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Abstract The ideal profiling system has not yet been developed; every

Aggressive program optimization requires accurate profile scheme has its strengths and limitations. In this paper we present a
information, but such accuracy requires many samples to be profiling architecture that W(_e_feel compares favorably to existing
collected. We explore a novel profiling architecture that reduces Schemes, at the cost of additional hardware. )
the overhead of collecting each sample by including a M_uch_llke the_ Proﬁk_aMe system [18], our profiling archltecture
programmable co-processor that analyzes a stream of profile profiles instructions; since this is performed transparently in hard-
samples generated by a microprocessor. From this stream of Ware, no special application preparation is required. It stores the
samples, the co-processor can detect correlations betweenProfiled instructions as they retire, with their dynamic information,
instructions (e.g., memory dependence profiling) as well as those!n @sample bufferUnlike the proposed ProfileMe implementation,
between different dynamic instances of the same instruction (e.g.,Multiple in-flight instructions can be profiled simultaneously.
value profiling). The profiler's programmable nature allows a  Although the sample buffer could be accessed directly by the
broad range of data to be extracted, post-processed, and Main processor, our architecture !ncludeprggrammable profil-
formatted, as well as provides the flexibility to tailor the profiling Nd CO-processothat serves as an intermediary. This co-processor
application to the program under test. Because the co-processor is€an distill the profiling information into a compact form before
specialized for profiling, it can execute profiling applications more Passing it to the main processor. In this way high-quality profiling
efficiently than a general-purpose processor. The co-processor'”format'on can be gathered quickly while maintaining low over-
should not significantly impact the cost or performance of the n€ad. . . L
main processor because it can be implemented using a small The CO-processor is controlled by downloading programs into it
number of transistors at the chip’s periphery. from the main processor. The co-processor's programmable

We demonstrate the proposed design through a detailed Nature, coupled with the richness of the profile information that
evaluation of load value profiling. Our implementation quickly and €an be collected, enables a broad range of program behaviors to be
accurately estimates the value invariance of loads, with time OPServed with a single piece of hardware. Programmability allows
overhead roughly proportional to the size of the instruction the profiling software to be specialized to the program under
working set of the program. This algorithm demonstrates a OPservation. _ _ .
number of general techniques for profiling, including: estimating ~ Because this co-processor will be used exclusively for profiling,
the completeness of a profile, a means to focus profiling on W€ ¢an tailor its design for efficiency. By implementing common

particular instructions, management of profiling resources. profiling operations (discussed in Section 3.1) as primitives in
hardware, a high performance profiling co-processor can be imple-
1 Introduction mented on small area and power budgets. Moreover, because the

] ) o ~ co-processor is decoupled from the main processor through the
Understanding dynamic program behavior is the key to maxi- sample buffer, it can be located where it will not significantly
mizing performance. Without a means to identify bottlenecks and jmpact the design of the core. The hardware design is discussed in

inefficiencies, it is difficult to effectively optimize a program’s exe-  Section 3.
cution. Program profiling is an important mechanism for observing  After a brief discussion of some profiles that could be collected
dynamic program behavior. by the co-processor (Section 4), we evaluate our profiling architec-
Many program profiling systems have been proposed [1, 2, 6, 7, ture through a case study of load value profiling. We demonstrate
16,17, 18, 24, 25, 30, 36, 40, 41] and there is some consensus as t@n algorithm that, in general, collects more accurate profiles,
the deswgd attnbutes of such a system. These attributes can beaster, and with lower overhead, than a simple sampling value pro-
grouped into four main categories: - ) filer. This algorithm (Section 5) demonstrates a number of tech-
* Usability: Widespread adoption of profiling necessitates that niques that have applicability for profiling beyond value profiling.
the effort required by the user be minimized and that the tech- These techniques enable the algorithm to implicitly identify the
nique be widely applicable. Specifically, special compilation most frequent instructions, profile these instructions until it is con-
requirements should be avoided. _ fident they have been characterized, mask them and then profile
* Low Overhead: Overhead, in both space and time, should be the set of next most frequent instructions. In this way, the profiler
minimized to enable profiling of long running applications  syccessively profiles instructions with the largest potential impact
with realistic data sets. Run-time optimization systems are to those with the least, and the algorithm stops incurring overhead
especially sensitive to overhead. when the profile is complete.
® Accuracy/Precision: Behaviors should be correctly attributed
(to individual instructions when possible), and the profiing 2 Qbservations on Profiling: A Motivation
system should keep result perturbation to a minimum.

