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Abstract
Aggressive program optimization requires accurate profi

information, but such accuracy requires many samples to
collected. We explore a novel profiling architecture that reduc
the overhead of collecting each sample by including
programmable co-processor that analyzes a stream of profi
samples generated by a microprocessor. From this stream
samples, the co-processor can detect correlations betwe
instructions (e.g., memory dependence profiling) as well as tho
between different dynamic instances of the same instruction (e
value profiling). The profiler’s programmable nature allows a
broad range of data to be extracted, post-processed, a
formatted, as well as provides the flexibility to tailor the profiling
application to the program under test. Because the co-processo
specialized for profiling, it can execute profiling applications mor
efficiently than a general-purpose processor. The co-proces
should not significantly impact the cost or performance of th
main processor because it can be implemented using a sm
number of transistors at the chip’s periphery.

We demonstrate the proposed design through a detail
evaluation of load value profiling. Our implementation quickly an
accurately estimates the value invariance of loads, with tim
overhead roughly proportional to the size of the instructio
working set of the program. This algorithm demonstrates
number of general techniques for profiling, including: estimatin
the completeness of a profile, a means to focus profiling
particular instructions, management of profiling resources.

1  Introduction
Understanding dynamic program behavior is the key to max

mizing performance. Without a means to identify bottlenecks a
inefficiencies, it is difficult to effectively optimize a program’s exe
cution. Program profiling is an important mechanism for observin
dynamic program behavior.

Many program profiling systems have been proposed [1, 2, 6
16, 17, 18, 24, 25, 30, 36, 40, 41] and there is some consensus a
the desired attributes of such a system. These attributes can
grouped into four main categories:
• Usability: Widespread adoption of profiling necessitates th

the effort required by the user be minimized and that the tec
nique be widely applicable. Specifically, special compilatio
requirements should be avoided.

• Low Overhead: Overhead, in both space and time, should b
minimized to enable profiling of long running applications
with realistic data sets. Run-time optimization systems a
especially sensitive to overhead.

• Accuracy/Precision:Behaviors should be correctly attributed
(to individual instructions when possible), and the profilin
system should keep result perturbation to a minimum.

• Expressiveness:The ideal profiling system should be able to
measure any behavior.
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The ideal profiling system has not yet been developed; eve
scheme has its strengths and limitations. In this paper we prese
profiling architecture that we feel compares favorably to existin
schemes, at the cost of additional hardware.

Much like the ProfileMe system [18], our profiling architectur
profiles instructions; since this is performed transparently in ha
ware, no special application preparation is required. It stores
profiled instructions as they retire, with their dynamic information
in asample buffer. Unlike the proposed ProfileMe implementation
multiple in-flight instructions can be profiled simultaneously.

Although the sample buffer could be accessed directly by t
main processor, our architecture includes aprogrammable profil-
ing co-processorthat serves as an intermediary. This co-process
can distill the profiling information into a compact form before
passing it to the main processor. In this way high-quality profilin
information can be gathered quickly while maintaining low ove
head.

The co-processor is controlled by downloading programs into
from the main processor. The co-processor’s programma
nature, coupled with the richness of the profile information th
can be collected, enables a broad range of program behaviors t
observed with a single piece of hardware. Programmability allow
the profiling software to be specialized to the program und
observation.

Because this co-processor will be used exclusively for profilin
we can tailor its design for efficiency. By implementing commo
profiling operations (discussed in Section 3.1) as primitives
hardware, a high performance profiling co-processor can be imp
mented on small area and power budgets. Moreover, because
co-processor is decoupled from the main processor through
sample buffer, it can be located where it will not significantl
impact the design of the core. The hardware design is discusse
Section 3.

After a brief discussion of some profiles that could be collecte
by the co-processor (Section 4), we evaluate our profiling archite
ture through a case study of load value profiling. We demonstr
an algorithm that, in general, collects more accurate profile
faster, and with lower overhead, than a simple sampling value p
filer. This algorithm (Section 5) demonstrates a number of tec
niques that have applicability for profiling beyond value profiling
These techniques enable the algorithm to implicitly identify th
most frequent instructions, profile these instructions until it is co
fident they have been characterized, mask them and then pro
the set of next most frequent instructions. In this way, the profil
successively profiles instructions with the largest potential impa
to those with the least, and the algorithm stops incurring overhe
when the profile is complete.

2  Observations on Profiling: A Motivation
Looking forward, we see two trends that we feel will plac

larger demands on the rate at which profiling information will nee
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c)
to be collected. In this section, we discuss these trends and exp
why sampling will not be able to meet these demands witho
increasing overhead.

2.1  The Changing Face of Profiling
The program profiling systems proposed to date have conc

trated on two topics: identifying control flow profiles [16, 32] an
the instructions associated with performance degrading events
2, 18, 40]. Many techniques that are likely to be employed in t
future (including value-based code specialization, speculative m
tithreading, pre-execution, software managed caches, etc.) ei
require or can exploit additional types of profile information. I
order to collect this larger set of profile information, the rate
which profile information is gathered must be increased.

These techniques for program optimization are still evolvin
rapidly, and as they are developed they will require new types
profile information to be collected. With a programmable profi
engine, this profile information can be collected on existing har
ware, rather than having to wait for the next hardware design cy
to include the necessary special purpose hardware.

In addition, there is a trend toward run-time optimization [6, 2
33], whereby a program’s execution is optimized as the profi
information is gathered. Run-time optimization requires profi
collection to be quick, to maximize the portion of the program
execution that is optimized, and low overhead, so as to not sign
cation impact the run time. Many profiling systems leverag
sophisticated analysis to post-process profiles, but in a run-ti
optimization environment such post-processing may not
cost-effective.

2.2  Reducing the Overhead of Collecting Samples
Most profiling systems use sampling to maintain low overhead

Sampling is a meta-technique that can be applied to other te
niques (including instrumentation [24] or interpretation [9]) t
reduce overhead by decreasing the rate at which information
collected. Sampling exploits the fact that profile information ca
only be used as a hint and, therefore, does not need to be comp
or even necessarily correct. Sampling is effective because stat
cally we are likely to collect information about common event
i.e., the ones that provide the most potential for performan
improvement. Furthermore, highly biased behaviors, again
ones that provide the most potential, can be estimated with a gi
confidence level with fewer samples than less highly biased beh
iors [37].

