different source tag (MSB=0) than those
of the full register (MSB=1). When a register extension is
freed, its valid bit is reset; there is no special free list for the
register extensions.

This scheme places 0’s and 1’s in the register extensions
whenever possible, thus freeing the main physical registers
to be used for other values. A value of 0 or 1 is placed into
a physical register only if the corresponding register exten-
sion is already in use. Also, the register extension can be
used to hold a 0 or a 1 only if the corresponding physical
register is not being used at the time the instruction is re-
named. Thus, this scheme is able to eliminate most, but not
all, of the duplication of 0’s and 1’s in the physical registers.

Once a tag has been chosen for the source operands of
an instruction, it is not remapped, eliminating the need for
a re-broadcast to update the tag. Rather, the tag is used
to steer the access to either a physical register or its register
extension based upon the value of the valid bit of the register
extension and the MSB of the tag.

6 Evaluation

Table 3 summarizes the actions taken by the three differ-
ent schemes. A common benefit of these schemes is bet-
ter register utilization because of reduced register require-
ments. Physical Register Reuse achieves this by avoiding
duplication of all values in the physical register file. Reg-
isterless Storage and Extended Registers and Tags achieve
this by avoiding or reducing, respectively, the duplication
of 0’s and 1’s. We discuss and quantify the performance
impact of this reduction in section 6.1.

An additional benefit is the possible reduction in the
number of accesses to the register file. With Physical Reg-
ister Reuse, a reduction in register write traffic is achieved
because of register reuse: when a physical register is reused,
the result of the instruction need not be written to a register.
The non-trivial micro-architectural changes along with the
added sizes and latencies of the Alias Table and the Value
Cache lookups make this benefit questionable and therefore
we do not quantify it. Registerless Storage reduces regis-
ter read and write operations by not storing 0’s and 1’s in
physical registers. We quantify this in section 6.2. The Ex-
tended Registers and Tags scheme does not reduce the over-
all register traffic. Rather, it distributes the traffic amongst
the physical registers and the register extensions, which can



Physical Register Reuse Registerless Storage Extended Registers & Tags

Detecting
locality Value Cache Identify if result is 0 or 1 Identify if result is 0 or 1

Exploiting
locality

Free assigned physical register. Take
actions needed to reuse the physical
register that already holds the value.

Free assigned physical register.
If assigned a physical register with its
extension, write value (0 or 1) to the
extension. Free the physical register.

Handling
dependent
instructions

Update rename map. Broadcast new
physical register tag or use Alias Ta-
ble to handle dependent instructions
waiting in instruction window.

Update rename map. Broadcast re-
sult (0 or 1) to dependent instruc-
tions in instruction window.

No changes needed.

Handling
exceptions

Recover physical register reference
counts, Value Cache and Alias Table. No changes needed. No changes needed.

Outcome of
technique Register file with unique values. Register file without the most-

common values (0’s and 1’s).

Most common values (0’s and 1’s) in
register extensions. Physical regis-
ters used for other values, and for 0’s
and 1’s if corresponding register ex-
tension unavailable.

Table 3: Actions taken in the implementations of Physical Register Reuse, Registerless Storage and Extended Registers & Tags

be physically separate. Most of the reads and writes of 0’s
and 1’s are to the register extensions; other references go to
the physical registers.

6.1 Performance

There are several ways in which we can assess the per-
formance impact of our proposed schemes. To keep the dis-
cussion manageable, we assess the performance impact us-
ing two sets of experiments. In the first set of experiments
we increase the number of in-flight instructions by increas-
ing the instruction window size while keeping the size of
the physical register file constant. In our second set of ex-
periments we keep the instruction window size fixed while
reducing the number of physical registers. In both cases,
we have the size of the instruction window larger than the
number of physical registers. This is done to increase ca-
pacity pressure on the physical registers, allowing us to dis-
tinguish between the different physical register file designs.
Schemes that use the physical register storage more effi-
ciently will allow more instructions to be in-flight, increas-
ing the available parallelism and thus performance. One
outcome of efficient physical register usage schemes, we
believe, will be a micro-architecture where the size of the
instruction window is somewhat larger than the number of
physical registers.

