To appear in The 30th International Symposium on Computhitacture, June 9-11, 2003

Parallelism in the Front-End

Paramijit S. Oberoi and Gurindar S. Sohi
Computer Sciences Department, Unsigr of Wsconsin—Madison
{par am sohi } @s.w sc. edu

Abstract

As processombadk-endsget more aggressive front-ends
will have to scale as well. Although the badk-ends of
supescalar processos have continuedto becomemore
parallel, the front-endsremain sequential. This paper
describestechniquesfor fetching and renamingmultiple
non-contiguous portions of the dynamic instruction
streamin parallel usingmultiplefetch andrenameunits. It
demonstates that parallel front-ends are a viable
alternative to high-performance sequentialrft-ends.

Compaed with an equivalently-sizedrace cache, our
tedhnigqueincreasescache bandwidthutilization by 17%,
front-endthroughputby 20%, and performanceby 5%.
Parallelism also enhancedatency tolerance: a parallel
front-endlosesonly 6% performanceasthe cadche sizeis
decreasedrom128KB to 8 KB, compaedwith a 50—-65%
performance loss for sequential fetmedanisms.

1 Introduction

Increasing the exploitation of parallelism, especially
instruction-level parallelism, has been the focus of archi-
tectural techniques for several decades. Starting with
serial, in-order operation of all stagesin instruction pro-
cessing, processors have gradually become increasingly
parallelin differentstagesThefirst steptoward morepar-
allelism was to increase the width of execution, i.e., pro-
cessing multiple operations at the same time, but in
program order. The next step was to remove the artificial
constraints due to serial processing and perform out-of-
order processing, further increasing parallelism.

Despite the use of parallel processing techniques in the
back-end, the front-end stages of the processing pipe-
line—instruction fetching, decoding, and renaming—have
remained sequential processes. Increasing parallelismin
the back-end has placed increasing demands on the front-
end, and processor architects have responded by increas-
ing the width of sequential front-ends. We believe that the
brute force solution of increasing the width of the front-
end pipeline stages while retaining their sequential nature

is not the preferred approach for future processors.
Accordingly, we propose techniques to parallelize the
front-end of the processing pipeline. The techniques that
we propose are able to achieve better front-end perfor-
manceand,in mostcasesbetteror equivalentoverall per-
formance, than known high-performance sequential front-
ends.

In Section 2 we discuss the limitations of sequential
front-ends and introduce parallel front-ends. The next two
sectiongdescribeour proposedparallelfront-endin detail:
Section 3 describes the parallel fetch unit and Section 4
describes the parallel rename unit. Section 5 presents an
evaluation of our proposal, and Section 6 concludes the
paper

2 Sequential and Parallel Front-Ends

We use the term front-end to denote the mechanism(s)
responsible for supplying instructions to the execution
units (thebadk-end. Thefront-endincludesthe fetchunit,
the rename unit, and other support structures (e.g., a
branch predictor). The aim of a high-performance front-
end is to keep the later stages of the processing pipeline
busy by providing them with a sufficient number of
instructions every cycle. We start our discussion of the
front-end with the fetch unit since it is the earliest part of
the pipeline. The discussion of renaming is postponed
until Section 4, at which point we will be able to discuss
theimplicationsof a parallelfetch unit ontherenameunit.

A sequentiafetchunitrelieson beingableto fetchlong
contiguous sequences of instructions every cycle. Increas-
ing the throughput of a sequential fetch unit therefore
requiresncreasinghelengthof the contiguousnstruction
sequences fetched each cycle. As the required length
becomedonger it becomegprogressiely moredifficult to
achieve. Section 2.1 discusses these difficulties in more
detail.

To overcome these difficulties, we propose that higher
fetchthroughputbe achieved by usingparallelism:several
sequential fetch units fetching different fragments of the
programin parallel,ratherthanasinglefetchunit trying to
fetch longer sequences of instructions. Section 2.2

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

describes parallel fetch and the advantages of parallel
fetch over sequential fetch.

2.1 Limitations of Sequential Fetch

Most limitations of sequential fetch mechanisms result
from the fact that they are designed to fetch instructions
that are stored in consecutive memory locations (i.e.,
storedsequentially) eventhoughthearbitrarycontrolflow
structure of programs generally cannot be mapped onto a
static sequential storage order. Thus, to improve fetch
throughput, the mechanism must fetch a large number of
instructions that are not consecutive in the static program
representation. This is accomplished in one of several
ways, used either in isolation or in combination.

Thefirstwayis to rearrangehestaticcodesothatbasic
blocks,andthereforenstructionsthatarelik ely to becon-
secutive in the dynamic program are also consecutive in
the static program [2, 5, 18]. This rearrangement may be
done statically, for example at link time [12], or dynami-
cally [1]. Since this approach is not always successful,
especially as the demands on fetch bandwidth are
increased, other approachesdaeen necessary

The second way is to design hardware that can read
multiple cachdinessimultaneoushandthusfetchinstruc-
tionsthatarecontiguousn dynamicprogramorderbut not
in thestaticprogram A collapsingbuffer [7] is anexample
of this approach. Studies have shown that this approach is
also unable to deler high fetch throughput [20].

A third way is to observe the dynamic execution order
as the program executes and cache instructions in their
dynamic execution order. A trace cache [14, 16, 20] isan
example of this approach. Accessing asingle entry in a
tracecachereturnsmultiple instructionsthatwerenot nec-
essarilycontiguousn the staticprogram therebyallowing
a sequential fetch unit to achieve a high fetch throughput.
This approachusesadditionalstorageresourceshatmight
be put to more productive use if other approaches to
achieve high fetchthroughputwere possible Furthermore,
it makes inefficient use of storage resources due to frag-
mentation and duplication [17].

Sequentiafetchmechanismdjk e in-orderissuemech-
anismsarealsosusceptibldo stalls.A stall conditionlike
an instruction cache miss prevents any further fetch activ-
ity until the stall ends. Increasing stall latencies increase
the time in which no fetch agtty occurs.