Because the overhead of interrupt-based sampling is prop
tional to the data collection rate, higher profiling rates equate
larger overheads (as shown in Figure 1). In order to reduce
overhead of collecting each sample (i.e., the constant of propor-
tionality), our proposed profiling system delegates much of t
profiling computation to a dedicated profiling co-processor. T
co-processor summarizes the information contained in many sa
ples before passing it to the main processor. By specializing
co-processor to the task of profiling, we can provide profiling com
putation more cheaply than can the general-purpose host pro
sor. In the next section, we discuss the design of the profili
co-processor.

3  Hardware
Our proposed profiling architecture requires hardware supp

beyond that which has been included in current implementatio
In light of the fact that peak processor performance has been gr
ing more rapidly than real program performance, we feel that de
icating hardware resources to features that can close this gap
including profiling support — will be justifiable in future micro-
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processors. Nevertheless, an important aspect of the design
profiling co-processor will be minimizing its impact on the mai
processor’s performance and cost. Specifically, the co-proces
should:
• Use a moderate number of transistors.
• Keep the additional circuits far from the core of the processo

Therefore, the design must be able to tolerate communicat
latencies from the core.

• Avoid loading critical circuit paths in order to minimally
impact processor frequency.

• Not significantly increase power consumption.
We feel that the design presented in this section abides by th

constraints. We estimate that our baseline design can be imp
mented in approximately one-half million transistors; we es
mated 300,000 transistors for the memory arrays and believe
core is simpler than that of the StrongARM [34], which only
required 250,000 transistors. This is substantially smaller than
modern microprocessor (e.g., AMD’s Athlon (w/o L2 cache) is 22
million transistors) and future processors are expected to be e
larger. The transistors that make up the co-processor can be loc
at the core’s periphery.

Additional hardware in the core is required to collect and expo
the profile information to the co-processor. This hardware is sim
lar to that required for the ProfileMe proposal [18] except add
tional storage is required because multiple in-flight instructio
can be profiled. Many types of information could be collected fo
an instruction, including the instruction’s PC, register value
memory address, and any micro-architectural events associa
with the instruction (e.g.,the instruction caused a branch mispre
diction), as well as the instruction itself. The generality of the pr
filer design is dependent on what information the core mak
available about an instruction. Exporting this information to th
fi-
e
e
e

s.

Figure 1. The relationship between accuracy, overhead, and
sampling rate for traditional interrupt-driven sampling (data
shown for load value profiling on gcc, samples every 512, 1024
and 2048 loads): (a) faster sampling rate enables profile to
converge faster, but (b) higher sampling rate translates to
correspondingly higher overhead, leading to (c) the profile
quality being a function of overhead (independent of sampling
rate)

overhead (10^5 cycles)
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co-processor requires additional datapaths1. For the studies done a
128-bit datapath was sufficient, and these signals are latency-to
ant, so the interconnect can be pipelined over many cycles.

In this section, we describe the major features of our profilin
architecture. We start by describing the requirements for suc
co-processor, in Section 3.1. Each of the following sub-sectio
covers a portion of the design: instruction filtering and the samp
buffer (Section 3.2), co-processor datapath (Section 3.3), co-p
cessor control (Section 3.4), and interactions with the main proc
sor (Section 3.5). A high-level block diagram of the profilin
architecture is shown in Figure 2.

3.1  Characteristics of Profiling Applications
By analyzing many profiling algorithms we have identifie

some common operations. In order to efficiently execute profili
applications, these operations are provided by the hardware
primitives. Below is a list of these common operations with a bri
description of the hardware that implements them:
• Implicit loop-based structure: A routine is executed for

every sampled instruction. The co-processor provides a spe
branch target that fetches the next instruction to sample a
jumps to the routine for processing that type of instructio
(described in Section 3.4).

• Opcode filtering: Only certain classes of instructions are con
sidered (e.g., only branch instructions are considered for con
trol flow profiling). In the decode stage of the main processo
there is a configurable hardware filter that can filter instru
tions by opcode (described in Section 3.2).

• Field extraction: Processing instructions usually require
extracting one or more fields from the instruction (e.g., branch
target PC, or register identifiers). The co-processor include
hardware instruction decoder/field extractor that provid
bit-fields without the need to shift and mask the instruction b
in software (described in Section 3.4).

• Lookups/matching: The current sample has to be paired wit
previous related samples. The co-processor has an associ
array that provides match operations to the software (describ
in Section 3.3).

1. The information on these wires is largely a subset of what is require
from the core by a DIVA-style checker architecture [4]. If the processo
design employs such a checker, the impact of these wires can be a
tized over both features.
Microcode Ar
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• Counter manipulation: Counters are used to summariz
repeated events and for management of profiling resourc
The co-processor’s data memory provides read-modify-wr
operations and its ALUs support saturating arithmet
(described in Section 3.3).

• Data dependent control flow:Profiling applications are often
control intensive, and many of the branches are hard to pred
because their outcomes differ from sample to sample. The p
filing co-processor is capable of executing a branch every cy
(in parallel with other operations), and its short pipeline min
mizes stalls due to branch misprediction (discussed
Section 3.4).

By specializing the co-processor design to the needs of profili
applications, we can provide computation for profiling inexpen
sively.

3.2  Instruction Filtering and the Sample Buffer
Because the profiling co-processor does not have the resou

to profile every retired instruction (nor is profiling every instruc
tion required for useful profiling information) the main processo
only needs to collect profile information at the rate that the co-pr
cessor consumes it. A configurable hardware filter, which
accessed at decode time, allows instructions to be tagged for pro
ing in a controllable way. By pro-actively filtering, rather than tag
ging instructions randomly, we can focus on a subset
instructions; this increases the locality in the sample strea
enabling better utilization of the co-processor’s memory resource

The filter considers two of the instruction’s characteristics: i
opcode class and its program counter (PC). Opcode filtering is p
vided because most profiling applications only monitor a subset
instructions (i.e., loads or branches). Two PC-based filters provid
the ability to consider only a fraction of the program at a time, a
well as to exclude particular instructions from consideratio
These filters are shown in Figure 2, and their uses are describe
Section 5.1.3 and Section 5.1.4, respectively.