Figure 7 presents the relative performance for four dif-
ferent cases for our first set of experiments. Case 1 is an
ideal implementation of Physical Register Reuse that as-
sumes zero-cycle access latencies for the Alias Table and
Value Cache lookup, with no limits on the number of times
a physical register is reused. Case 2 and case 3 are the
Registerless Storage and the Extended Registers and Tags
schemes, respectively. Case 4 is a perhaps somewhat prac-
tical implementation of Physical Register Reuse that has a

1-cycle Alias Table access latency with the access and regis-
ter read operation pipelined, no overhead to access the Value
Cache (0-cycle access latency), and with three bits for ref-
erence counting (our experiments indicate that more than
three bits are not needed for reusing most values in the reg-
ister file). We present our results in the form of stacked bars.
Each portion of the bar represents the additional improve-
ment that the scheme contributes and the height of the bar
represents the performance improvement with respect to the
base case.

The bars in the figure present the performance relative to
a base case machine with 128 physical registers and with no
optimizations. All cases have a 256 entry instruction win-
dow for in-flight instructions. We see that practical Phys-
ical Register Reuse (case 4) is the worst scheme among
all cases, actually decreasing performance for half of the
benchmarks. This is because register operations are crit-
ical to performance, and a one cycle penalty for register
read operations on some instructions has a significant neg-
ative impact. The ideal implementation of Physical Regis-
ter Reuse is the best option, significantly improving perfor-
mance for many integer benchmarks. However, for floating-
point benchmarks the benefit of this scheme over schemes
that are specialized for 0’s and 1’s is negligible. This is
because of the insignificant percentage of duplicate values
other than 0’s and 1’s (figure 4). The interesting part of the
figure is the impressive results for optimizations that target
0’s and 1’s. Registerless Storage does quite well with an
average performance increase of of 6.6% for integer bench-
marks and 4.5% for floating-point benchmarks. Extended
Registers and Tags also achieves good performance im-
provement (average of 6% and 4% for integer and floating-
point benchmarks respectively), while being much easier to
implement.
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Figure 7: Relative performance of different schemes with increased instruction window size
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Figure 8: Relative performance of different schemes with reduced physical register file

Figure 8 presents the data for our second set of exper-
iments. Performance is presented as stacked bars for four
cases with respect to the base case (128 physical registers
with no optimization). All four cases have a smaller phys-
ical register file with 100 registers. Case 1 is ideal Physi-
cal Register Reuse. Case 2 and 3 are Registerless Storage
and Extended Registers and Tags, respectively. Case 4 is an
unoptimized physical register file. As the figure suggests,
having 100 physical registers with no optimization degrades
performance significantly in many cases. Using any of the
proposed optimizations results in better use of the available
physical registers. A physical register file with ideal Reg-
ister Reuse performs roughly equivalent to a larger register
file with no optimization.

Again, the results for the Registerless Storage and the
Extended Registers and Tags schemes are impressive. Both
schemes allow a physical register file with 100 registers to
perform only slightly worse than an 128-entry conventional
register file. This represents approximately a 20% reduction
in physical register file size for equivalent performance.

A limitation of the Extended Registers and Tags scheme
mentioned earlier is that it does not entirely eliminate the
duplication of 0’s and 1’s since these values can not always
be stored in the register extensions. Despite this limitation,
this scheme performs reasonably well when compared to

Registerless Storage on most benchmarks (note the insignif-
icant additional improvement of Registerless Storage over
Extended Registers and Tags in figures 7 and 8). Results
not presented in this paper indicate an average of 2.4% (2%
for integer and 2.8% for floating-point benchmarks) of the
register writes of values 0 and 1 are not written to a register
extension because of its unavailability. This is an insignif-
icant percentage, and the vast majority of the total register
writes that are 0’s and 1’s are directed to the extensions.
Therefore, this limitation does not have a detrimental im-
pact on the performance.

6.2 Reducing Register Accesses

We now consider the reduction in register file accesses
that are possible in the Registerless Storage scheme. Fig-
ure 9 presents the percentage of register file write opera-
tions that can be eliminated. Each bar shows the number of
writes of 0’s and 1’s to the register file with 160 physical
registers. We see that an average of 17.6% (19.5% for in-
teger, and 16% for floating-point benchmarks) of the writes
to the register file can be eliminated. Results not presented
in this paper indicates an average increase of 4.7% in the
number of writes to the rename map needed due to register
reassignment (see section 5.2).

