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Abstract

A value’sdegree of use—the number of dynamic uses of
that value—provides the most essential information
needed to optimize its communication. We present simu-
lation results demonstrating the properties of degree of
use of values, including their predictability: most static
instructions generate values with few degrees of use and
these exhibit temporal locality. We use these results to
guide the design of a degree of use predictor. The devel-
opment and detailed characterization of this predictor is
the focus of this paper. Our predictor leverages future
control flow information (e.g., branch predictions) to
select among different possible degrees of use. We study
the effects of several optimizations and variations in the
predictor’s algorithms to tune the predictor for maximum
performance. The resulting predictor generates correct
degree of use predictions for over 92% of all dynamic val-
ues and has a misprediction rate below 2.5%. Such a
predictor has a wide range of potential applications in
optimizing value communication.

1 Introduction
Inter-instruction communication is a critical challenge

today, and it is likely to be a significant challenge facing
future processor and system designs. In exploiting
instruction-level parallelism, current processors expend
considerable resources (e.g., complicated register files,
bypass networks, and instruction wakeup logic) to enable
adequate inter-instruction communication bandwidth at
low latencies. These resources typically dwarf those used
to actually execute instructions and represent the primary
constraint on frequency scaling in future designs [3, 7].
Increasing demand for ever more capable communication
networks calls for designs optimized for the required
value communication. Knowledge of value communica-
tion is the key to designing and making efficient use of
novel communication structures.

There are two aspects of value communication: (1) the
number of, and (2) the identity of each value’s consum-
ers. In this paper, we focus on the first aspect—the
number of consumers of a value, and we restrict our atten-
tion to values communicated through registers. We
definedegree of useto be the number of times a particu-
lar value is used by all subsequent instructions in the
program. A value’s degree of use is a direct indicator of

its communication resource requirements, an essential
part of any scheme for optimizing communication.

We propose gaining knowledge about a value’s degree
of use with adegree of use predictor. The demonstra-
tion of accurate degree of use prediction is the primary
focus of this paper. We find that most static instructions
produce values with a unique degree of use; those that
produce values with varying degrees of use exhibit a
small degree of use working set, making even these
readily predictable. We propose a degree of use predic-
tor and evaluate a number of enhancements to the basic
design. Our optimized predictor achieves over 97% accu-
racy averaged across our benchmarks while generating
correct predictions for 92% of dynamic values. Storage
requirements are modest (the preceding numbers refer to a
predictor using only 8.5 KB).

Knowing the number of consumers of a dynamic value
before that value is even generated enables several poten-
tial optimizations to the value communication structures
(e.g., the instruction window, bypass networks, and regis-
ter file). We suggest some of these applications in the
next section, one of which has been evaluated previously
[2], but we do not evaluate a specific application in this
paper.

The remainder of the paper is organized as follows.
We present the methodology we used to gather the results
in the remainder of the paper in Section 3. Data on the
behavior and predictability of value degree of use appear
in Section 4. We present novel information showing that
degree of use is a predictable property of dynamic execu-
tions. Section 5 develops and evaluates a degree of use
predictor in detail, including discussions on training, pre-
diction verification and misprediction detection. We
discuss future work and conclude in Section 6.

2 Applying degree of use in communication
optimization

We have identified numerous possible applications of
accurate degree of use prediction, some of which we
describe in this section. While the focus of this paper is
on the prediction of degree of use, we would be remiss if
we did not motivate the predictor with potential applica-
tions. Proving that accurate degree of use prediction is
feasible is a prerequisite for all of the optimizations
described below. Thus, we do not evaluate any specific
application in this paper. However, it is important to real-



ize the variety and potential impact of the applications
enabled once a predictor is available.

We recently proposed a method for the detection and
elimination of dynamically dead instructions (i.e., those
generating degree of use zero values) to enable more
aggressive compiler optimizations [2]. The dead instruc-
tion predictor proposed in that work is a special case of a
degree of use predictor, allowing the same optimization to
be realized with a degree of use predictor instead. Using
some of the techniques we describe in this paper, the per-
formance of the generalized predictor can actually exceed
that of the dedicated predictor. The degree of use predic-
tor can also be leveraged to perform other optimizations
simultaneously.

Others have noted [5] and we will show in Section 4
that most values are used only once before being over-
written. Given the abundance of degree of use one
values, mechanisms exploiting this phenomenon should
be widely applicable. Regarding the actual communica-
tion of these values, it is obvious that use of the register
file results in unnecessary overhead. The register com-
munication model implicitly (but incorrectly) suggests
that a value bound to a register will be used multiple
times. Values with a predicted degree of use of one need
not even use a register. Instead, the communication of
these values can occur entirely through the bypass net-
work with proper attention to the scheduling of the
producer and consumer operations. No registers need
even be allocated to these values. The combination of the
reductions in the number of registers required and the
number of register file write ports could significantly
reduce the size of the register file, allowing it to be faster
and/or lower power.

The scheduling of dependent operations themselves
could also be simplified with knowledge of degree of use.
Instructions with a predicted degree of use of one can be
allocated dedicated reservation stations that are directly
addressable by the completing parent instruction. The
dependent instruction can be steered to this reservation
station by information available at the rename stage.
Upon completion of the parent instruction, the wakeup
operation would not require a tag broadcast across a large
associative instruction window. Instead, the proper
dependent operation could be woken up directly.