Many enhancements to these mechanisms have been
proposed [9, 10, 15, 19, 22], but each of these inherits
someproblemsfrom the sequentiafetchmechanisrmupon
which it is based.

2.2 Paralldl Fetch

A parallel fetch unit achieves higher fetch throughput
by fetching multiple (possibly discontinuous) instruction

blocksin parallel,ratherthanincreasinghe width of indi-

vidual blocks.Parallelismenablesigherfetchthroughput
without beingsubjectto the limitations of sequentiafetch
mechanisms.

Fetching multiple discontiguous blocks of instructions
every cycle requires predicting multiple pointsin the
upcoming dynamic instruction stream and fetching
instructions from each of those pointsin parallel. Thus,
instead of a single program counter (PC), there are multi-
ple PCs, each representing the start of a fragment of the
dynamic instruction stream. Instructions from each of
these fragments are fetched concurrently using multiple
sequencers. A sequencer is a mechanism that sequences
through instructions in program order (like a sequential
fetch unit).

The basic ideais very similar to instruction fetch in
Multiscalar [3, 21]: Multiscalar divides the sequential
instruction stream into tasks and assigns each task to a
processing element. All processing elements fetch and
execute the assigned task in parallel. However, parallel
fetch in Multiscalar is an artifact of a fully clustered
microarchitecture. The technique we are proposing is
completely general and makes no assumptions about the
back-end.

The net throughput of a parallel fetch unit is the aggre-
gate throughput of all the sequencers, rather than being
constrained by the throughput of a single sequencer. The
maximum achievable throughput is still limited by the
instruction cache bandwidth, but unlike a sequential fetch
unit, the available bandwidth can be better utilized since
fetch can be reordered to accommodate constraints of the
instruction cache (e.g., misses and bank conflicts).

Parallelism in the fetch unit, like parallelism in other
parts of the processor, also increases latency tolerance. If
oneof thesequencerexperiences cachemiss,otherscan
still continue fetching the fragments assigned to them.
Thus, the cache miss can be overlapped with the fetch of
other useful instructions, or with other cache misses. In
addition,the cache-missingequencecouldfetchadiffer-
ent fragment while the missis serviced and later return to
the original fragment.

Finally, a parallel fetch unit has various benefits not
related to performance. Building an instruction delivery
mechanisnout of replicatechardwaresimplifiesits design
and hence makes verification easier. Use of narrower
sequencers may simplify their circuitry. It also makes the
fetch unit more flexible: parallel fetch units easily lend
themselves to fetching multiple threads, fetching down
both paths of frequently mispredicted branches, fetching
instructions from recoremgent points, etc.

The Alpha EV8 processor design included a fetch unit
capable of alimited degree of parallelism [8]. It could
fetch two discontiguous cache blocks simultaneously, like

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

] Sequencers

>
E ;Buffers ::>
C—

e

| Fragment Predictor |

Fragment Buffers

Banked |-Cache

Figure 1. Parallel Fetch Unit

acollapsing buffer. The blocks could be from two different
threads, but each thread was fetched in-order.

3 Parallel Fetch using Multiple Sequencers

A sequential fetch unit contains a single sequencer
which fetches one or more lines from the instruction cache
every cycle depending on the design of the cache and the
sequencer. The required instructions are extracted from the
fetched cache lines, and the output from the fetch unit isa
block of instructions in program order.

Figure 1 illustrates a parallel fetch unit based on the
design we proposed earlier [13]. We refer the reader to the
original paper for a complete description, but a short over-
view of the design follows. It consists of multiple sequenc-
ers that write the fetched instructions into an array of
fragment buffers. These buffers provide temporary storage
until instructions can be merged into the in-order instruc-
tion stream. A fragment predictor predicts control flow on
the granularity of fragments, and each predicted fragment
is assigned a fragment buffer. Sequencers fetch multiple
fragments into the corresponding fragment buffers in par-
alel. Theinstruction cache is banked so that it can handle
multiple requests simultaneously (barring bank conflicts).

Instructions are read out of fragment buffersin oldest-
fragment-first order, i.e., program order. Since instructions
exit the fetch unit in program order, no changes are
reguired to any other stage of the processor pipeline except
support for training the fragment predictor and recovering
its state on mispredictions.

3.1 Fragment Selection and Prediction

A program fragment is a portion of the dynamic
instruction stream. The entire dynamic execution stream
of the program can be obtained by concatenating all frag-
ments. This is similar to the idea of traces[20] or
tasks [21], except that fragments are completely general,
whereas the other terms make assumptions about the
nature of fragments or about how they are processed.

Conceptually, a fragment predictor only needs to pre-
dict fragment boundaries. Intra-fragment control flow can
be predicted by each sequencer using alocal mechanism.
A variety of fragment predictor designs are possible, but in
this paper we use the trace predictor proposed by Jacob-
son, Rotenberg, and Smith [11]. Since the trace predictor
predicts trace addresses as well as branch directions for all
branches in the trace, local branch predictors are not
required.

The heuristics used to split the instruction stream into
fragments are fairly similar to commonly used trace selec-
tion heuristics: fragments are terminated at all indirect
branches, at any conditional branch after the eighth
instruction, or at the sixteenth instruction. These heuristics
are discussed in more detail in our prior work [13].

3.2 Fragment Buffers

Fragment buffers are FIFO queues of instructions large
enough to store an entire fragment. In addition to instruc-
tions, they store other information relating to the fragment:
its starting address, the current PC, and branch predictions
from the fragment predictor. As instructions are fetched
into a fragment buffer, the PC is updated to reflect the next
instruction to be fetched. When the entire fragment has
been fetched, aflag is set indicating that the buffer is com-
plete.