* ExpressivenessThe ideal profiling system should be able to ~ Looking forward, we see two trends that we feel will place
measure any behavior. larger demands on the rate at which profiling information will need



to be collected. In this section, we discuss these trends and explai

n
why sampling will not be able to meet these demands without| S é;g a)
increasing overhead. -g 06 increased sampling rate
N
2.1 The Changing Face of Profiling s 04
The program profiling systems proposed to date have concents 0.2
trated on two topics: identifying control flow profiles [16, 32] and 00 L AARARRARAN AARARRARAN AARARAAEES P
the instructions associated with performance degrading events [1, time (10" 6 cycles)
2, 18, 40]. Many techniques that are likely to be employed in the g )
future (including value-based code specialization, speculative muly & ;4 1 ) .
tithreading, pre-execution, software managed caches, etc.) eithewg ] increased sampling ra
require or can exploit additional types of profile information. In | & g 1
order to collect this larger set of profile information, the rate at % ]
which profile information is gathered must be increased. 5 o - _
These techniques for program optimization are still evolving | 3 o} 10 20 30 40
rapidly, and as they are developed they will require new types of time (1076 cycles)
profile information to be collected. With a programmable profile |5 10— ()
engine, this profile information can be collected on existing hard-| 0.8
ware, rather than having to wait for the next hardware design cycleg 0.6
to include the necessary special purpose hardware. = 0.4
In addition, there is a trend toward run-time optimization [6, 27, g o.2—:
33], whereby a program’s execution is optimized as the profile|€ 0.0 ; ;
information is gathered. Run-time optimization requires profile 0 5 10
collection to be quick, to maximize the portion of the program’s overhead (1075 cycles)

execution that is optimized, and low overhead, so as to not signifi-

Figure 1. The relationship between accuracy, overhead, and

cation impact the run time. Many profiling systems leverage
sophisticated analysis to post-process profiles, but in a run-time
optimization environment such post-processing may not be
cost-effective.

2.2 Reducing the Overhead of Collecting Samples
Most profiling systems use sampling to maintain low overheads.
Sampling is a meta-technique that can be applied to other tech-
niques (including instrumentation [24] or interpretation [9]) to processors. Nevertheless, an important aspect of the design of a
reduce overhead by decreasing the rate at which information is profiling co-processor will be minimizing its impact on the main

only be used as a hint and, therefore, does not need to be completgnoulg:

or even necessarily correct. Sampling is effective because statisti-e (Jse a moderate number of transistors.
cally we are likely to collect information about common events, Keep the additional circuits far from the core of the processor.

sampling rate for traditional interrupt-driven sampling (data
shown for load value profiling on gcc, samples every 512, 1024
and 2048 loads): (a) faster sampling rate enables profile to
converge faster, but (b) higher sampling rate translates to
correspondingly higher overhead, leading to (c) the profile
quality being a function of overhead (independent of sampling
rate)

i.e, the ones that provide the most potential for performance
improvement. Furthermore, highly biased behaviors, again the
ones that provide the most potential, can be estimated with a givene
confidence level with fewer samples than less highly biased behav-

Therefore, the design must be able to tolerate communication
latencies from the core.

Avoid loading critical circuit paths in order to minimally
impact processor frequency.

iors [37]. * Not significantly increase power consumption.