The knowledge that the value communicated between
two instructions is private (i.e., has a degree of use of one)
can also be exploited to dynamically collapse dependent
operations. Given simple enough operations (e.g., depen-
dent logical operations), it is quite possible to complete
both operations in a single cycle. The resulting reduction
in the dataflow height could result in increased perfor-
mance. Interlock collapsing ALUs have been proposed as
a means of executing two dependent operations together
[8], but the application of this technique is limited by the
need to statically ensure that the dependent operation is
the only consumer. A degree of use predictor can

increase the applicability of this technique by identifying
such instances dynamically.

Other optimizations can exploit degrees of use greater
than one. Consider an instruction processing back end
that is optimized for the execution of strands of depen-
dent operations that communicate no intermediate values
(e.g., the instruction level distributed processor [6]).
Instructions that generate values with low degrees of use
may be duplicated such that each instruction generates a
value used only once, reducing the number of values that
have to be communicated globally. Global communica-
tion is costly in distributed and clustered architectures and
redundant execution may actually be cheaper than com-
munication for these designs.

We will show that accurate degree of use predictions
can be delivered at a very small cost. The exploitation of
degree of use prediction to optimize value communica-
tion is part of our ongoing work. We reiterate that in this
work we focus on the characteristics of degree of use and
the predictor itself, abstracting the development of the
predictor from the details of a particular application. The
development of the predictor is an essential first step in
developing any of the applications more fully.

3 Methodology
The results in this work were generated using execu-

tion-driven simulators of the Alpha ISA loosely based on
SimpleScalar [1]. The degree of use characterization data
in Section 4 was generated using a purely functional sim-
ulation. Due to the effect of the pipeline structure on
degree of use prediction a detailed timing simulator was
needed to properly evaluate the degree of use predictors
in Section 5. Both simulators eliminate nop instructions
at fetch time; consequently, nops do not contribute
towards any of the data presented herein. We do not track
uses of values through memory or across system calls. A
system call is treated as a use of every architectural regis-
ter. In the predictor studies of Section 5, a system call
completely flushes the predictor state to account for pollu-
tion occurring during a context switch. Uses of a register
following a system call prior to any other definition of
that register are not attributed to any instruction. Stores
are handled as a single use of the register containing the
stored value while each load is treated as though it cre-
ates a new value. Additional details on the timing
simulator are listed in Table 1.

Our benchmarks are the integer codes of the SPEC2000
suite. All of the benchmarks were compiled with DEC C
V5.9 or DEC C++ V6.1, as appropriate, and statically
linked. Optimization options were-arch ev6 -fast
-O3 . We run each benchmark to completion on the train
inputs with the exception ofvpr , eon , andperl , all of
which specify multiple runs with different inputs as part
of the train input set. We ran only the routing phase of
vpr , the kajiya input toeon , and the diffmail program
with perl .



4 Characterizing degree of use
Figure 1 illustrates some of the interesting properties of

degree of use with a short code example and a portion of
the resulting dynamic dataflow graph. First, we note that
many instructions generate a single, unique degree of use.
The values assigned tot2 and t3 , for example, will
always exhibit a degree of use of one. The values in these
registers do not correspond to actual source variables, but
are temporaries inserted by the compiler. Such temporar-
ies frequently exhibit a degree of use of one.

Values with live ranges that span conditional branches
can have different degrees of use depending on the partic-
ular path taken through the program. The value int1 has
a degree of use of one in the final loop iteration, but a
degree of use of three in all prior iterations. If the out-
come of the loop terminatingbeq instruction were
available before theldq executed, then degree of use of
the value would be known when it was generated. We
will use this observation in the design of our predictor in
Section 5.2.

Finally, we note that it is possible for a value to have a
degree of use of zero (i.e., never be used). Had the loop
terminated due to thebge being taken, the two shaded

nodes in the dataflow graph would not be executed and
the value loaded by theldq instruction would not be
used. The instructions generating such values have been
examined in detail in our prior work [2].

4.1 Degree of use characteristics
Figure 2(a) shows data on the observed degree of use

for the benchmark programs. The bars in the graph repre-
sent total number of value-producing instructions. These
account for 75.4% of all (non-nop) retired instructions on
average; the remainder are stores and branches that do not
generate register values. It is readily apparent that most
of the communication occurring during program execu-
tion is direct communication as 65% of dynamic values
have degree of use one. Degree of use two values account
for only 14% of all values. No higher degree of use
accounts for more than 7% of the values in any of the
benchmarks. We also observe non-negligible numbers
(9.2% on average) of dynamic values with a degree of use
equal to zero.