Once all instructions have been read from a buffer by
the next pipeline stage, the buffer is marked unused, but its
instructions are not discarded. If the same fragment is
encountered again before its buffer has been reallocated,
the instructions are reused instead of being fetched again
from the instruction cache. Depending on the benchmark,
20-70% of fragments can be reused with just 16 fragment
buffers [13].

Thus, the fragment buffers act like a very small trace
cache, and the sequencers act like a prefetch/fill mecha-
nism. A large trace cache can exploit most of the locality
in the instruction stream but typically has arelatively slow
sequential fill mechanism. The fragment buffers, on the
other hand, can exploit only a fraction of the locality, but
have a powerful parallel fill mechanism. Depending on
design constraints, a fetch mechanism could lie anywhere
on this spectrum. A complete study of this design spaceis
beyond the scope of the paper.

3.3 Performance I ntuition

The time taken by this mechanism to construct an indi-
vidual fragment is typically more than the time that a
sequential fetch mechanism would take because (1) the
individual sequencers are not as wide as the monolithic
fetch unit that they are replacing, and (2) access to the
instruction cache is shared among multiple sequencers.
However, since the fetch rate is higher than the commit

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

rate, sequencers are usually fetching fragments far ahead
of the back-end. Therefore, when the rename stage begins
renaming instructions from a fragment, usually the entire
fragment has already been fetched. Consequently, this
mechanism operates like a just-in-time fragment/trace
constructor, giving the illusion of alarge trace-cache-like
mechanism to the rest of the pipeline. Our simulations
indicatethat84% of fragmentsarecompletelyconstructed
before they are sent to the rename stage—as compared to
an a/erage trace cache hit rate of 87%.

Using parallelism to overcome the higher latency of
constructing individual fragments also makes this mecha-
nismmorelateny tolerantthansequentiafetch. Sincethe
fetch of different fragments is overlapped, a cache miss
can be hidden behind the fetch of instructions from other
fragments, or the latency of multiple cache misses can be
overlapped.

Finally, since this mechanism uses a conventional
instruction cache instead of atrace cache, it is able to uti-
lize cache space more effectively. Therefore, programs
with large working sets are likely to perform better—pro-
videdthatthefragmentpredictorisn’t overwhelmedoy the
code size as well. Although performance of both the pre-
dictor and the cache suffers as the code size grows, a pre-
dictor canusuallyperformacceptablyover a greaterrange
of code sizes than a cache since the space occupied by
information about a fragment in the predictor is a small
fraction of the space occupied by the fragment in a cache.
For the same reason, it is easier to resize a predictor to
handle lager programs than it is to resize a cache.

3.4 Limitations of Multiple Sequencers

Relying on parallelism for higher throughput has the
result that during the time when parallelism is low, the
throughput is also low. For parallel fetch, this occurs
immediately after fetch is redirected due to a control
misprediction. It takes a few cycles for all sequencers to
become active again since the fragment predictor makes
only one predictionvery gscle.

The problem is further exacerbated if the parallel fetch
unit is feeding a sequential decode and rename stage. In
this casethe effective throughpuis limited to thethrough-
put of a single sequencer since all the instructions fetched
by the first sequencer must be renamed before any of the
instructionsfetchedby othersequencersventhoughthey
may be fetched earlier. A similar problem occurs when a
sequencer encounters a cache miss. Later fragments are
fetched into fragment buffers before the cache-missing
fragment, but instructions from later fragments cannot be
forwardedto the later stageof the pipelineuntil thecache
miss is serviced.

Thus, although parallel fetch is able to maintain a high
fetchrateatmosttimes,andis ableto reachits steadystate

Fragment Buffers Rename

- -
$;Buffers D’

S
- -

Figure 2. Parallel Renaming

| I nstruction Window |

fetch rate soon after a fetch redirect, sequentia renaming
of instructionsexposedatencieghatcould otherwisehave
been hidden by parallelism.

4 Parallel Renaming

The cause of the limitations described in Section 3.4 is
that a parallel pipeline stage is feeding a seria pipeline
stage; therefore, the instruction stream must be serialized.
For somestagesn the pipeline,suchasthe commitstage,
this may be unavoidable; but could this loss in perfor-
mance bewaided for intermediate pipeline stages?

Seridlization can be avoided if the rename stage can be
built in a parallel fashion aswell, as shown in Figure 2. A
single monolithic renamer is replaced by multiple identi-
cal renamers. Each individual renamer renames a single
fragment—just like each individual sequencer fetches a
fragment—and all renamers operate concurrently to
rename multiple fragments in parallel.

In addition to avoiding serialization of the instruction
stream, a renaming unit composed of smaller replicated
rename units may allow higher clock rates since small,
loosely-coupled structures can typically be clocked faster
thana large monolithic structure andthe critical pathof a
renamingunit is shorterif the numberof instructionsto be
simultaneously renamed is smaller

Themainissuein building sucharenameunit is ensur-
ing that the consumer instruction in a RAW dependence
pair gets renamed correctly. Figure 3 illustrates the prob-
lem with two example program fragments. Instruction 12
from fragment 2 uses the mapping created for logical reg-
ister R1 when instruction 11 is renamed. A sequential
renamer always renames |1 before 12, so this mapping is
aways available when 12 is renamed; however, if the two
fragments were renamed in parallel, 12 may be renamed
before 11. Since 12 cannot be renamed until the mapping
created by 11 is available, a parallel renaming mechanism
must do one of these two things [22]: (1) delay renaming
12 until 11 has been renamed, or (2) rename 12 specula-
tively and ensure that 11 maps its output to the predicted
register

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

K Fragment 1 Reg Map
/ R4 - P2
)/ R5 - P3
o 11l RL=R4+R5 | R1mapped tqP4|
°
Olf-
% Fragment 2 Reg Map
g R4 - P2
a R5 - P3
T R1 - P4
\
12 R2=[R1{+1
V\\ R
\

Figure 3. Difficulty with Parallel Renaming: 12 can
not be renamed unless the latest mapping of R1
(produced when I1 is renamed) is known.