These three filters are used in conjunction to determine whet
an instruction should be profiled. These filters must be able to s
port the decode width of the processor. The small opcode filter a
the first PC-based filter can easily be replicated. Replicating t
larger PC filter would be too costly, but it can be constructed
exploit the fact that blocks of instructions have consecutive PC
much in the same way that instruction caches are built to fet
multiple instructions.
CURRENT INST.
Decoder/Extractor

Sample Buffer

Associative Array

Data Array

ray

Host Access Bus

Value Registers (4)

Index Registers (8)

filing Co-processor

1KB

16b

64b
128 x 64b words

1KB

256 x 64b words
2KB

Base Addr. Regs (8)
16b

Const Registers (4)
64b

b

Figure 2.Block diagram of profiling co-processor hardware, showing major arrays with size estimates for a baseline design.
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Hash Mask
00011

Match
00010

Compare
T/F

PC

Hash Table (4Kb)

T/F

a)

b)

d
t

Structure Size Ports
Transistor
Count

PC Filter bit-mask 4Kb 1 25k

Sample Buffer 1kB 1W/1R 65k

Microcode Array 64 x 48b 1 18k

Associative Array 1kB 1 74k

Data Array 2kB 1 98k

Value Registers 4 x 64b 2R/1W 3k

Index Registers 8 x 16b 1R/1W 2k

Constant Registers 4 x 64b 1 2k

Base Address Registers 8 x 16b 1 1k

Jump Target Registers 4 x 6b 1 <1k

Decoder/Field Extractor 21 x 6b 1 1k

Total Transistor Count 289k

Table 1. Estimated sizes and number of ports for major struc-
tures in baseline co-processor design.
The actual collection of the profile information is highly depen
dent on the underlying micro-architecture. For our simulatio
micro-architecture, the process is similar to that of ProfileMe [18

The sample buffer serves to decouple the retiring of tagg
instructions by the main processor from their processing by t
co-processor. The sample buffer helps tolerate burstiness of re
ment without letting the co-processor go idle. To conserve space
the sample buffer and to conserve bandwidth between the m
processor and the co-processor, the profiling hardware is p
grammed to collect only those fields that will be used by the cu
rent profiling application. In our experiments, we have found
1kB sample buffer and a 128-bit datapath (between the proces
and co-processor) to be sufficient.

3.3  Profiling Co-processor Datapath
Like most processors, the profiling co-processor is made up

memories, register files, and arithmetic/logic units (ALUs). Eac
of these structures has been tailored to support profiling appli
tions with a minimum of resources.

Three memory arrays are included: a microcode array
co-processor program storage, an associative array for effic
matching, and a data array for general purpose data storage. T
memories, unlike those in the main processor, are not cac
backed up by main memory. Such a design avoids the size
complexity associated with cache tags, miss logic, and cohere
logic, and it enables efficient static code scheduling because
operations have a known, fixed latency. Because profiling inform
tion need not be complete, or even correct, data can be drop
and algorithms can be simplified to fit these constrained resourc
Communication to main memory (discussed in Section 3.5) is p
formed through the main processor via thehost access bus(shown
in Figure 2).

The associative array is implemented as a content-address
memory (CAM), and it provides inexpensive hash table-like fun
tionality for lookups and matching. Each entry of the associati
array has a valid bit that is set when the entry is written and can
cleared through an invalidate operation. The data memory has s
cial support for read-modify-write operations, like incrementin
counters. All three memories are single-ported, and we have fou
that having twice as much data memory as associative memory
good compromise between cost and functionality.
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In order to minimize the number of ports on each structure a
reduce register specifier size, the register file is partitioned into fi
separate special-purpose register files:value, index, constant, base
address,andbranch target. The size, number, and port configura
tion of these register files is shown in Table 1. Value registers a
wide enough hold data from retired host instructions (e.g., register
values, addresses, and PCs). The narrower index registers hold
sets into memory arrays or counters for monitoring the profile
status. To facilitate implementing circular buffers and saturatin
counters of different sizes, the width of index registers is confi
urable at program load time.

The other three types of registers — constant, base address
branch target — are read-only to the co-processor; they are con
ured when the program is loaded. Because few constants are u
they are stored in a constant register file instead of requiring imm
diates in instructions. Base address registers are used to subd
the co-processor’s memory into sub-arrays. Only aligne
power-of-two size sub-arrays are supported to allow addresse
be generated without arithmetic. Branch target registers are d
cussed in Section 3.4.

The main ALU in the co-processor has limited functionalit
compared to that of a traditional processor. Because multiplicat
and division are seldom used in profiling, they are not supporte
and only limited shifts are available. The ALU does provide
mechanism for generating pseudo-random numbers, through
use of a linear feedback shift register (LFSR) [21], for use
resource management decisions; this helps to avoid patholog
behaviors caused by repetition in the program. In addition to t
main ALU, an incrementer is provided specifically for manipula
ing index register values. Because information can become d
torted if counters roll over, the ALUs support saturating arithmeti
The ALUs also provide control conditions, through comparison
and based on whether their results are saturated, for use as br
predicates. The control of the co-processor is described in the n
section

3.4  Profiling Co-processor Control
The co-processor executes a short routine for each instruction

the sample buffer, in the order that the instructions were retired.
each instruction comes to the head of the sample buffer, it is cop
Figure 3. Two PC-based filters: a) a hashed version of the PC
is masked by a variable-width mask and compared to a
programmable value (Match); in this way the program can be
sub-divided into 2nregions to be profiled independently (where
n is the number of ones in the mask register), and b) a hashe
version of the PC indexes into a table of bits which can be se
independently, enabling individual instructions to ignored
during profiling. In both cases multiple hash functions are
provided to reduce conflict problems.
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to the decoder/field extractor (DFE). The DFE provides access
the information associated with the current retired instructio
(including efficient field extraction) and supplies the starting PC
be used for processing this instruction. Typically, when instru
tions from different opcode classes are profiled by a single pro
ing application, they are treated differently. To avoid
performance-degrading, multi-way branch in software, the DF
contains a table that associates each opcode class with a sta
co-processor PC.

There is a significant amount of parallelism in profiling applica
tions, but it needs to be exploited in a cost-effective manner. O
co-processor executes a single instruction per cycle, but t
instruction encodes multiple operations. The co-processo
instruction set is much like microcode, in that each instruction
only a simple encoding of the co-processor’s control signals. T
allows a large fraction of the resources to be used each cycle
reduces instruction decode time. A short decode time is necess
to maintain a high clock rate for our short in-order pipeline.
two-stage (fetch/decode, execute) pipeline is used to minimize
microcode branch misprediction penalty.