While the number of values with a high degree of use is
very small, the degrees of use themselves can be large.
Maximum degrees of use range from about ten thousand
to over three hundred million (initialization of the global

do {
bucket_ptr = hash_table[idx];
idx++;
if (idx >= num_buckets) return 0;

} while (bucket_ptr == NULL);

return bucket_ptr->list_head;

(a) source code

loop: s8addq t1, a0, t2
ldq v0, (t2)
addl t1, 0x1, t1
subl t1, a1, t3
bge t3, exit
beq v0, loop
ldq v0, 24(v0)
ret zero, (ra), 1

exit: bis zero, zero, v0

(b) assembly code

Figure 1. A sample code sequence in (a) source code and (b) assembly and (c) the corresponding dataflow graph.This loop finds
the first occupied bucket in a hash table. The dataflow graph corresponds to five loop iterations and the loop exit. Each node represents
a dynamic instruction while the arcs represent values communicated among the instructions. The exact number of consumers of a value
is not known until the architectural register is reassigned to a different value since subsequent instructions then have no way to name the
old value.  Note that many of the dynamic values are used by only one consumer instruction.

addl subl

s8addq ldq

bge

beq

addl subl
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(c) dataflow graph
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t1

a0

t2 t2 t2 t2t2 v0 v0v0v0 v0

t1 t1 t1t1t3 t3 t3t3 t1 t3

Table 1.  Simulated processor parameters

Front-end Instruction Window
4-wide fetch (nops skipped) with perfect BTB
12kB YAGS conditional branch predictor
64-entry return address stack
32 kB cascading indirect branch predictor

64 entries with 256 entry reorder buffer
4-wide issue, oldest ready first
320 physical registers (256 in-flight + 64 architectural)
4-wide retirement, except 2 stores per cycle maximum

Execution Memory hierarchy
3 integer ALUs, 1-cycle latency
1 integer multiplier, 3-cycle latency
2 floating point ALUs, 2-cycle latency
1 floating point multiplier/divider, 4/12 cycle latency
2 load-store units, 3-cycle load to use latency on L1 hit

64kB, 2-way L1I and D caches, 32-byte lines, perfect TLB’s
2 MB, 4-way unified L2 cache, 64-byte lines, 6-cycle latency
64-entry unified prefetch/victim buffer
16-entry coalescing store buffer
80-cycle memory latency; opportunistic unit-stride prefetcher



pointer in bzip2 ) across the different benchmarks.
Instructions generating the largest degrees of use fell into
two overlapping categories: (1) base address generating
instructions (often stack and global pointer updates), and
(2) instructions generating loop-invariants. In the first
case, the number of unique static consumers tends to be
high, while in the second case the high degree of use fre-
quently results from repeated communication to a small
set of static consumers. Both of these classes of instruc-
tions are illustrated in the example of Figure 1. The
values ina0 anda1 are both loop-invariants; the value in
a0  is also a base address (of the arrayhash_table ).

The degree of use data seem largely compiler indepen-
dent. Figure 2(b) shows the same data for the
benchmarks compiled with gcc/g++.† The only trend that
is immediately obvious is that the gcc compiled bench-
marks generate significantly fewer degree of use zero
instructions (65% fewer on average). The frequency of
degree of use zero instructions is highly sensitive to how
aggressively the compiler optimizes the code [2]. Of
these two compilers, the DEC compiler performed more
extensive optimizations (e.g., hoisting instructions above
conditional branches), resulting in increased number of
degree of use zero values. The average degree of use dif-
fered only 4% between the two compilers. This should
not be surprising since the overall value communication
structure is specified by the ISA and the program itself.
Minute differences arise from differences in how the com-
pilers perform register allocation, code scheduling, and
other optimizations.

Franklin and Sohi previously investigated degree of use
and register lifetimes [5]. Their goal was the optimiza-
tion of the register file. In spite of using a different
instruction set and compiler and different benchmarks,
their data on degree of use are quite similar to that we
present here. While they presented aggregate degree of

use data, they did not delve into the per-instruction behav-
ior or the predictability and application of degree of use.
Recently, Eeckhout and Bosschere observed that the rela-
tive frequencies of values with different degrees of use
were well-described by a power law model [4].

4.2 Predictability of degree of use
The predictability of degree of use has two compo-

nents: (1) the working set of value-producing instructions,
and (2) the working set of the degrees of use generated by
any particular instruction. For a finite-sized predictor, the
first component determines theavailability of a predic-
tion for a particular instruction (referred to as coverage).
For a fixed coverage, a larger working set of value pro-
ducing instructions demands a predictor with more
capacity. In this sense, the coverage of a degree of use
predictor is analogous to the hit rate of a standard cache.
The working set of degrees of use determines the diffi-
culty of providing acorrectprediction: when instances of
a particular static instruction generate values with many
different degrees of use (i.e., a large degree of use work-
ing set), selecting the correct degree of use becomes a
problem.

We note that the working set of value-producing
instructions is related to instruction cache performance.
Low I-cache miss rates indicate working sets of instruc-
tions that fit within the cache. However, unlike the
instruction cache, a degree of use predictor need not have
state for every executed instruction. Branches and stores
produce no register values; eliminating these instructions
reduces the number of static instructions that must be
stored in a predictor. Additionally, a degree of use pre-
dictor need not be constrained by the instruction cache
architecture (i.e., its size and associativity). Figure 3
shows the coverage that would be achieved if predictions
were available for the last N unique instructions. As one
might expect, the number of entries required for a given
coverage is correlated with the text size. The data show
that a 4k-entry fully-associative predictor achieves at least

† Version 3.0.3 of the gcc compilers were used except that version
2.95.3 was used to compile thegcc benchmark because of a bug.
Compiler options were-mcpu=ev6 -O3 .
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Figure 2. Observed degree of use.Number of uses of each dynamic value generated during the execution of each benchmark. The
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97% coverage on all benchmarks. A direct mapped pre-
dictor of the same size will likely have lower coverage
due to the potential for conflict misses in the predictor.