Figure 10 presents the percentage of read operations that



could be eliminated. The data in the figure considers only
register reads; source operands that are obtained from the
bypass path are not included. Each bar separates the contri-
bution of 0’s and 1’s for a physical register file of 160 reg-
isters. An average of 7.5% (7.7% for integer, and 7.4% for
floating-point benchmarks) of the reads can be eliminated.
The data is less impressive, but nevertheless, a technique
that might be worth pursuing because of potential power
advantages.
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Figure 9: Percentage of register writes that are 0’s and 1’s
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Figure 10: Percentage of register reads that are 0’s and 1’s

7 Related Work

Register files have been the subject of study for a long
time, and several approaches to optimize register files have
been investigated. We categorize previous work into three
broad categories. The first category of work exploits local-
ity of access to build hierarchies of register files. The idea
is to have a small, fast first level, backed up by a larger,
slower second level. This hierarchy can be determined ei-
ther statically or dynamically. The Cray architectures used
two levels of architectural registers [16]. Static register file
hierarchies were also explored by Swensen and Patt [18].
Dynamic register file hierarchies have been investigated in
several recent papers [1, 5, 14].

The second category of work uses localities of commu-
nication to create clustered register files. The idea is to use
multiple register files, each with few read/write ports, to col-
lectively create a register file with larger bandwidth [15,19].

Different register files in a cluster can service different re-
quests in parallel as long as inter-operation value communi-
cation is within a cluster; a penalty occurs when a value is
passed from one cluster to another. Again, clustering could
be done statically or dynamically. VLIW machines have
used statically-clustered register files, with each cluster be-
ing a separate register name space [4]. The distributed regis-
ter file in a Multiscalar processor is dynamically clustered;
the different register files in the cluster are a collection of
multiple future files [2]. An alternate form of dynamic clus-
tering is used in complexity-effective architectures [13] and
in clustered architectures such as the Alpha 21264 [10].

The third category of work uses novel physical register
rename mapping strategies to optimize physical register file
design. The pioneering work in this area was the work by
González et al. on virtual-physical registers [8, 12]. De-
laying the allocation of a physical register reduces the life-
time of a physical register and thereby the physical register
requirements. Jourdan et al.’s work [9] enhances the con-
cept of virtual-physical registers to exploit value locality. It
introduces the ideas of physical register reuse and many-
to-one mappings in the register rename map to reduce the
physical register file size.

Previous work, with the exception of Jourdan et al. [9],
is orthogonal to the work presented in this paper. Most of
these ideas can be utilized in concert with the ideas pre-
sented in this paper. Our work is a follow on to the work
presented in [9]; it differs from that in [9] in several ways.
We present different, and more realistic, measurements of
exploitable value locality, and our proposed schemes are
different. Our schemes that propose special treatment for
the most common values (0 and 1) allow us to trade off the-
oretical potential with ease of implementation.

8 Summary and Conclusions

This paper considered the use of value locality to opti-
mize the design of physical register files. We observed that
a value produced by an instruction has a high probability of
being the same as a value produced by another recent in-
struction. This results in the same value being present in
multiple physical registers with a traditional physical regis-
ter management discipline. We also observed that the values
0 and 1 are the most frequently generated values across all
the benchmarks we studied. These values also account for a
significant amount of the duplication in the physical register
file.

We proposed three schemes to exploit the value local-
ity and thereby avoid the duplication of values. Our first
scheme, Physical Register Reuse, eliminates all duplication
of values in the physical register file, but requires significant
micro-architectural support and is quite complicated. Nev-
ertheless, it serves as a benchmark to evaluate the potential
of eliminating value duplication. Our other two schemes,



Registerless Storage and Extended Registers and Tags, con-
centrate only on eliminating or reducing the duplication of
0’s and 1’s. This restriction significantly simplifies the ad-
ditional micro-architectural support that is required.

We presented a performance evaluation of the three
schemes. Our results indicate that Physical Register Reuse
is able to reduce the physical register requirements signif-
icantly, but is only able to translate these reduced require-
ments into performance benefits under idealistic assump-
tions. With realistic assumptions this scheme actually re-
sults in a performance degradation. The Registerless Stor-
age and Extended Registers and Tags schemes are able to
reduce physical register requirements to a lesser extent than
Physical Register Reuse, but can achieve performance bene-
fits because they have little additional complexity. The Reg-
isterless Storage scheme is also able to reduce the number
of register file reads and write by an average of 7.5% and
17.6%, respectively.
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