Because profiling applications are extremely control intensiv
every microcode instruction includes a branch slot. Often 50 to
percent of the branch slots are used. To predict the direction
these branches, each instruction has a 2-bit branch predictor. M
branches in profiling applications are short, so only a small set
short forward and backward immediate offsets are included in
instruction set. For the rare cases when these are insufficient,
architecture includesbranch targetregisters that enable jumps to
any location.

In addition, two special branch targets are included:done and
interrupt . A routine branches to the targetdone when it has fin-
ished processing a host instruction; this increments the he
pointer in the sample buffer and jumps to the routine associa
with the new head instruction’s type. When the co-process
branches to theinterrupt target, execution is halted and the mai
processor is interrupted.

3.5  Interactions with the Main Processor
Although providing the co-processor a direct path to memo

would make it more powerful, we fear that it could impact the ci
cuit speed of the main processor’s memory access path. Instea
read and write main memory, the profiling co-processor leverag
the existing memory system hardware in the main processor. Us
loads and stores to special address ranges, the main processo
read and write the co-processor’s state. In this way, the main p
cessor can copy programs and initial state into the co-proces
and copy profile data from the co-processor into main memory.

The baseline co-processor, not counting the sample buffer,
about 4kB of state. To completely transfer this state requires ab
500 64-bit memory operations, but a full transfer is seldo
required. Special operations are provided to invalidate the asso
tive array and clear the data array, because these are the de
initial states for many profiling applications. Because those arra
dominate the co-processor’s state, the number of stores neces
to program the co-processor is drastically reduced. If the progr
is already loaded (e.g., when the co-processor continues collectin
the same type of information after an interrupt), the co-proces
can typically be re-initialized in less than 10 stores. When readi
profile state from the co-processor, it is only necessary to read d
that could have changed (e.g., it is not necessary to read the micro
code array), but it is not uncommon to read most of the associa
and data arrays (about 3kB).

Once the co-processor has been programmed, it performs
profiling autonomously until it desires external communicatio
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When it has filled its arrays with useful profiling information o
requires guidance from the profiling application, it interrupts th
main processor.

The overhead observed during profiling is roughly the produ
of: (1) the number of interrupts, (2) the number of samples that a
recorded per interrupt, and (3) the average time required to rec
a sample. To minimize the total overhead, we attempt to minimi
all three, while maximizing the quality of information extracted
(which is often a function of the number of samples recorded). T
first component (the number of interrupts) is minimized throug
the design of the profiling algorithm that strives to interrupt on
when the slots have a high information content that compleme
or enhances the information already collected (discussed
Section 5.1). The second component (samples per interrupt) ca
slightly reduced by having the co-processor post-process the in
mation collected to remove samples that have low informati
content. The overhead per sample (the third component) is redu
by hand-assembling the interrupt handler to minimize instructi
count and maximize instruction-level parallelism and organizin
data structures to minimize the number of cache misses, as
described in [2]. In addition, since we are processing multiple sa
ples per interrupt, modulo scheduling can be used to overlap
cache misses associated with the hash table lookup. Using th
techniques, we have written interrupt handlers that require as li
as 10-30 cycles to process each sample, depending on the c
plexity of the handler.

4  Example Applications
In addition to the case study that follows, we briefly discus

some applications which could be implemented with the profilin
co-processor. These profiles are not new, but can potentially
implemented in a low-overhead manner without specialized ha
ware.

Edge Profiling. A two-pass profiler could be built that first pro-
files direct branches counting how many times the branch w
taken and not-taken, then profiles indirect branches to ident
their targets and count their frequencies. In addition, by observ
a pair of branch samples in close proximity we can potentia
identify correlations between branch outcomes.

Call Stack Monitoring. Call and return instructions could be pro
filed to maintain the current call stack, enabling events (e.g.,
branch mispredictions) to be correlated to calling contexts.

Memory Dependence Profiling.By storing the PCs and memory
addresses of recent stores and comparing them to the mem
addresses of loads, dependences between stores and loads c
identified.

Cache Conflict Profiling.By storing the memory addresses o
cache missing loads we can identify when a block has be
brought into the cache multiple times in a short duration, like
indicating a conflict. From this address we can compute its set a
identify the instructions that have been accessing this set.

5  Case Study: Value Profiling
The predictability and invariance of data values has be

actively studied recently. For mechanisms that exploit this progra
behavior (e.g., value prediction [12, 29, 35, 38] and dynamic spe
cialization [3, 15, 19]), the identification of candidate invariant va
ues is either a strict requirement or an enhancement. Beca
requiring the programmer to identify these values is tedious a
error prone, value profiling [9, 10, 11, 20] has been proposed
automatically characterize value invariance (the frequency
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which the value is seen) as well as to identify the most comm
values.

Early implementations of value profiling using instrumentatio
or simulation are not feasible for large programs (Calder,et al.
reports an average slowdown of a factor of 10). More recently
sampling implementation of value profiling [9] has been demo
strated with only 10% slow down, by sampling every 32,00
instructions2. Because their implementation interprets the progra
to collect the values, the cost of collecting each sample is hi
(hundreds to thousands of cycles per sample).

Our profiling co-processor can be used to emulate thissimple
samplingalgorithm and achieve comparable results at lower ove
heads. Because values are captured in hardware, interpretatio
not required, and multiple samples can be buffered allowing t
cost of the interrupt to be amortized over many samples. Our sim
lation results show an equivalent sampling frequency can
achieved with only a 0.3 percent overhead. With such a low ov
head, many behaviors could be profiled simultaneously witho
significantly impacting performance.

To demonstrate the benefit of the other features of our hardw
profiler, we examine performing value profiling to suppo
dynamic optimization, a more challenging profiling scenario.
this context, we have the additional requirement that the profile
collected at a high rate, to maximize the portion of the executi
that can be optimized. Although this can be acheived by grea
increasing the sampling rate, the limits on overhead are more st
because performance lost to profiling reduces the benefit achie
by dynamic optimization. This challenging scenario motivated t
profiling co-processor approach.

Our algorithm improves over existing algorithms in two
respects: (a) by providing mechanisms and policies for target
the profile to particular instructions, and (b) by summarizing mu
tiple related samples in the co-processor, fewer updates to
in-memory profile result tables are required. In the next sub-s
tion (5.1) we describe our algorithm. Our experimental method
ogy is described in Section 5.2. Quantitative results on profili
accuracy and overhead, comparing it to the simple sampl
approach, are provided in Section 5.3.