Even more important to the feasibility of accurate
degree of use prediction is the stability of the degree of
use among values generated by the same static instruc-
tion. Figure 4 depicts the distribution of static
instructions by the number of unique degrees of use gen-
erated. The majority of static instructions (84% on
average) generate the same degree of use every execu-
tion. We also observe that the degree of use is extremely
stable, even for those instructions that produce values
with multiple degrees of use. Figure 5 shows a distribu-
tion of all dynamic values by how recently a value of the
same degree of use came from the same static instruc-

tion. In other words, if the last N unique degrees of use
for each static instruction could be remembered, Figure 5
shows how often the degree of use for the next value
would occur in this set. The data show that simply
remembering the last degree of use generated by every
static instruction is sufficient to give 93% accuracy. If a
means were available to distinguish between the last two
degrees of use, that figure increases to almost 99%.

5 Degree of use prediction
In order to exploit degree of use in communication

optimization, the information must be available by the
time the value is produced. Once the actual uses of a
value are observed, few, if any, optimizations may be
made. Prediction solves the problem of getting the
needed information in a timely fashion provided the pre-
dictor is located early enough in the pipeline and has
adequate accuracy.

Degree of use prediction is fundamentally different
from most other types of prediction in use today. The
root of this difference is that the instruction that verifies a
prediction is not that to which the prediction applies.
Contrast this with branch or value prediction: for these
techniques, the same instruction that initiates a prediction
validates it. However, the final degree of use of a value is
only certain when the value is overwritten by a com-
pletely unrelated value. Any instruction that reads the
value between its generation and its destruction affects the
actual degree of use and therefore must be tracked. The
consequences of this difference affect predictor training,
prediction validation, misprediction detection, and the
structure of the predictor itself.

All of these aspects of degree of use prediction will be
addressed in this section. We begin with a description of
how degree of use is determined since this is necessary
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Figure 4. Unique degrees of use.This distribution shows the
number of unique degrees of use generated by each static
instruction over the entire execution of the benchmark. Note the
offset of the y-axis.

Figure 5. Stability of degree of use. This distribution shows
the working set size of degrees of use per static instruction. The
“1” bars count dynamic degrees of use equal to that generated
immediately previously by the same static instruction.
Similarly, the “2” bar means the degree from an instance of the
static instruction was not the most recently seen (regardless of
how many times in a row that degree had been generated) but
the prior unique degree.  Note the offset of the y-axis.



for both training and evaluating prediction outcomes. We
then use the properties of degree of use outlined in the
previous section to guide the development of an accurate
predictor that we then evaluate in detail. We present sev-
eral different predictor enhancements that improve the
accuracy, coverage, and storage efficiency of the basic
predictor. Then, we revisit the issue of observing the
degree of use in the context of prediction verification and
misprediction detection.

5.1 Observing degree of use dynamically
The determination of degree of use is necessary both to

train a predictor and to verify the accuracy of the predic-
tions that are generated. Fortunately, calculating the
degree of use is straightforward using the in-order instruc-
tion stream at retirement. For each architectural register,
one maintains a counter that is incremented when a use of
the corresponding register is observed. When a register is
overwritten, its counter indicates the degree of use of the
value previously in the register. The counter is reset and
the process resumes.

We refer to this set of counters as thedegree training
table (DTT). The counters saturate at the maximum pre-
dictable degree of use, a limit discussed in Section 5.5.
In addition to the counter, each entry contains informa-
tion about the dynamic instruction that produced the value
currently in the corresponding register (e.g., that instruc-
tion’s PC). This information is used with the final degree
of use in training the predictor. Each entry also contains
the predicted degree of use for that value (if any).

The operation of the DTT is illustrated in Figure 6. As
an instruction becomes ready to retire, it increments the
use counters corresponding to its source registers. A
value-producing instruction also overwrites the entry cor-
responding to its destination register. The entry is
modified by resetting the use counter and setting the
instruction identifying fields and the predicted degree of
use appropriately. The prior contents of the written entry
are forwarded to the predictor for training.

The DTT is also used for prediction verification. Note
that a value must be overwritten before its final degree of
use is certain (since additional uses may occur as long as
the value is available). At the time of the overwrite, the
observed degree of use is compared to the predicted
degree of use to verify the prediction. Underpredictions
(when more uses occur than were predicted) can be sig-
nalled immediately when the predicted use count is
exceeded (prior to the overwrite of the value).

5.2 Developing the predictor microarchitecture
The data in Figure 4 suggest that the identity of the

generating instruction is critical to determining a value’s
degree of use since the majority of instructions generate a
unique degree of use. Furthermore, Figure 5 demon-
strates that static instructions that generate multiple
degrees of use demonstrate temporal locality in the
degrees of use that they cause. The combination of these
characteristics indicates that a cache-like predictor
indexed by the PC of each value producing instruction
will be successful. Indexing the predictor table by the
instruction PC also allows the predictor to be queried
early in the pipeline where the predictions can be used to
maximum advantage. A basic degree of use predictor
could simply associate the last observed degree of use for
each static instruction.

While the data in Figure 5 suggest that the perfor-
mance of such a basic predictor would be reasonable, we
have the opportunity to do much better given a means of
distinguishing among multiple degrees of use for a single
static instruction. This requires additional information to
be used in the generation of a prediction. Inspired by the
success of branch prediction schemes that employ vari-
ous forms of branch and path history, we investigated the
application of control flow information to degree of use
prediction. The degree of use of a value is completely
determined by the instructions that are encountered after
the value is generated. Because these instructions are in
turn determined by the future control flow, the future con-
trol flow is the ideal information to discriminate among
different potential degrees of use for a value.