The first solution is similar to that used by
Multiscalar [3, 21]. When a fragment is renamed, the
hardware determines which register mappings are not yet
available (either via a predictor, or using compiler infor-
mation). The corresponding instructions are delayed until
the missing mappings are available. This solution requires
the renamers to exchange information about the register
map table as they rename instructions.

The second solution is similar to that used by
Skipper [6]. It is based on the observation that renaming
an instruction and creating the corresponding register
mapping do not necessarily have to be done at the same
time. Before starting to rename each fragment, the hard-
ware determines (speculatively or otherwise) which new
mappings will be created by that fragment. Future frag-
ments can use these mappings to rename instructions cor-
rectly. This allows multiple fragments to be renamed in
parallel, but the process of creating new mappings must be
performed serialy for each fragment. The serialization is
not a serious performance limiter since the process of cre-
ating these mappings only involves making a copy of the
renaming table and allocating a group of physical regis-
ters. Some of this serialization could also be removed by
having some conventions that restrict which physical reg-
isters the logical registers of afragment can be mapped to.

The first solution removes serialization completely, but
ismore complex since it requires delaying instructions and
communication between renamers. Moreover, delaying
instructions increases the time fragments spend in the
fragment buffer, which limits the ability of the fetch unit to
look ahead in the instruction stream.

The second solution does not compl etely eliminate seri-
alization, but it is simpler since the operation of individual
renamers is largely unchanged and a renamer communi-
cates only at the beginning of its renaming process. Since
the fragment predictor limits the maximum throughput of
this mechanism to one fragment per cycle anyway, the sec-
ond solution has the benefit of lower latency without any
significant performance loss. The rest of this section
describes our proposed implementation of the second
solution in greater detail.

4.1 Live-out Prediction

Two predictions are made for each fragment: (1) the
logical registers written by that fragment, and (2) the
instructions that write the live-out values seen by future
fragments (i.e., for each register, the last instruction which
writes a value to that register). Predicting thisis relatively
straightforward: the first time a fragment is seen, the live-
outs are recorded in atable, and that table is used to make
predictions later.

The live-out registers are stored as a bitmap containing
one hit for each register, with a 1 indicating that the corre-
sponding register is a live-out. The instructions corre-
sponding to the last writes are stored as a bitmap
containing one bit for each instruction in the fragment,
with the n" bit indicating if the n" instruction in the frag-
ment is a last write. In our example implementation, the
predictor has a 4-hit tag to detect aliasing and it is indexed
by a hash of the address and predicted branch directions of
the fragment.

4.2 Fragment Renaming

In addition to the live-outs, the length of each fragment
is also predicted. Every cycle, free reorder buffer entries
are allocated to the oldest fragment which has not yet been
allocated entries for all its instructions. Instructions from
later fragments can be written into the reorder buffer
before earlier fragments have been fetched compl etely.

Fragments are renamed in two phases. In phase 1, all
the predicted live-outs of the fragment are allocated new
physical registers. A copy of the register map table with
the newly allocated registersis sent to the next renamer. In
phase 2, instructions in the fragment are renamed sequen-
tially. The physical register allocated in phase 1 is used for
the result when renaming an instruction corresponding to a
live-out value; otherwise, a new physical register is allo-
cated.

Phase 1 is performed one fragment at a time, in pro-
gram order; phase 2 is performed in parallel for multiple
fragments. Phase 2 is performed only after the fragment
has been allocated space in the reorder buffer.

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

4.3 Mispredictions

There are two live-out misprediction scenarios:
(1) under-predicting the live-outs, and (2) over-predicting
the live-outs. Since two predictions are made per fragment
to determine live-outs (registers and instructions), we need
to detect atotal of four misprediction conditions: (1) A
write to a register that was not predicted to be a live-out;
(2) No writes to aregister that was predicted to be alive-
out; (3) A write to alive-out register after the predicted
last write; (4) No instruction predicted to be the last write
of alive-out register.

Condition 4 supersedes condition 2. Conditions 1 & 3
can be easily detected during the rename process, and con-
dition 4 can be detected after all instructions in a fragment
have been renamed. On a misprediction, all future frag-
ments are squashed. Alternatively, it is possible to selec-
tively re-execute the incorrectly renamed instructions, but
the extra expense may not be justified if the misprediction
rates are sufficiently low.

In addition, another source of misprediction is the frag-
ment length. Overpredicting the fragment length is safe—
it only wastes resources. Underprediction is handled by
squashing all future fragments.

4.4 Parallel Renaming with Sequential Fetch

The renaming scheme proposed above only depends on
the existence of a set of fragment buffers so that multiple
fragments can be read out and renamed in parallel. The
details of how the fragment buffers are filled do not affect
parallel renaming. For example, even if the fetch mecha-
nism was a trace cache which placed one trace every cycle
into a free fragment buffer, the parallel renaming mecha-
nism described could be used without any changes.

5 Evaluation

We modelled three different front-ends—a conven-
tional sequential mechanism, atrace cache, and the paral-
lel front end described in this paper—using an execution
driven simulator based on the SimpleScalar toolkit [4].
Only the system call emulation and the instruction defini-
tions were taken from SimpleScalar; the out-of-order tim-
ing model was rewritten entirely. Since improving the
front-end is only useful if it is a bottleneck, we simulate a
16-wide out-of-order superscalar processor with abundant
functional units and large caches. Table 1 describes the
simulated processor in detail.