5.1  The Algorithm
At a high level, our algorithm performs the following steps:

1. Find the N most frequently executed, unmasked instruction
2. Collect and summarize profile information on those instruc-

tions
3. Interrupt the processor
4. Copy this information to a data-structure in memory
5. If an instruction has been sufficiently characterized, mask it
6. Repeat, until all instructions have been masked

There are a number of nice things about this structure. First
profiles instructions in the order of their importance, from mo
frequently executed to least frequently executed. In Section 5.1
we discuss a replacement policy that statistically retains the m
frequently executed instructions without prior knowledge. Secon
by predicting when we have sufficiently profiled an instructio
(which is discussed in Section 5.1.4), we can stop profiling th
instruction and focus our profiling resources on the remaini
instructions. In this way we can profile even infrequently execut
instructions, which may be difficult with a traditional sampling
scheme. Finally, when no unmasked instructions are found,
profile is declared complete and the co-processor can be use
profile other behaviors.

2. To be exact, their proposal samples 4 instructions, on every other in
rupt, at an interrupt frequency of about every 64,000 instructions.
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In the section that follows, we present some of the importa
components of the algorithm including: maximizing the benefit
the limited co-processor resources (Section 5.1.1), thrash detec
(Section 5.1.3), and how invariances are estimated (Section 5.1
Additional detail can be found in Appendix A.

5.1.1  Slots
Given that we have a limited set of resources with which

monitor the program, much of the algorithm is designed to max
mize the utilization of those resources. In order to simultaneou
track the maximum number of static load instructions, we min
mize the storage allocated to each static load, by only tracking o
value per load at a time.

Each load that is being monitored by the profiling co-process
is allocated a portion of the co-processor’s storage resourc
which we call aslot. The manner that this storage is allocated
configured in software, and hence part of the co-processor’s p
grammability. A slot (shown in Figure 4) consists of storage fo
the PC, an active value, two 1-byte counters (hit and miss), an
2-byte counter (total). Although we performed our experiments
the 64-bit Alpha architecture, we found that the upper half of
word often had very little information content; 32 bits was usual
sufficient to discriminate between PCs (where we select b
[34:2]) and values (where the low 32 bits are stored).

Unlike previous value profiling techniques, each slot only kee
one active value at any time (although more than one value is as
ciated with a static instruction in the data structure in main mem
ory). We can accurately estimate the invariance of the active va
by keeping track of the number of times we see a matching va
(hits) and dividing by the total number of values seen (hits
misses). We simply must select the top (most invariant) values
be the active values.

Although identifying the top value cannot be donea priori,
when we select a random sample for the active value, we are sta
tically most likely to select the top value. A similar observatio
was made by Balaet al. [6] with regards to path profiles. Since we
are not assured to get the right value, we need to periodica
re-select if the active value’s invariance is low.

5.1.2  Informational Replacement
When an instruction that is not currently allocated to a slot

encountered, we have to decide whether or not to replace one
the current slots. The cost of replacing a slot is the loss of a
information that has been gleaned about the associated instruct
Therefore, the amount of information stored in the slot should
considered when making the replacement decision. We use
number of samples observed (i.e., a total counter that is incre-
mented every time a sample is observed) as an estimate of
information content of a slot. In this way, infrequently execute
instructions are likely to be replaced by frequently execute
instructions.

32 bits
to

er-

Figure 4. For each static load that it is profiling, the
co-processor maintains a data structure (slot) that contains the
instruction’s PC, an active value, and some statistics about the
instruction’s past behavior. The PC is stored in the associative
array for fast matching.
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5.1.3  Thrash Detection and Filtering
The algorithm that has been described so far is sufficient wh

the working set of unfiltered loads fits in the slot array. But if the
is a working set of unfiltered loads whose frequencies are roug
equal and that is much larger than the slot array, the algorith
thrashes, constantly replacing entries before they have a chanc
observe multiple samples. When this happens, the co-process
throwing away information at the same rate as it is collecting it.

Thrashing can be quickly and easily detected by monitoring t
number of times that we have performed slot replacements. Wh
thrashing is occurring, the number of replacements will be a lar
fraction of the samples observed. To avoid thrashing, we us
divide-and-conquer technique, using the first PC-based filter
partition the program. Each subset is profiled in turn, and this p
titioning artificially increases the locality in the sample stream.

5.1.4  Confidence Estimation
Once enough samples have been collected to estimate the inv

ance of an instruction within the necessary accuracy, collect
additional samples for this instruction does not provide any ben
fit. The difficulty in such an approach is determining when enou
samples have been collected. For a truly random process, give
set of samples and a desired accuracy, statistical methods ca
used to compute a confidence that the set of samples represent
process to the desired accuracy [37], but program behaviors are
random processes.

Calder,et al. [10] investigated a scheme, calledconvergent pro-
filing, that compares a recent set of samples for an instruction to
profile as a whole to determine if the profile had converged. Up
converging collecting samples was discontinued. Once the res
the algorithm has been streamlined, such a comparison
become expensive, and we have found it to be unnecessary.

We found that many confidence decisions can be made w
much less information. Statistical confidence increases with m
sured bias of the sample. Thus it is easy to be confident of hig
invariant and highly variant instructions. Hence, when we are st
ing data into memory (in the interrupt handler) we test if the inva
ance is above a high threshold or below a low one, and if so
mask off the instruction, using the second, larger PC-based fil
Otherwise the instruction should be profiled multiple times
attempt to characterize all of the dominant values; we allow t
instruction to be sampled 4 times before masking it.

Because of phase behavior, it is necessary to periodica
re-sample to ensure that all important behaviors are observed.
time-based re-sampling could be improved by including a
explicit phase detector. A special case of phase behavior is w
has been referred to as glacial values [5]. Some benchmarks (e.g.,
gap and vpr) have loads that will load a single value for a lon
interval (thousands of instances) and then change to repeat
loading a different value. Because we may not sample the pha
equally, our profiler can have trouble determining what fraction
the execution is associated with each value. We can, however,
ily diagnose that this behavior is occurring (multiple profiled va
ues with many good counts and zero or few bad counts) which
likely to be more important than knowing the exact contribution
Performing this diagnosis could be difficult for a traditional sam
pling profiler.