_ Because the overhead of interrupt-based sampling is propor- e feel that the design presented in this section abides by these
tional to the data collection rate, higher profiling rates equate to constraints. We estimate that our baseline design can be imple-
larger overheads (as shown in Figure 1). In order to reduce the mented in approximately one-half million transistors; we esti-
overhead of collecting each samplee( the constant of propor-  mated 300,000 transistors for the memory arrays and believe the
tionality), our proposed profiling system delegates much of the ¢ore is simpler than that of the StrongARM [34], which only
profiling computation to a dedicated profiling co-processor. The required 250,000 transistors. This is substantially smaller than a
ples before passing it to the main processor. By specializing the mjjlion transistors) and future processors are expected to be even
co-processor to the task of profiling, we can provide profiling com- |5rger. The transistors that make up the co-processor can be located
putation more cheaply than can the general-purpose host proceszt the core’s periphery.
sor. In the next section, we discuss the design of the profiling  Additional hardware in the core is required to collect and export
CO-processor. the profile information to the co-processor. This hardware is simi-
lar to that required for the ProfileMe proposal [18] except addi-
3 Hardware tional storage is required because multiple in-flight instructions
Our proposed profiling architecture requires hardware support can be profiled. Many types of information could be collected for
beyond that which has been included in current implementations. @ instruction, including the instruction’s PC, register values,
In light of the fact that peak processor performance has been grow-memory address, and any micro-architectural events associated
ing more rapidly than real program performance, we feel that ded- With the instruction €.g.,the instruction caused a branch mispre-
icating hardware resources to features that can close this gap —diction), as well as the instruction itself. The generality of the pro-

including profiling support — will be justifiable in future micro-  filer design is dependent on what information the core makes
available about an instruction. Exporting this information to the



co-processor requires additional dataphtﬁsr the studiesdonea ® Counter manipulation: Counters are used to summarize
128-bit datapath was sufficient, and these signals are latency-toler-  repeated events and for management of profiling resources.
ant, so the interconnect can be pipelined over many cycles. The co-processor’s data memory provides read-modify-write
In this section, we describe the major features of our profiling operations and its ALUs support saturating arithmetic
architecture. We start by describing the requirements for such a  (described in Section 3.3).
co-processor, in Section 3.1. Each of the following sub-sections ® Data dependent control flow:Profiling applications are often
covers a portion of the design: instruction filtering and the sample control intensive, and many of the branches are hard to predict
buffer (Section 3.2), co-processor datapath (Section 3.3), co-pro-  because their outcomes differ from sample to sample. The pro-
cessor control (Section 3.4), and interactions with the main proces-  filing co-processor is capable of executing a branch every cycle

sor (Section 3.5). A high-level block diagram of the profiling (in parallel with other operations), and its short pipeline mini-

architecture is shown in Figure 2. mizes stalls due to branch misprediction (discussed in
g - C Section 3.4).

3.1 Characteristics of Profiling Applications By specializing the co-processor design to the needs of profiling

By analyzing many profiling algorithms we have identified appiications, we can provide computation for profiling inexpen-
some common operations. In order to efficiently execute profiling sjvely.
applications, these operations are provided by the hardware as
primitives. Below is a list of these common operations with a brief 3.2 Instruction Filtering and the Sample Buffer
description of the hardware that implements them: Because the profiling co-processor does not have the resources
* Implicit loop-based structure: A routine is executed for  to profile every retired instruction (nor is profiling every instruc-
every sampled instruction. The co-processor provides a specialtion required for useful profiling information) the main processor
branch target that fetches the next instruction to sample and only needs to collect profile information at the rate that the co-pro-
jumps to the routine for processing that type of instruction cessor consumes it. A configurable hardware filter, which is
(described in Section 3.4). accessed at decode time, allows instructions to be tagged for profil-
® Opcode filtering: Only certain classes of instructions are con- ing in a controllable way. By pro-actively filtering, rather than tag-
sidered €.g, only branch instructions are considered for con- ging instructions randomly, we can focus on a subset of
trol flow profiling). In the decode stage of the main processor, instructions; this increases the locality in the sample stream,
there is a configurable hardware filter that can filter instruc- enabling better utilization of the co-processor’'s memory resources.