The conventional sequential front-end is labelled W16
in the rest of the paper. W16 fetches at most 16 instruc-
tions sequentialy starting at a given PC until it encounters
ataken branch or a cache-line boundary. We assume that
there is no restriction on the number of branch predictions

Table 1: Simulation Parameters

Width Fetch, decode and commit at most
16 instructions per cycle
Functional Units 16 Int adders, 4 Int multipliers,
4 FP adders, 1 FP multiplier,
4 |oad/store units.
Window 256 entry instruction window
L1 Caches 64 KB, 2-way set-associative,
(Instr. & Data) 1 cycle access time, 64 byte blocks
(16 instructions per cache block)
L2 Cache 1 MB, 4-way set-associative,
(Unified) 10 cycle access time, 128 byte blocks
Memory 100 cycle accesstime
Trace & DOLC [11], 64K entry primary table,
Fragment 16K entry secondary table,
Predictor D=9, O=4, L=7, C=9
Parallel Fetchand | 16 fragment buffers, 16 instructions
Rename each (1 KB). 2-way 4K entry live-out
predictor (84 bits per entry, 42 KB)

inacycle, i.e., fetch can proceed past any number of not-
taken branches in a cycle. The cache can supply only one
cache line every cycle, so fetch must stop at cache-line
boundaries. Fetch stops at taken branches regardless of
whether the target is in the same cache line. The L1
instruction cache size is 64 KB. NOP instructions are elim-
inated very early in the pipeline and do not count towards
the number of instructions fetched, renamed, or commit-
ted. Branches are predicted using a trace predictor.

TC represents a 2-way set associative trace cache with
a maximum trace size of 16 instructions. On a cache hit,
the trace cache can supply an entire trace in asingle cycle.
On amiss, instructions are fetched using the W16 mecha-
nism. The processor contains an L1 instruction cache in
addition to a trace cache, and space is divided equally
between the instruction cache and the trace cachel. We
simulate two trace cache configurations. (1) TC denotes a
32 KB trace cache and a 32 KB instruction cache, and
(2) TC,y, denotes a 64 KB trace cache and a 64 KB
instruction cache. TC,, uses double the amount of L1
instruction storage as W16. Asin the case of W16, NOP
instructions are not counted towards trace size.

PF represents the parallel fetch mechanism based on
multiple sequencers described in Section 3. It contains 16
fragment buffers of 16 instructions each. Two different PF
configurations are simulated: PF-2x8w consists of 2
sequencers, 8-wide each; and PF-4x4w consists of 4
seguencers, 4-wide each. The aggregate width of the front
end is 16 in each case. Each individual sequencer isidenti-
cal to W16 except for its width. The aggregate size of the

1.This combination of an instruction cache and a trace cache performs
better than allocating the entire L1 cache space to atrace cache.

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

Table 2: Benchmark Characteristics

Benchmark Input Avg Frag. Size
(instructions)
bzip2 test 12.79
crafty test 11.99
eon train (cook) 10.98
gap test 10.69
gcc test 11.15
gzip test 12.06
mcf train 9.04
parser test 10.35
perl train (diffmail) 11.32
twolf train 12.16
vortex test 11.20
vpr train (place) 12.33

L1 cacheis thesameasin W16 (64 KB), andthe cacheis
split into 16 banks. The fragment predictor and fragment
selection heuristics are identical to TC to allow an unbi-
ased comparison.

Finaly, PR denotes the PF mechanism coupled with
the parallel renaming mechanism described in Section 4.
PR-2x8w denotes 2 sequencers, 8-wide each, coupled
with 2 renamers, also 8-wide each; similarly, PR-4x4w
denotest sequencerst-wide each,coupledwith 4 renam-
ers, 4-wide each. The live-out predictor contains 4K
entries, and is 2-way set associative. Perfect fragment
length prediction is assumed.

PF and PR have a slight storage advantage over W16
and TC since the total L1 storage available to them is the
size of the cache plus the size of the fragment buffers
(16 x 16 x 4 = 1 KB). We decided not to correct this dis-
crepancy since it would require simulating a63 KB L1
cache—which is neither practical for simulation, nor
meaningful for areal machine. We do not expect this to
skew the conclusionssignificantlysincethe fragmentbuff-
ers increase the totalalable L1 storage by only 1.6%.

All benchmarks were taken from the SPEC CPU 2000
benchmark suite and were compiled with ‘peak’ settings
using the Compag Alpha compiler. We report results only
for the twelve integer benchmarks. Floating point bench-
marks were omitted since they are either memory limited
or have very simple control flow, with the result that all
front ends perform equivalently on them. Excluding them
prevents dilution of diferences between the schemes.

All programs were simulated for the first one billion
instructions. Test inputs were used, except for the bench-
markseon, ncf, per |l ,twol f, andvpr, sincetheirtest
run was shorter than a billion instructions—train inputs
were used for these. Table 2 lists the benchmarks, the
inputs used, and theerage fragment length.

The results are organized as follows: in Section 5.1 we
study the efficiency with which various fetch mechanisms
utilize theavailablecachebandwidth,andthe netthrough-
put they achieve. Following that, we study our parallel
renaming mechanism: Sections 5.2 and 5.3 evaluate the
parallelrenameunit andthelive-outpredictorrespectiely.
Section 5.4 compares the overall performance of various
schemes. Finally, Section 5.5 and Section 5.6 study the
sensitivity of performance to the amount of L1 instruction
storage and the trace/fragment predictor size.

5.1 Parallel Fetch

All threefetchmechanisms-W 16, TC, andPF—have
identical maximum throughput: each can fetch at most 16
instructions every cycle. However, each fetch mechanism
has different limitations on how efficiently this available
bandwidth can be utilized. The number of instructions
fetched per cycle is not an accurate measure of bandwidth
utilization since, in addition to being affected by the fetch
unit, it is alsoaffectedby the IPC of the program At times
of low IPCthefetchunit will bestalled,andthusunableto
utilize the available bandwidth. Therefore, measuring the
instructions fetched per cycle may hide limitations of the
fetch unit.

The ratio of the number of instructions fetched to the
numberof cyclesin which the fetch unit wasnot stalledis
not accurate either; a parallel fetch unit may be partially
stalled sometimes (i.e., some sequencers may be stalled,
but not all), andthereforethis metric discriminatesagainst
a parallel fetch unit.