In our prior work on identifying dynamically dead
instructions, we observed that due to pipelining, instruc-
tions in the middle of a pipeline have available to them
the predicted outcomes of control instructions that occur
later in the dynamic instruction stream [2]. Thus, if the
selection of a final degree of use prediction can be
delayed several pipeline stages, the predicted directions of
many subsequent branches will be available for use in
making the prediction. Given a high branch prediction
accuracy, these predictions are equivalent to path looka-
head, providing nearly perfect knowledge about the uses
of a value that will be observed in the immediate future.

We employ thecontrol flow signatureas described in
our prior work to exploit future control flow informa-
tion. The signature stores the number and predicted
directions of conditional branches between the instruc-
tion for which the prediction is being generated (the

Figure 6. Structure and use of the degree training table.
The retirement of the instruction at PCm increments the use
counts of the source registers and updates the entry for the
destination register (shaded). Thesig fields contain the control
flow signature used during the degree prediction of the
corresponding instruction (see Section 5.2). The prior contents
of the entry forr6 are sent to the degree predictor for training.
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target instruction) and the front end of the pipeline. If an
indirect branch (e.g., a procedure return) occurs before
any conditional branch, the signature instead contains bits
from the predicted target address. The encoding we use
sets the most significant bit if the remaining bits encode
an indirect target address and clears this bit if the signa-
ture contains conditional branch directions. In the latter
case, the highest set bit indicates the number of branch
directions contained in the lower order bits. Initially, we
require that a stored signature exactly match the current
signature (maintained by the front end) in order to supply
a prediction. We will explore an alternative policy in
Section 5.4.

In order to maximize the lookahead possible using a
control flow signature, the signature should be generated
as late as possible in the pipeline (to allow more instruc-
tions to contribute). Thus, there is a tension between
waiting for more information to use in generating a pre-
diction and obtaining the prediction as early as possible in
the processing of the target instruction. Because the fidel-
ity of a signature increases the later it is generated, the
selection of a prediction based on the signature should be
the final step in generating a prediction. Fortunately, the
target instruction’s PC is available much earlier to initiate
the prediction, allowing the latency of accessing the pre-
dictor table to be overlapped with earlier pipeline stages.

Two factors are important in determining the final
deadline for the prediction. Since the prediction will be
used for optimizing value communication, it should be
available before any resources used in value communica-
tion (e.g., physical registers, reservation stations, register
write ports) are allocated. Also, since the predictor
accesses are initiated in order, the predictions should be
consumed at an in-order stage of the pipeline to simplify
the matching of instructions with their predictions. Both
of these requirements are met by making the predictions

available in the rename or allocate stage of the pipeline.
One of these two stages is usually the last pipeline stage
before the dynamically scheduled processor core, allow-
ing for the longest possible control flow signature as well.

The resulting predictor organization is shown in
Figure 7. Instruction PCs from the front end are used to
access the predictor table in parallel with the fetching of
the instructions from the I-cache. The current control
flow signature (communicated forward from the front
end) is used to select the final prediction in the rename
stage (our pipeline does not have an allocate stage and
performs resource allocation during rename). The predic-
tor table is organized as a set-associative cache. Each
entry contains a tag and control flow signature to use in
selecting the final prediction and the predicted degree for
that entry. The maximum encodable degree is reserved to
indicate an invalid entry while the highestvalid predic-
tion is assumed to mean a degree greater than or equal to
its actual value (e.g., for a three-bit degree field a value of
six represents a predicted degree of six or greater and
seven denotes an invalid entry). For our evaluations, we
use a three bit degree field; we discuss the choice of the
maximum degree limit in Section 5.5.

5.3 Predictor evaluation
Evaluating a degree of use predictor is complicated by

two factors. First, the prediction can take on many val-
ues, only one of which is correct. Thus, an incorrect
degree of use prediction may be an underprediction or an
overprediction of the actual degree of use. Second, pre-
dictions may not be generated for all values. To simplify
our discussion, we employ two metrics of overall predic-
tor performance. Coverage is defined as the percentage of
all values for which a prediction (right or wrong) is gener-
ated, while accuracy equals the percentage of all

Figure 7. Degree of use predictor organization.The set-associative predictor table is indexed with the low-order PC word-address
bits of the value-generating instruction (k in the figure) as soon as the PC is available. Each entry contains a tag (a subset of the higher
order PC bits,z in the figure), a signature, and a predicted degree of use. The signature encodes either the target address of a subsequent
indirect jump or the number and direction of branches occurringafter the instruction that will lead to the stored degree of use being
observed. The current signature is fed forward from the front end to select the correct prediction in the rename stage. Both the tag and
signature must match to generate a prediction.  The degree training table monitors the retirement instruction stream to train the predictor.
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predictions that are correct. We note that increasing cov-
erage alone increases correct predictionsand
mispredictions, while increasing accuracy alone changes
mispredictions into correct predictions. Provided the
accuracy is above a minimum threshold (established by
the benefit of correct predictions versus the cost of
mispredictions), increasing either accuracy or coverage in
isolation results in a net benefit. Many of the predictor
modifications that we propose involve a trade-off between
accuracy and coverage. Whether such a trade-off is bene-
ficial ultimately depends on the application.