tions by opcode (described in Section 3.2). The filter considers two of the instruction’s characteristics: its
®* Field extraction: Processing instructions usually requires opcode class and its program counter (PC). Opcode filtering is pro-
extracting one or more fields from the instructi@ng, branch vided because most profiling applications only monitor a subset of

target PC, or register identifiers). The co-processor includes ainstructions {.e., loads or branches). Two PC-based filters provide
hardware instruction decoder/field extractor that provides the ability to consider only a fraction of the program at a time, as
bit-fields without the need to shift and mask the instruction bits well as to exclude particular instructions from consideration.
in software (described in Section 3.4). These filters are shown in Figure 2, and their uses are described in
® Lookups/matching: The current sample has to be paired with Section 5.1.3 and Section 5.1.4, respectively.
previous related samples. The co-processor has an associative These three filters are used in conjunction to determine whether
array that provides match operations to the software (describedan instruction should be profiled. These filters must be able to sup-
in Section 3.3). port the decode width of the processor. The small opcode filter and
the first PC-based filter can easily be replicated. Replicating the
1. The information on these wires is largely a subset of what is required larger PC filter would be too costly, but it can be constructed to
Lrggl‘ t,?iﬁqorﬁ, b;’ zu?:'r}”;'csmgk‘;href#:rlﬁrcgétte(;“t‘gzs[‘é]v\'lfrtehseé’ggcfeszzr]orepr0|t the fact that blocks of instructions have consecutive PC's,
tlzedgover EO% features. P much in the same way that instruction caches are built to fetch
multiple instructions.
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Figure 2. Block diagram of profiling co-processor hardware, showing major arrays with size estimates for a baseline design.




In order to minimize the number of ports on each structure and

a) Hash Mask reduce register specifier size, the register file is partitioned into five
PC— | | — | 00011| - _Compare separate special-purpose register filedue index constantbase
addressandbranch target The size, number, and port configura-
Match - | —TIF tion of these register files is shown in Table 1. Value registers are
00010 wide enough hold data from retired host instructiomg{ register
values, addresses, and PCs). The narrower index registers hold off-
b) Hash Table (4Kb) sets into memory arrays or counters for monitoring the profiler's
PC_y I:I index . A status. To facilitate implementing circular buffers and saturating
T HH :H::H counters of different sizes, the width of index registers is config-
T 1 — T/F urable at program load time.
n _# The other three types of registers — constant, base address and
] branch target — are read-only to the co-processor; they are config-

ured when the program is loaded. Because few constants are used,
they are stored in a constant register file instead of requiring imme-
diates in instructions. Base address registers are used to subdivide
the co-processor's memory into sub-arrays. Only aligned,
power-of-two size sub-arrays are supported to allow addresses to
be generated without arithmetic. Branch target registers are dis-
cussed in Section 3.4.

The main ALU in the co-processor has limited functionality
compared to that of a traditional processor. Because multiplication
and division are seldom used in profiling, they are not supported,
and only limited shifts are available. The ALU does provide a
dent on the underlying micro-architecture. For our simulation mechanism for generating pseudo-random numbers, through the
micro-architecture, the process is similar to that of ProfileMe [18]. use of a linear feedback shift register (LFSR) [21], for use in

The sample buffer serves to decouple the retiring of tagged resource management decisions; this helps to avoid pathological
instructions by the main processor from their processing by the behaviors caused by repetition in the program. In addition to the
co-processor. The sample buffer helps tolerate burstiness of retire-main ALU, an incrementer is provided specifically for manipulat-
ment without letting the co-processor go idle. To conserve space ining index register values. Because information can become dis-
the sample buffer and to conserve bandwidth between the maintorted if counters roll over, the ALUs support saturating arithmetic.
processor and the co-processor, the profiling hardware is pro-The ALUs also provide control conditions, through comparisons
grammed to collect only those fields that will be used by the cur- and based on whether their results are saturated, for use as branch
rent profiling application. In our experiments, we have found a predicates. The control of the co-processor is described in the next
1kB sample buffer and a 128-bit datapath (between the processorsection

and co pro_c_essor) to be sufficient. 3.4 Profiling Co-processor Control

3.3 Profiling Co-processor Datapath The co-processor executes a short routine for each instruction in
Like most processors, the profiling co-processor is made up of the sample buffer, in the order that the instructions were retired. As

memories, register files, and arithmetic/logic units (ALUs). Each each instruction comes to the head of the sample buffer, it is copied

of these structures has been tailored to support profiling applica-

tions with a minimum of resources.