We use the notion of fetch slots to abstract away the
back-end from the fetch unit. Each cycle that a sequencer
is active, there is a potential maximum number of instruc-
tions it can fetch. That is the total number of fetch slots.
Thus W16 and TC have either 0 or 16 fetch slots every
cycle, whereas PF has a varying number of fetch slots
dependingon the numberof sequencerthatareactive. To
measuréahe efficiengy of eachfetchmechanismye deter-
mine the ratio of the number of instructions fetched to the
total number of fetch slots, i.e., thetch dot utilization.

Figure 4 shows the fetch slot utilization of different
fetch mechanisms. Each bar in the graph represents the
harmonic mean across all benchmarks. As expected, W16
doesnot performwell. It is ableto utilize only 40% of the
availableslots.A tracecacheincreaseshe averageutiliza-
tion to about 60%—a little lower than the ratio between
average and maximum trace size (Table 2). PF-2x8w
achieves about 70% utilization on average—17% more
than TC and TC,,. PF-4x4w further increases utilization,
since narrower sequencers lead to fewer wasted slots,
achieving 80% utilization onerage.

Figure 5 shows the average number of instructions
fetched and renamed every cycle by each mechanism,

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

100

80

60

407

ZO%AI
0

TCx PF-2x8w PF-4x4w

Fetch Slot Utilization (%)

Figure 4. Fetch Slot Utilization

.
M Fetch
» [0 Rename
g7
(@]
o]
o
2 67
S
g
>
- h I_’
4" Wwie TCox PR PR

2x8w 4x4w 2x8w 4x4w
Figure 5. Fetch and Rename Throughput

including wrong-path instructions. PF is able to sustain an
average fetch rate of 7 instructions per cycle—about 20%
higher than the trace cache, and 49% higher than W 16.

Of course, high fetch efficiency and/or rate may not
directly translate to higher performance since the fetch
unit may be fetching many wrong-path instructions. How-
ever, it isimportant to realize that there are two problems
in instruction fetch: (1) what to fetch, and (2) how to fetch.
Parallel fetch is aimed at the second problem, and the
above results show that it successfully achieves this aim.

5.2 Paralldl Renaming

As discussed in Section 3.4, the high fetch rate of PF
does not necessarily lead to a high rename rate, since the
instruction stream could be serialized at the rename unit.
However, the rename rate has a more direct impact on per-
formance than the fetch rate. High IPC can be obtained
only if the back-end has enough ready instructions, and
increasing the rename rate directly increases the number
of instructions available for execution.

Slowdown (%)

il B

TC-2x8w TCax-2x8w TC-4x4w TCax-4x4w

Figure 6. Monolithic versus Parallel Renaming

100
g 98
oy
S 967
>
8
< 94
c
k=)
8 927
S &1-way
a 90 w2-way
#4-way
88 T T T T
1K 2K 4K 8K

Live-Out Predictor Size (entries)

Figure 7. Live-Out Prediction Accuracy

The light gray barsin Figure 5 show the average num-
ber of instructions renamed each cycle by the mechanisms
under study. For sequential fetch mechanisms, the rename
rate is similar to the fetch rate; alittle lower, since on
branch mispredictions some fetched instructions are dis-
carded before they reach the rename stage. However, the
rename rate of PF is much lower than its fetch rate, indi-
cating that serializing the instruction stream at the rename
stage severely impacts the front-end throughput.

PR increases the rename rate of PF by 13% on average.
However, there is still a significant gap between the fetch
rate and the rename rate of PR that islarger than the corre-
sponding gap for W16 and TC. This gap exists because
the number of instructions discarded due to mispredictions
by a parallel fetch unit is higher than by sequential fetch
schemes. A paralel fetch unit buffers many more instruc-
tions in the fetch stage, and is required to predict control
flow much further into the future.

As described in Section 4.4, a sequential fetch unit can
be combined with a parallel renaming unit. Note that par-
allel renaming, while adding performance to parallel fetch,
is not a performance enhancing technique by itself. It may

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

307
g
3 20 4
= .
o 7
>
o 4
s
3 10
[}
Q
o
n

bzip2 crafty eon gap gcce gzip

NN

mcf parser perl twolf vortex vpr HMean

Figure 8. Performance

simplify rename, however, and thus enable faster circuit
implementations. Figure 6 shows the performance penalty
of using a parallel renaming unit with a trace cache fetch
mechanism. Two parallel renamers are studied:
(1) 2x8w—two 8-wide renamers operating in parallel, and
(2) 4x4w—rfour 4-wide renamers operating in parallel.

A 2x8w renaming unit performs within 1% of a mono-
lithic renaming unit on average. A 4x4w renamer suffers a
higher penalty of about 3.5%. Only one-third of this slow-
down is due to live-out mispredictions; the rest is caused
by instructions being renamed before their sources. Our
simulations indicate that 4-12% of dynamic instructions
are renamed before the instructions producing the corre-
sponding sources when a 4x4w renamer is used.

5.3 Live-Out Predictor

Figure 7 shows the prediction accuracy of the live-out
predictor for a range of sizes and associativities. The pre-
dictor is clearly space-limited and benefits substantially as
the number of entriesis increased. Increasing the associa-
tivity to two increases accuracy, but afurther increase does
not help much. In this paper, we use a 2-way 4K entry pre-
dictor (42 KB) which achieves 98% accuracy on average.

The number of live-outs per fragment is typically small
(4-6 registers), so amore complex encoding could signifi-
cantly reduce the storage requirements of the predictor.

5.4 Overall Performance

Figure 8 shows the performance of different front-ends
over all benchmarks. The Y-axis indicates the percent
speedup over W16. The four barsin each cluster represent
TC, TCyy, PR-2x8w, and PR-4x4w respectively. The
lower section of last two bars indicates the performance of
the corresponding parallel fetch configuration, and the
upper section shows the benefit due to parallel renaming.