Figure 8 shows the performance of the predictor as a
function of the length of the control flow signature. The
leftmost configuration (the "0" bar in the figure) for each
benchmark shows the performance of a basic cache-like
predictor (i.e., one without a control flow signature) for
comparison. Adding signature bits makes the predictor
more discriminating but reduces the number of predic-
tions made. Thus, accuracy increases while coverage is
reduced. Coverage is impacted the most for those bench-
marks with highly variable control flow (e.g., crafty
andgcc ). The gain in accuracy is determined by the pre-
dictability of the control flow and the ability of the
available control flow to fix the degree of use.

While the predictor without a control flow signature
performs well for most benchmarks, an average accuracy
of almost 96% is available with only four to six signature
bits. Beyond six bits, the performance is relatively insen-
sitive to the signature length since the pipeline depth
limits the number of branch predictions available for
inclusion in the signature. Referring back to Figure 7, we
note that the number of branch directions that can be
encoded in a control flow signature is two less than the
number of signature bits. Thus, a six-bit signature can
hold up to four predicted branch directions. Longer sig-
natures primarily improve the predictor’s ability to
distinguish indirect branch targets. We use six signature
bits unless otherwise noted for subsequent results.

Two fundamental variables in the design of a cache-
like predictor are its size and associativity. These vari-
ables are the primary determinants of predictor coverage.
Figure 9 shows how the coverage of the predictor depends
on the predictor organization. Unsurprisingly, higher
capacity yields higher coverage. As is true for other kinds
of caches, increasing associativity also provides a benefit
although the majority of the benchmarks benefit very lit-
tle from associativities beyond four. The knee of the
curve occurs at about 4K-entries for the associative pre-
dictors. Therefore, we use a 1K-set by 4-way set-
associative predictor as our base case for the remainder of
the paper. The effect of predictor organization on accu-
racy is negligible: the accuracy of every configuration
shown in Figure 9 was within 0.5%. Capacity only
affects the availability of a prediction, not its accuracy.

To this point, all of the results we have presented have
assumed enough tag bits to perfectly distinguish between
all static instructions in our benchmark set. These tag bits
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Figure 8. Degree of use predictor performance as a function of signature length.The number of bits in the control flow signature is
shown on the x-axis. The stacked bars show the results of each prediction (correct, underpredicted, and overpredicted from bottom to
top) normalized to the number of value-generating instructions. The numerical accuracy is printed on each bar while coverage may be
read by the height of the stacked bars.  All predictors have 4k entries (1k-sets by 4-way set-associative).  Note the offset of the y-axis.

Figure 9. Predictor coverage. This figure shows how
coverage of the predictor depends on the its organization. Each
data point represents the average coverage over the twelve
benchmarks.  Note the offset of the y-axis.
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come from the higher order bits of the target instruction
PC, while the lower order bits are used in indexing the
predictor. Reducing the number of tag bits can lead to
aliasing as different static instructions become indistin-
guishable. While the probability of destructive aliasing is
higher than in a branch predictor, for example, due to the
high number of possible prediction outcomes, the occur-
rence of aliasing is lessened by the requirement for a
control flow signature match. Figure 10 shows that alias-
ing is not a significant problem in a degree of use
predictor. Together with the ten bits used to select the
predictor set, six additional tag bits are sufficient to obtain
nearly all of the benefit of tagging.

While the data in Figure 8 showed aggregate perfor-
mance of the predictor, Figure 11 breaks down the
predictor performance by predicted degree, revealing sev-
eral interesting features. Most striking is the very high
accuracy of predictions of degree of use one. This is
attributable to the fact that most instructions generating a
degree of use of one communicate with a single unique
consumer throughout the execution of the program.
Although degree of use one predictions are by far the
most accurate, they account for more total mispredictions
than any other degree (noted by scaling the accuracies in
Figure 11 by the relative numbers of predictions above
the bars). This is due to the large number of degree of use
one predictions generated (65% of all predictions) rela-
tive to predictions of other degrees. Degree of use zero
values are difficult to predict compared to other low
degrees of use. Another interesting trend is the degrada-
tion of accuracy with increasing degree of use. The
lifetime of values with higher degrees of use rapidly
exceeds the depth of the pipeline from the generation of
the value to the front end. The consequence is that con-
trol flow information that influences the number of uses is
beyond the reach of the signature, lowering the prediction
accuracy. The higher accuracy of the limiting degree cat-

egory is inflated by the inclusion of multiple degrees of
use and the absence of underpredictions.

5.4 Fine tuning the degree of use predictor
In this section, we explore changes to predictor algo-

rithms that result in improved accuracy or coverage or
lower overhead. The performance of all of the alterna-
tive algorithms is portrayed in Figure 12 along with the
base case performance for easy comparison. Due to space
limitations, we omitted benchmarks that performed well
in the base case or were not strongly affected by the
changes proposed in this section. The averages shown on
the right side of Figure 12 include the omitted bench-
marks, however.