Figure 3. Two PC-based filters: a) a hashed version of the PC
is masked by a variable-width mask and compared to a
programmable valueMatch); in this way the program can be
sub-divided into regions to be profiled independently (where
n is the number of ones in the mask register), and b) a hashed
version of the PC indexes into a table of bits which can be set
independently, enabling individual instructions to ignored
during profiling. In both cases multiple hash functions are
provided to reduce conflict problems.

The actual collection of the profile information is highly depen-

Three memory arrays are included: a microcode array for ]
co-processor program storage, an associative array for efficient ) Transistor
matching, and a data array for general purpose data storage. These| Structure Size Ports Count
memories, unlike those in the main processor, are not caches | pc Filter bit-mask 4Kb 1 25K
backed up by main memory. Such a design avoids the size and
complexity associated with cache tags, miss logic, and coherency | Sample Buffer 1kB IW/R | 65k
logic, and it enables efficient static code scheduling because all | Microcode Array 64 x 48b 1 18k
operations have a known, fixed latency. Because profiling informa- Associative Array 1KB 1 7K
tion need not be complete, or even correct, data can be dropped
and algorithms can be simplified to fit these constrained resources. | Data Array 2kB 1 98k
Communication to main memory (discussed in Section 3.5) is per- | yqye Registers 4 x 64b riwl 3k
formed through the main processor via tiest access bushown -
in Figure 2). Index Registers 8 x 16b 1R/1W| 2k

The associative array is implemented as a content-addressable | Constant Registers 4 x 64b 1 2k
memory (CAM), and it prowdes. inexpensive hash table-like funp- Base Address Register: 8% 16b 1 1K
tionality for lookups and matching. Each entry of the associative
array has a valid bit that is set when the entry is written and can be | Jump Target Registers 4 x 6b 1 <1k
cleared through an invalidate operation. The data memory has spe- [ pecoder/Field Extracto] 21 x 6b 1 1K
cial support for read-modify-write operations, like incrementing -
counters. All three memories are single-ported, and we have found | Total Transistor Count 289k

that having twice as much data memory as associative memory is a Table 1. Estimated sizes and number of ports for major struc-

good compromise between cost and functionality.

tures in baseline co-processor design.




to the decoder/field extractor (DFE). The DFE provides access to When it has filled its arrays with useful profiling information or
the information associated with the current retired instruction requires guidance from the profiling application, it interrupts the
(including efficient field extraction) and supplies the starting PC to main processor.

be used for processing this instruction. Typically, when instruc-  The overhead observed during profiling is roughly the product
tions from different opcode classes are profiled by a single profil- of: (1) the number of interrupts, (2) the number of samples that are
ing application, they are treated differently. To avoid a recorded per interrupt, and (3) the average time required to record
performance-degrading, multi-way branch in software, the DFE a sample. To minimize the total overhead, we attempt to minimize
contains a table that associates each opcode class with a startingll three, while maximizing the quality of information extracted
co-processor PC. (which is often a function of the number of samples recorded). The