As noted earlier, TC,, isidentical to TC, except that
total L1 instruction storage is doubled from 64K to 128K.
The difference between the TC and TC,, barsis therefore
the benefit due to alarger cache. Thisdifferenceissmall in
most cases, indicating that the working sets of most bench-
marks fit in 64KB of L1 cache space. PR-2x8w performs
within 2% of both TC and TC,, on these benchmarks. On
the four benchmarks that gain significantly from doubling
the L1 cache (crafty, gcc, perl, andvort ex),
PR-2x8w performs 10-20% better than TC.

On average, PR-2x8w performs equivalently to TC,,
with just half the cache space and 5% better than TC with
a similar amount of space. PR-4x4w performs 3% better
than TC on average but alittle worse than TC,,. Out-of-
order renaming increases performance of the paralel fetch
unit by 0-6% depending on the benchmark. These results
represent a 10-13% average speedup over the base W16
configuration, indicating the importance of a high perfor-
mance fetch mechanism when using an aggressive back-
end.

PR-4x4w performs 3% worse than PR-2x8w on aver-
age since it looks further into the future, and thus is more
likely to fetch down mispredicted paths. In addition, it
takes longer to recover from mispredictions since it takes
at least four cycles for all four sequencers to become
active, rather than two cycles in the case of PR-2x8w.
Finally, as described in Section 5.2, greater parallelism in
the renaming stage causes instructions to be renamed in
suboptimal order. Thus, better control prediction and more
intelligent parallel renaming would be necessary to
achieve the advantage of four sequencers over two.

5.5 Sensitivity to Cache Size

Results presented in the Section 5.4 already indicate
that a parallel fetch unit is more suitable than atrace cache
for workloads with large code footprints. In this section,

To appear in The 30" International Symposium on Computer Architecture, June 9-11, 2003

W16 (64 KB)

<

o

X

<

[{e]

© -107]

—

= 20

()

3 307 W16

S 40— ¥TC

? _ | ®PR-2x8w

(‘;)i -50 PR-4x4w

-60 I I I I 1

8 16 32 64 128

L1 Instruction Storage (KB)

Figure 9. Sensitivity to Cache Size

we take this further and show that a parallel fetch unit pro-
vides robust performance over awide range of L1 instruc-
tion cache missrates.

Figure 9 shows the performance of the fetch mecha-
nisms under study over arange of cache sizes, and thus a
range of cache miss rates. The X-axis indicates the total
L1 instruction storage (instruction cache + trace cache)
and the Y-axis indicates speedup over W16 with a 64 KB
cache. Since TC and TC,, differ only in cache size, TC,,
is not shown on the graph.

The line representing TC has the highest slope of all,
indicating that a trace cache loses performance most rap-
idly as the number of cache misses increase. On the other
hand, PR-2x8w and PR-4x4w lose only about 6% perfor-
mance as the cache size is reduced by afactor of sixteen
from 128 KB to 8 KB. For small cache sizes, sequential
fetch mechanisms are 50-62% slower than PR. PF, not
shown on the graph to reduce clutter, has slope similar to
PR, but slightly lower performance.

Two factors contribute to this resilience: (1) the ability
to continue fetching and executing instructions beyond a
cache miss, and (2) the ability to overlap multiple cache
misses with each other. We expect that tolerance to cache
miss rateswill become increasingly important in the future
as technology constraints make it harder to design large
structures, and as program sizes become larger. Small
caches are a so attractive since they can be clocked faster,
and parallel fetch allows the cache size to be reduced with
little impact on performance.

5.6 Sensitivity to Trace/Fragment Predictor Size

Figure 10 shows the sensitivity of performance to trace/
fragment predictor size. The X-axis indicates the number
of entriesin the primary table; the number of entriesin the
secondary table is one fourth of that in all cases!. The Y-
axis indicates the speedup over W16 with a default sized
predictor (64K entries).

10

157

10

Speedup over W16 - 64K (%)

5 ¥*TC
*TCZX
9PR-2x8w
-o-PR-4x4w

0 \ \ \ \ \

4K 8K 16K 32K 64K

Fragment Predictor Size (entries)

Figure 10. Sensitivity to Fragment Predictor Size

We see that all mechanisms gain about 1.25% perfor-
mance on average when the predictor size is doubled. For
atrace cache, thisis a significantly smaller increase as
compared to the benefit of doubling the cache size. For
paralel fetch, however, thisis similar to the benefit from
doubling the instruction cache size. This suggests that a
parallel fetch mechanism should have a large predictor,
even at the expense of a smaller instruction cache, since
doubling the predictor may be less expensive in terms of
chip area than doubling the cache.

6 Conclusions

Sequentia front-ends are limited in the throughput they
can achieve since they are designed to fetch instructions
from contiguous memory locations, but the control flow
structure of many programs cannot be mapped onto a
sequential storage order. Therefore, we propose that fetch
throughput be increased not by widening sequential front-
ends, but by building paralldl front-ends—front-ends com-
posed of multiple sequential fetch and rename units oper-
ating in parallel. We described a possible implementation
of such a parallel front-end and qualitatively discussed its
characteristics. In particular, we discussed why a parallel
fetch unit cannot be used effectively unless coupled with a
parallel rename unit, and described ways in which a paral-
lel rename unit could be built.

We found that a parallel front-end is able to achieve
higher throughput than a trace cache, and in most cases
better or equivalent overall performance as well. As a
result of being parallel, the proposed front end is able to
tolerate cache miss latency better than sequential front
ends, and thus provide good performance even on pro-
grams with ahigh L1 instruction cache missrate.

1.The reader is referred to prior work [11] for a detailed description of
the trace/fragment predictor.