5.1.5  Invariance Estimation Algorithm
To estimate a value’s invariance, we need to reconstruct the d

we did not collect from the data we did collect. Each static instru
tion is post-processed in isolation by the main processor. For e
value that accumulated hit counts, we can compute its invarian
— hits / (hits + misses) — for the regions it was selected as t
active value by the profiler. Because of clustering in the stream
n

ly

to
is

e
n

e
a
o
r-

ri-
g
-

a
be
the
ot

ts
n
of
n

h
-

y
-

e
r.

e

y
ur

at

ly
es
f
s-

is
.

ta
-
h
e

e
f

values loaded by an instruction, this computed invariance oft
over-estimates the value’s invariance for the whole program.
get a more accurate estimate, we also consider the counts reco
when other values were active as well as the total number of sa
ples observed.

5.2  Methodology
In order to evaluate the capabilities of our proposed profilin

architecture, we built a cycle-accurate simulator of the co-proce
sor. The profiling algorithm described in this section was impl
mented in the co-processor’s microcode and executed by
simulated co-processor. This co-processor model is included i
timing simulator derived from the Alpha version of SimpleScala
[8] that simulates the main processor. In addition to the benchm
program, the main processor executes the profiling system c
(including the interrupt handler) that is responsible for configurin
the co-processor and storing the co-processor’s results into m
ory. A timing simulation is required to determine which instructio
samples are dropped because the sample buffer is full and to e
mate the profiling overhead.

The simulated main processor is a 4-way superscalar, dyna
cally-scheduled processor, roughly modelled after the Alp
21264 [26]. The processor has 64kB L1 caches, a shared 1MB
cache (10 cycle access), and an 80 cycle main memory access
simulated 3 co-processor configurations to observe the co-proc
sor’s sensitivity to the sizes of the associative and data memor
these memories are a substantial portion of the co-processor’s c
The baseline configuration has a 1kB associative memory an
2kB data memory. In addition, we simulated co-processors w
half (.5kB/1kB) and twice (2kB/4kB) the memory resources. W
simulate the co-processor executing at the same frequency as
main processor, but explore its sensitivity to this in Section 5.3.

Our benchmarks are from the SPEC2000 integer benchm
suite. We used modified reference inputs that attempt to maint
the reference data set size while reducing execution duration;
modified inputs ran between 9 and 44 billion instructions. A 10
million instruction region, selected from a dominant executio
phase of each program, was used for simulation. Typically, t
profiler characterizes a program in a much shorter interval.

In this set of experiments, we only concern ourselves with ide
tifying load values that account for at least 200 dynamic instanc
of a particular load and have invariances of at least 25%. In ge
eral, such loads are unlikely to benefit from value-based optimiz
tions, and are difficult to accurately characterize with anythin
other than a complete profile. When a single static instruction h
multiple values that exceed these requirements, we attempt to e
mate the invariance of all such values.

5.3  Results
For each run we collect a complete profile, and compare it to o

estimated profile. Figure 5 shows estimated invariance of valu
versus the true invariance forgcc, the program with the largest
instruction working set. Each point in the scatter plot represent
single <static instruction, value> pair; the shape of the poi
roughly indicates the frequency of the value (x’s for values load
less than one-thousand times, triangles for between one-thous
and ten-thousand, and squares for values loaded more t
ten-thousand times). Ideal results would have all points on t
dashed line; the pair of dotted lines are to aid visualization and re
resent a 5 percent over- and under-estimate. The points along
x-axis are values which were not sampled and are largely due
infrequently executed instructions. In general, the estimates
very accurate; most estimates are within 5 percent. In fact t
results are even better than they appear because points nea
diagonal often obscure other points at the same location. In gen
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we more accurately predict values with high invariances and
outliers tend to be the infrequently executed values.

Quantitative Results.To obtain a quantitative estimate of the
quality of the profiles, we compute the root-mean-square er
(weighted by the value’s frequency) of the estimations. We co
pare our algorithm against the hardware implementation of t
simple sampling approach described in the beginning of Section
we have increased its sampling rate to once every 1024 load
enable faster profile collection.

Figure 6(a) compares the profile quality generated by the t
algorithms, demonstrating that there is a lot of variation in acc
racy. The accuracy of the simple sampling approach is larg
inversely proportional to the size of the instruction working se
gcc and perl have the largest number of loads in the simulate
region. The co-processor implementation has better accuracies
most of the benchmarks.Gap is worse because our algorithm ha
inaccurately characterized some of the glacial values mentione
Section 5.1.4.Bzip2andparserhave lower accuracy because th
algorithm was satisfied with the accuracy and discontinued pro
ing; for these benchmarks the overhead is substantially lower
the co-processor algorithm.

Crafty is a special case; its accuracy suffers in both algorithm
because it has many 64b bit-flags (for tracking the state of a ch
board) whose values are aliased together because we only stor
bottom 32 bits of the value. We are currently working on an exte
sion to our algorithm to detect this condition, by taking a seco
pass over invariant instructions to capture 64-bit values.

Overhead.The overhead of profiling, as discussed in Section 3
comes from transferring state to and from the co-processor and
associated cache pollution. It is difficult to compare the overhe
of the two algorithms; the simple-sampling approach has a fix
overhead per unit time, whereas the co-processor algorithm w
cease execution when it is satisfied with the profile collected, a
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hence, its overhead is largely a function of the size of the pr
gram’s instruction working set. Percentage slowdowns, althou
not the most meaningful way to represent the overhead of
co-processor algorithm, provide a means to compare the two al
rithms.

The measured overheads, shown in Figure 6(b), include all i
tialization and the processing required to set the filter bits but n
the final estimation algorithm (described in Section 5.1.5). Th
final estimation overhead is linear with the number of static loa
profiled. For both mechanisms all overheads are less than 2%,
in all cases, the overhead of the co-processor algorithm is low
This is largely due to the co-processor interrupting the progra
fewer times and, therefore, making fewer updates to the in-me
ory data structure. The overhead of each update is higher for
co-processor algorithm (because typically multiple counters ha
to be updated and the decision as to whether to mask must
made), but because the number of updates is so much lower,
overhead is lower.