One optimization that could improve predictor accu-
racy is the addition of a two-bit saturating confidence
counter per entry. The same mechanism benefited the
dead instruction predictor of our prior work [2]. Each
counter can take on values between zero and three, inclu-
sive. New entries are initialized with a confidence of two
and a prediction is only made if the confidence is two or
greater. The confidence is modified during training when
there is a write hit. A hit with the same degree of use
increases the confidence while a hit with a different
degree of use decreases it. If the confidence decreases to
zero, the stored degree is replaced. Comparing the C bars
to the B bars in Figure 12 show that adding a confidence
mechanism results in both a 40% average reduction in
mispredictionsand a larger absolute number of correct
predictions. Thus, although the coverage decreases, the
simultaneous accuracy increase actually leads to more
benefit.

When introducing control flow signatures in
Section 5.2, we referred to the possibility of using alter-
nate signature handling policies. One such change is to
relax the signature matching rule for branch direction
based signatures. Instead of requiring that both signa-

Figure 10. Effect of tag length on predictor performance.
All configurations employ a 10-bit set address (i.e., the predictor
with four tag bits uses the low-order 14 instruction word-address
bits to distinguish entries). Each data point represents the
average over all the benchmarks.  Note the offset of the y-axis.

Figure 11. Predictor performance by predicted degree.
Outcomes of predictions for each predicted degree of use. The
numerical per-degree accuracy is printed on each bar while the
percentage of all predictions accounted for by each degree
appears above each bar.  Note the offset of the y-axis.
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tures match exactly, we can allow a match when the
stored signature is a prefix of the current signature. In
these cases, the current control flow has satisfied the
requirement imposed by the stored signature, so it should
be able to use the stored prediction. The data show that
on average, this is a better policy than requiring an exact
match (P vs. C). This time, the accuracy is degraded
slightly, but the increase in coverage results in more total
correct predictions with a negligible increase in
mispredictions.

While the previous optimizations improved predictor
performance, we now examine the performance cost of
reducing the storage overhead of the predictor. The use
of a set-associative structure requires the implementation
of a replacement policy. Up to this point, we have used a
perfect LRU strategy. Other replacement possibilities
with lower overhead are not-MRU and random. The per-
formance of these alternatives is shown in the N and R
bars of Figure 12, respectively. Compared with the per-
fect LRU scheme (P bars), using a simpler replacement
policy only slightly impacts the predictor coverage. This
loss results from the premature eviction of useful entries.

Another potential means of increasing predictor cover-
age is to assume a default prediction. In a tagged
predictor, there are two possible outcomes when a predic-
tion is requested. If the predictor has knowledge of the
instruction (i.e., a “hit” in the predictor), the predicted
degree is returned. On a miss, however, the predictor has
the option of returning a default prediction. Looking at
the data presented in Figure 2, it seems that the ideal
default prediction would be to predict a degree of use of
one, since it is the most common degree of use (and
remains so among non-predicted values). However, we
will argue in Section 5.5 that degree overpredictions are
less costly than degree underpredictions. Under this
assumption, we can interpret a predictor miss as an

implicit prediction of the highest possible degree of use.
This allows us to avoid explicitly storing entries for
degrees in this class, increasing the number of predictor
entries available to distinguish among the lower degrees
of use. The I bars of Figure 12 show these results (com-
pare to the R bars). While the number of
underpredictions is unchanged, we increase the number of
correct predictions at the cost of a large number of over-
predictions. Depending on the particular predictor
application, an overprediction may not result in a perfor-
mance penalty and thus this optimization would be worth
considering.  We revisit this issue in Section 5.5.

Our final tuned predictor is represented by the R con-
figuration of Figure 12. This is a 4K-entry, 4-way set-
associative degree predictor with random replacement.
Each entry is augmented with a two-bit saturating confi-
dence counter and a six-bit forward control flow
signature. The stored signature is assumed to match any
signature of which it is a prefix. The hardware require-
ments of such a predictor are modest. Each of the 4K
entries consists of a three-bit degree of use, a six-bit sig-
nature, a six-bit tag, and a two-bit confidence, resulting in
a storage requirement of only 8.5 KB. The contents of
each predictor entry are diagrammed in Figure 13. We
use this predictor in the next section to explore the issues
involved in determining the outcome of a degree of use
prediction.

5.5 Verifying degree of use predictions
Degree of use prediction is unique in that prediction

verification depends not on the instruction for which the
prediction was generated, but on some other instruction
sharing a destination register name. The consequence of
this is that process of verifying a degree of use prediction
is involved (see Section 5.1) and the time required can be
very long and depends on both the program characteris-
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tics and the processor. The number of intervening
instructions between consecutive definitions of the same
register is a property of the program; the time taken to
process these instruction, however, depends on the details
of the microarchitecture. The verification latency ulti-
mately determines the amount of speculative state that
must be maintained to apply degree of use predictions.
Long verification latencies lead to long misprediction
recovery times, increasing the cost of mispredictions.

The median time to determine the outcome of a predic-
tion is about 36 cycles. Figure 14 breaks down this
verification latency by predicted degree and prediction
outcome. For most benchmarks, verification latencies
increase with predicted degree (the aggregate results of
Figure 14 are skewed by themcf benchmark; due to
cache misses, it exhibits very long verification latencies
for the lower degrees of use). This is to be expected since
a higher degree of use requires more instructions between
subsequent definitions of the value. The time to detect an
overprediction closely tracks the time to verify a correct
prediction since both require the retirement of the instruc-
tion overwriting the value. Detecting an underprediction
requires only the retirement of one more use than was pre-
dicted; thus, this latency deviates further from the
verification latency and is lower for the most common
degrees of use (zero through two).