To appear in The 30 International Symposium on Computectitecture, June 9—11, 2003

Since the objective of this paper was to compare a par-
alel front-end with a high-performance sequential front-
end, we chose to make fragments identical to traces. This
enabled us to directly compare our scheme to a trace
cache. However, this mechanism has fewer restrictions on
fragment selection than a trace cache has on trace selec-
tion. Fragments can be longer and can have a larger vari-
ance in size without affecting cache storage efficiency.
They can contain intra-fragment control flow, unlike
traces. Further research on fragment selection and predic-
tion is necessary to fully exploit the potential of parallel
front-ends.

7 Acknowledgements

We would like to thank Adam Butts, Philip Wells,
Manoj Plakal, and Allison Holloway for commenting on
drafts of this paper. The comments of the anonymous
reviewers have also helped improve the quality of this
paper. This work was supported in part by National Sci-
ence Foundation grants CCR-9900584 and EIA-0071924,
donations from Intel and Sun Microsystems, and the Uni-
versity of Wisconsin Graduate School.

8 References

[1] V.Baa, E.Duesterwald, and S.Banerjia Transparent
Dynamic Optimization. Technical Report HPL-1999-77,
Hewlett Packard Labs, June 1999.

T. Ball and J. R. Larus. Branch Prediction For Free. In Pro-
ceedingsof the ACM SIGPLAN’93 Confeenceon Pro-
gramming Languaje Design and Implementation pages
300-313, Albuquerque, New Mexico, June 23-25, 1993.

S. Breach. Designand Evaluationof a Multiscalar Proces-
sor. Ph.D. thesis, University of Wisconsin-Madison, 1998.
D. C. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Technical Report CS-TR-97-1342, University
of Wisconsin-Madison, Jun. 1997.

B. Cader and D. Grunwald. Reducing Branch Costs via
Branch Alignment. In Proceedingsof the Sixth Interna-
tional Confeenceon Architectural Supportfor Program-
ming Languaes and Operating Systemspages 242251,
San Jose, California, October 47, 1994.

C-Y. Cher and T. N. Vijaykumar. Skipper: A Microarchi-
tecture For Exploiting Control-flow Independence. In Pro-
ceedingsof the 34th Annual International Symposiunon
Microarchitecture, Austin, Texas, Dec. 2-5, 2001.

T. M. Conte, K. N. Menezes, P. M. Mills, and B. A. Patel.
Optimization of Instruction Fetch Mechanisms for High
Issue Rates. In Proceedingsof the 22nd Annual Interna-
tional Symposiunon ComputerArchitectule, pages 333—
344, Santa Margherita Ligure, Italy, June 22—24, 1995.

J. Emer. EV8: The Post—Ultimate Alpha. Keynote Address,
10th International Conference on Parallel Architectures
and Compilation Techniques, 2001.

M. Franklin and M. Smotherman. A Fill-Unit Approach to
Multiple Instruction Issue. In Proceedingsof the 27th

(2

(3]
(4]

(5]

(6]

(7]

(8l

(9

11

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Annual International Symposiumon Microarchitectuse,
pages 162—-171, November 30-December 2, 1994.

D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the Fill
Unit to Work: Dynamic Optimizations for Trace Cache
Microprocessors. In Proceedingf the 31stAnnuallinter-
national Symposiunen Microarchitecture, pages 173-181,
Dallas, Texas, November 30-December 2, 1998.

Q. Jacobson, E. Rotenberg, and J. E. Smith. Path-Based
Next Trace Prediction. In Proceedingsf the 30th Annual
International Symposiunon Microarchitecture, pages 14—
23, Dec. 1-3, 1997.

R. Muth, S. Debray, S. Watterson, and K. de Bosschere.
ALTO: A Link-Time Optimizer for the DEC Alpha. Tech-
nical Report TR98-14, University of Arizona, September
1998.

P. S. Oberoi and G. S. Sohi. Out-of-Order Instruction Fetch
using Multiple Sequencers. In Proceedingsof the 2002
International Confeence on Parallel Processing pages
14-23, Vancouver, Canada, August 18-21, 2002.

S. J. Patel, D. H. Friendly, and Y. N. Pett. Critical Issues
Regarding the Trace Cache Fetch Mechanism. Technical
Report CSE-TR-335-97, Department of Electrical Engi-
neering and Computer Science, University of Michigan,
May 1997.

S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing
the Size of Atomic Instruction Blocks Using Control Flow
Assertions. In Proceedingsof the 33rd Annual Interna-
tional Symposiumon Microarchitectue, pages 303-313,
Monterey, California, December 10-13, 2000.

A. Peleg and U. Weiser. Dynamic Flow Instruction Cache
Memory Organized Around Trace Segments Independent
of Virtual Address Line. US Patent 5,381,533, March 30,
1994.

M. Postiff, G. Tyson, and T. Mudge. Performance Limits
of Trace Caches. Journal of Instruction-Level Parallelism,
1, August 1998.

A. Ramirez, J-L. Larriba-Pey, C. Navarro, J. Torrellas, and
M. Vaero. Software Trace Cache. In Proceedingsof the
1999 international confeenceon Supecomputing pages
119-126, Rhodes, Greece, 1999.

A.Ramirez, O.J. Santana, J.L. LarribaPey, and
M. Vaero. Fetching Instruction Streams. In Proceeding®f
the 35rd AnnualInternational Symposiunon Microarchi-
tectuse, Istanbul, Turkey, November 18-22, 2002.

E. Rotenberg, S. Bennett, and J. E. Smith. Trace Cache: A
Low Latency Approach to High Bandwidth Instruction
Fetching. In Proceedingf the 29th AnnualInternational
Symposiumon Microarchitectule, pages 24-34, Paris,
France, Dec. 24, 1996.

G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
Processors. In Proc. 22nd International Symposiumon
Computer Achitecture, pages 414425, Jun. 1995.

J. Stark, P. Racunas, and Y. N. Patt. Reducing the Perfor-
mance Impact of Instruction Cache Misses by Writing
Instructions into the Reservation Stations Out-of-Order. In
Proceedingsf the 30th Annual International Symposium
on Microarchitecture, pages 3443, Dec. 1-3, 1997.