Convergence Rate.Potentially more important for a dynamic
optimization scenario is the rate at which the profiles converg
Figure 7 shows the relationships between accuracy, overhead
time for both the co-processor algorithm and simple sampler
gcc. It can be seen that the co-processor’s profile converges m
more quickly. It interrupts frequently in the beginning because
can quickly characterize the frequent instructions. This leads
higher overhead initially, but as it shifts to profiling the less fre
quent instructions, the interrupt frequency drops, leading to
decrease in overhead. It can be seen in Figure 7c that the co-
cessor has better accuracy (lower error) for any given overhe
this is true for all of the benchmarks.
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Figure 5. Scatter plot that shows the accuracy of our
invariance estimates on a per-value basis. Data is shown for
the benchmark gcc with the baseline array size (256 slots)
Because of the sheer number of such points, we chose not
plot points with estimated and actual invariance below 25
percent; this causes the empty box in the lower left.
Figure 6. Results for all benchmarks: (a) weighted
root-mean-square error in invariance estimation, (b) overhead.
In both cases, smaller numbers are better.
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Gccandperl, the largest benchmarks and, hence, the most like
to represent real workloads, best demonstrate the capabilities
our co-processor algorithm. Both see a substantial increase
accuracy (almost 4 and 8 times, respectively) with a significa
reduction in overhead (30% and 45% less, respectively).

Sensitivity Analysis.To explore the sensitivity of our profiler on
the co-processor’s design, we ran the same experiments with
other configurations: one with twice the storage resources and
with half as much. The major differentiation between the config
rations is that the rate at which the profiles can be captured
almost linearly related to array size (shown forgcc in Figure 8).
The accuracies and overheads, on the other hand, are less dra
cally affected (shown in Figure 9). In general, the accuracies
better with more resources, but the relationship is sub-linear.
some cases, smaller arrays provide better profiles. This is due
second-order effects including when interrupts are performed a
the interaction between filtering and the rate at which samples
be processed. More interestingly, smaller arrays tend to ha
slightly lower overhead because the increase in interrupt freque
is less than the corresponding decrease in samples per interrup

The frequency at which the co-processor executes does
appear to have a substantial impact on its results. Compar
results between co-processors clocked at 1, 1/2, 1/4 and 1/8
main processor’s frequency, we found that all were able to achie
comparable profile accuracies eventually, and achieve those a
racies with roughly equivalent overheads. The rate at which t
profiles were collected was somewhat affected for the 1/4 and
cases in the largest benchmarks (e.g., gcc, perl), but it appears to
be largely due to poor decisions by the profile software on when
perform interrupts. We expect that further tuning of the algorith
could mitigate much of this penalty.
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Figure 7. Relationship between accuracy, overhead, and time
for co-processor and simple algorithms. The co-processor
algorithm converges faster (a) by taking much of its overhead
early (b) and by having better accuracy for a given amount of
overhead. Data shown for gcc.
overhead (10^5 cycles)cu-
e
/8

to

Figure 8. The rate at which a profile can be collected is
sensitive to the storage resources in the co-processor (a)
although the overhead for collecting a profile of a given
accuracy is not (c). Data shown for gcc.
b c p t vo

Figure 9. Profiling accuracy (a) and overhead (b) have only
moderate sensitivity on amount of storage resources available
to the co-processor.
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6  Related Work
Our proposed profiling architecture builds upon previous wo

in instruction-based sampling [18, 39]. In these schemes,
instruction is selected for profiling at fetch time and, as the instru
tion proceeds down the pipeline, each stage captures informa
about it. In addition to micro-architectural events, our syste
assumes that the architectural state associated with the instruc
(e.g., register values) is captured also, as is proposed in [1
Unlike these approaches that interrupt the processor after ev
sample, our scheme can buffer multiple samples as well as c
dense the profile data into a reduced form. In addition, we inclu
a filter that constrains which instructions are selected for sampli

Other previous work has proposed mechanisms to coalesce
file information from multiple samples for specific types of profil
ing, typically control flow profiling. Conteet al. proposed the
profile buffer[16], which tracks retired branch outcomes by incre
menting counters based on branch address. Mertenet al. propose a
slightly more complicated structure, thehot spot detector, which
uses retired branch outcomes to identify program hot spots a
captures branch biases [32]. In [33], they extend the hot spot de
tor to enable autonomous re-layout of frequently executed p
gram regions. In these schemes, the merging algorithm
implemented in hard-wired logic, while our proposed profilin
approach trades off efficiency for flexibility by using a program
mable co-processor to perform the reduction.

Recently, Chouet al. described aninstruction path co-processor
(I-COP) [13] another programmable co-processor that obser
the retirement stream. They describe how their array of process
can be used for trace construction and optimization for tra
caches, and estimate that the I-COP is roughly the size of 256
of fast SRAM. Because the profiling co-processor exclusively pe
forms profiling, the hardware can be tailored to provide high pr
filing rates with resources more than an order of magnitu
smaller. In addition, because a richer set of information is provid
with the retirement stream, the profiling co-processor can collec
broader range of profiles.

Concurrently with this work, Heil and Smith proposed therela-
tional profiling architecture(RPA) [23]. This architecture shares
much in common with the profiling co-processor approach, but
designed to exploit characteristics of their underlying co-design
virtual machine model. For example, instructions include an ex
bit field that can be set to control whether or not instruction
should be profiled (serving the same purpose as our PC filter
array). Rather than post-processing samples in a dedicated co-
cessor, the RPA sends messages toservice threads, which execute
on small, general-purpose, peripheral processors. In addition, t
demonstrate that the datapath for communicating profile inform
tion out of the core should be feasible, and propose the concep
assured sampling, where every instance of a set of instruction
monitored, enabling the RPA to be used to ensure correctnes
the presence of speculative optimizations.

Programmable co-processors have been previously propose
manage other sub-tasks on the processor’s behalf. Kuskinet al.
proposed using a programmable co-processor, MAGIC, to imp
ment cache coherence [28], and they demonstrated its use
coherence performance monitoring [31]. More recently, Halln
and Reinhardt proposed a software-managed cache that us
co-processor to implement the replacement policy [22].

7  Conclusion
We propose a new profiling architecture based around a pro

ing co-processor that performs local post-processing on the pro
ing data. This post-processing condenses sample data be
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passing it to the main processor, thereby reducing the overhea
collecting each data sample. This post-processing can be p
formed efficiently because the co-processor implements comm
profiling operations in hardware as primitives. The co-process
should only modestly impact the design of the main process
because we estimate that it can be implemented in less than a
million transistors, the majority of which can be far away from th
main processor’s core.