Referring back to the pipeline diagram in Figure 7, we
see that a minimum of six cycles is required to verify a
prediction. This corresponds to an instruction and its ver-
ifying instruction (the one that overwrites the same
register) being renamed in the same cycle and traveling
through to the retirement stage in the minimum possible
time. Any contention or data cache misses that occur
between rename and retirement will increase this latency.

We can reduce the delays due to events in the back end
of the processor pipeline by performing misprediction
detection earlier in the processor pipeline. A structure
similar to the DTT can perform early detection of mispre-
dictions as soon as the predicted degree of use is available
(e.g., at the end of the rename stage). We call this struc-
ture ause tracking tableor UTT. Like the DTT, the UTT
also contains counters representing the number of
observed uses per architectural register. Additional
counters store the predicted degrees of use (if any) for the
register values. If the observed use counter exceeds the
predicted degree of use, a mispredict may be signalled
and recovery initiated. Similarly, for early overpredic-
tion detection, a misprediction occurs when the value is
overwritten prior to the predicted number of uses
occurring.

Due to wrong path execution, false mispredictions can
be signalled when spurious uses along the wrong path are
observed. There exists a trade-off between how quickly a
misprediction is detected and the number of false mispre-
dictions. One can tailor the UTT to only signal
mispredictions on those predictions that may require
costly recovery. Given reasonably accurate branch pre-
diction, however, the benefit of detecting degree of use
mis-speculation early will likely outweigh the costs of the
small number of false mispredictions. We also note that
UTT contents must be recovered after any wrong path
execution to avoid incorrect use counts.

Figure 15 shows the effect of implementing early
misprediction detection on the median misprediction

Figure 13. Degree of use predictor entry.Contents and field
widths of each entry in our model predictor.
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Figure 14. Prediction verification latency. Plot of the median
number of cycles to determine the outcome of a prediction
versus the predicted degree and outcome. Results are averages
over the twelve benchmarks.  Note the offset of the y-axis.

Figure 15. Early misprediction detection. Median number of
cycles required to detect a misprediction. The top bar
corresponds to misprediction detection at retirement while the
bottom bar shows the results when using early misprediction
detection.  The percentage reduction is shown numerically.



detection latency. Most of the benchmarks see at least a
40% reduction in the median detection time when using
early misprediction detection, and the average reduction is
almost 50%. For all but one of the benchmarks the num-
ber of false mispredictions was less than 1% of the total
number of predictions (fortwolf , the figure was 1.2%).
Given the high baseline prediction accuracy, however, the
false mispredictions amounted to an 18% increase in total
mispredictions on average (31% maximum fortwolf ).

Another important issue relating to misprediction
detection is that of overpredictions versus underpredic-
tions. We hinted in Section 5.4 that overpredictions
might not be as costly as underpredictions. In general, a
degree overprediction represents only a lost opportunity
for optimization, not an event requiring recovery. It is
difficult to imagine an application that would fail when
fewer than the predicted number of uses occurs; the same
is not true when the number of uses is underpredicted. In
these cases, the value may have to be recovered from a
special structure or altogether regenerated for uses beyond
the number predicted. Because of this distinction, the
predictor optimization involving an implicit maximum
prediction would probably benefit most, if not all, appli-
cations of a degree of use predictor even though the
number of overpredictions is greatly increased.

The issue of the highest predictable degree is also ger-
mane. Optimizations involving degree of use prediction
will leverage the most common and accurately predict-
able degrees of use, one and two. Given the small
contribution of the higher degrees of use and the lower
accuracy of their prediction (Figure 9), we expect that
most degree of use predictors will not attempt to differen-
tiate degrees of use greater than two or three. Beneficial
side effects of reducing the prediction limit are the elimi-
nation of underpredictions involving degrees greater than
the limit, resulting in increased predictor accuracy, and a
potential decrease in the size of the predictor (if the
degree field can be made smaller).

6 Conclusions and future work
Learning about the communication patterns of register

values is the first step in streamlining inter-instruction
communication in processor cores. Observing that a
value’s degree of use is the primary determinant of a
value’s communication requirements, we assert that a
degree of use predictor will be a key component of many
communication optimizations. To this end, we studied a
variety of accurate degree of use predictors. One particu-
lar predictor provides correct predictions for better than
92% of all dynamic values using a small amount of hard-
ware, results that are not atypical for other variations.

The predictors we describe leverage two key properties
of dynamic degree of use that we studied in this paper.
First, degree of use exhibits locality. Most static instruc-
tions generate values with the same degree of use during
every execution. When an instruction can produce values
with multiple degrees of use, values produced consecu-

tively are still likely to have the same degree of use.
Second, the control flow occurring soon after a value is
generated often perfectly establishes that value’s degree
of use. Due to the pipelined nature of processors, we can
successfully employ control flow predictions available for
these near future instructions in generating predictions.

The proof of accurate degree of use prediction is a pre-
requisite for each of the optimizations we suggested in the
beginning of the paper. Although we do not evaluate a
specific application in this paper, we have already
described one application for utilizing the degree of use
zero predictions [2]. We are actively exploring inter-
instruction communication methods that exploit the pre-
ponderance of values with degree of use one.
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