Because the co-processor is programmable, it is capable of c
lecting a wide range of profile data. As a demonstration we imp
mented load value profiling. This application can be demandi
because it has a large state space of values in which to detect
terns. Our profiling algorithm monitors its own results and term
nates profiling an instruction when it is confident that it ca
estimate its invariance. In this way, the algorithm successively p
files instructions from most frequent to least frequent, and term
nates when it is satisfied it has a good enough profile. We belie
that the structure of this profiling algorithm and the techniques
implement it are applicable to other types of profiling.
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Appendix A Value Profiling Algorithm Details
This section covers details that are important for achieving t

results presented for our value profiling algorithm, but aren
required by a casual reader. A flow-chart (which is referred to
the text) for the value profiling algorithm is shown in Figure 10.

A.1  Value Re-sampling

In our implementation, if the measured invariance drops belo
20 percent (tested in state D of Figure 10), we re-select the ac
value (in state H of Figure 10) and set the hit and miss counters
1 and 0, respectively. In addition to updating hit and miss counte
each sample increments the total counter that enables us to t
how many samples have been dropped when the active valu
re-selected.

A.2  Counter Saturation

When a slot has learned something useful, which could be da
aged by additional updates, we turn it off (by clearing its valid b
in the associative array, so no further matches occur). The m
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important case is the saturation of either of the hit or miss count
(state F, in Figure 10). When this occurs, no further updates
added to the slot, in order to preserve the ratio of hits to miss
Also, if we decide to select a new active value, but the previo
active value has accrued a non-trivial number of samples (at le
16 in our current implementation), then we turn off the slot t
retain that information (state I). Lastly, in the uncommon case th
the total counter saturates, we turn off the slot to maintain an ac
rate count of the number of samples observed. When a st
instruction’s slot has been turned off, new instances of that instr
tion have to compete for the remaining slots like instructions th
never had a slot.

A.3  Informational Replacement

Because it would be expensive to consider all slots for repla
ment, we only consider one (which is denoted asrslot in
Figure 10). Our current scheme has an index into the array of s
that tracks the next slot up for replacement. When a slot m
occurs, the total counter is compared to a pseudo-random num
between 0 and 15, inclusive. If the random number is greater,
slot is replaced,i.e., the new instruction’s value is stored as th
new active value and the hit and miss counters are reset (state M
Figure 10). Otherwise, the replacement fails and the current sa
ple is ignored (state K). In this way relatively infrequently exe
cuted instructions might not make it into the array until th
frequent ones have been masked. Whether the entry is replace
not, the index of the next slot up for replacement is incremente
giving a new slot some time with which to take hold before bein
re-considered for replacement.

A.4  Interrupt Strategy

Eventually, most of the slots will become un-replaceable (wh
their total count exceeds 15). As long as the current working se
instructions is represented in the slots we can continue collect
data. When we start ignoring many samples from instructions t
are not allocated to slots, it is time to copy the profiler state to ma
memory and recommence with a clean slate. To identify when
perform an interrupt, our algorithm includes a saturating faile
DOESPCMATCH

DOESVALUE EQUAL

INCREMENT MSLOT.HITS;

DONETURN OFF

IS MSLOT.MISSES

INCREMENT MSLOT.MISSES;

IS RSLOT.TOTAL > RAND15()?

RSLOT++; FAILED++;NEW INSTRUCTION: (PC, VALUE)

ANY SLOT?

MSLOT.ACTIVE_VALUE?

IS MSLOT.HITS < 255?

MSLOT; DONE

> (4 * MSLOT.HITS)?

IS MSLOT.MISSES< 255?

IS FAILED < 2*#SLOTS?
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counter, which is incremented every time a replacement fails and
decremented every time one succeeds. The counter is initialize
zero, and when it hits its threshold, it interrupts the processor.
many cases, this mechanism implicitly detects program pha
changes because the new instruction working set is not represe
in the slot array.

A.5  Thrash Detection and Filtering

Our algorithm counts the number of replacements, and it inte
rupts the processor when it exceeds a threshold. Because repl
ments are infrequent when not thrashing, a low threshold (fo
times the number of slots) allows thrashing to be detected quic
with a minimum number of false positives.

When thrashing is detected, we attempt to estimate the exten
it to decide how finely the program should be partitioned. O
algorithm looks at the number of samples processed (an indica
of how fast thrashing was detected) to decide if the current pa
tion should be sub-divided in 2 or 4 ways. When an interrupt
caused by thrash detection, we do not copy the captured sample
memory because they generally have low information content.

A.6  Estimation Algorithm

Our algorithm assumes that the captured samples are repre
tative of the full program and estimates invariances by first es
mating the number of captured samples that belong to each va
Each value gets samples from three sources: (1) its own h
counter, (2) a portion of the miss counters from other values, a
(3) a fraction of the remaining samples measured by the to
counter. Each value gets all of its associated hit samples. The m
samples for each value are divided between the other values p
portionally according to the number of hit counts those valu
have. Finally, each value gets a share of the counts measured
the total counter that are un-accounted for. These counts
divided equally between values, but no value is given more than
percent of them because these counts are derived from reg
where the active value had an invariance of less than 20 perc
The estimated counts are divided by the total number of samp
recorded to compute each value’s invariance.
IS MSLOT.HITS > 15?

IS MSLOT.TOTAL < 65535?

INTERRUPT

RSLOT.PC= PC; RSLOT.HITS = 1; RSLOT.MISSES= 0;

DROPPED++; IS DROPPED< 4*#SLOTS?
IF (FAILED > 0) {FAILED --;}

MSLOT.ACTIVE_VALUE = VALUE;
MSLOT.HITS=1; MSLOT.MISSES=0;

RSLOT.ACTIVE_VALUE = VALUE; RSLOT.TOTAL = 1;

DONE

TURN OFF MSLOT

YES NO

NO

YES

NO

YES

NO

YES

NO

WAYS

G
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H
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Figure 10. Flowchart of the co-processor value profiling algorithm: Each instruction processed by the co-processor has a PC a
VALUE; MSLOTis the slot with a matching PC, if one exists;RSLOTis the next slot up for replacement;FAILED andDROPPEDare counters
maintained to determine when to interrupt the main processor;RAND15() generates a random number between 0 and 15; final state
(DONE, INTERRUPT) have a darker border
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