There is a significant amount of parallelism in profiling applica- first component (the number of interrupts) is minimized through
tions, but it needs to be exploited in a cost-effective manner. Our the design of the profiling algorithm that strives to interrupt only
co-processor executes a single instruction per cycle, but this when the slots have a high information content that complements
instruction encodes multiple operations. The co-processor’s or enhances the information already collected (discussed in
instruction set is much like microcode, in that each instruction is Section 5.1). The second component (samples per interrupt) can be
only a simple encoding of the co-processor’s control signals. This slightly reduced by having the co-processor post-process the infor-
allows a large fraction of the resources to be used each cycle andmation collected to remove samples that have low information
reduces instruction decode time. A short decode time is necessarycontent. The overhead per sample (the third component) is reduced
to maintain a high clock rate for our short in-order pipeline. A by hand-assembling the interrupt handler to minimize instruction
two-stage (fetch/decode, execute) pipeline is used to minimize thecount and maximize instruction-level parallelism and organizing
microcode branch misprediction penalty. data structures to minimize the number of cache misses, as is

Because profiling applications are extremely control intensive, described in [2]. In addition, since we are processing multiple sam-
every microcode instruction includes a branch slot. Often 50 to 75 ples per interrupt, modulo scheduling can be used to overlap the
percent of the branch slots are used. To predict the direction of cache misses associated with the hash table lookup. Using these
these branches, each instruction has a 2-bit branch predictor. Mostechniques, we have written interrupt handlers that require as little
branches in profiling applications are short, so only a small set of as 10-30 cycles to process each sample, depending on the com-
short forward and backward immediate offsets are included in the plexity of the handler.
instruction set. For the rare cases when these are insufficient, the . .
architecture includebranch targetregisters that enable jumps to 4 Example Applications
any location.

In addition, two special branch targets are includéohe and
interrupt . A routine branches to the targgbne when it has fin-
ished processing a host instruction; this increments the head
pointer in the sample buffer and jumps to the routine associated
with the new head instruction’s type. When the co-processor
branches to thinterrupt target, execution is halted and the main Edge Profiling. A two-pass profiler could be built that first pro-
processor is interrupted. files direct branches counting how many times the branch was
35 | . ith the Main P taken and not-taken, then profiles indirect branches to identify

-5 Interactions with the Main Processor their targets and count their frequencies. In addition, by observing

Although providing the co-processor a direct path to memory a pair of branch samples in close proximity we can potentially
would make it more pOWerfUl, we fear that it could |mpaCt the cir- |dent|fy correlations between branch outcomes.

cuit speed of the main processor's memory access path. Instead, to o . .

read and write main memory, the profiling co-processor leverages Call Stack Monitoring. Call and return instructions could be pro-
the existing memory system hardware in the main processor. Usingfiled to maintain the current call stack, enabling evergs.(
loads and stores to special address ranges, the main processor caifanch mispredictions) to be correlated to calling contexts.

read and write the co-processor’s state. In this way, the main pro- Memory Dependence ProfilingBy storing the PCs and memory
cessor can copy programs and initial state into the co-processoraddresses of recent stores and comparing them to the memory

and copy profile data from the co-processor into main memory.  addresses of loads, dependences between stores and loads can be
The baseline co-processor, not counting the sample buffer, hasjgentified.

about 4kB of state. To completely transfer this state requires about ) - )

500 64-bit memory operations, but a full transfer is seldom Cache Conflict Profiling.By storing the memory addresses of

required. Special operations are provided to invalidate the associa-cache missing loads we can identify when a block has been

tive array and clear the data array, because these are the desire@rought into the cache multiple times in a short duration, likely

initial states for many profiling applications. Because those arrays indicating a conflict. From this address we can compute its set and

dominate the co-processor’s state, the number of stores necessarifientify the instructions that have been accessing this set.

to program the co-processor is drastically reduced. If the program . -

is already loadeds(g, when the co-processor continues collecting © Case Study: Value Profiling

the same type of information after an interrupt), the co-processor  The predictability and invariance of data values has been

can typically be re-initialized in less than 10 stores. When reading actively studied recently. For mechanisms that exploit this program

profile state from the co-processor, it is only necessary to read datapehavior ¢.g, value prediction [12, 29, 35, 38] and dynamic spe-

that could have changed.(, it is not necessary to read the micro-  cjalization [3, 15, 19]), the identification of candidate invariant val-

code array), but it is not uncommon to read most of the associative yes is either a strict requirement or an enhancement. Because

and data arrays (about 3kB). _ requiring the programmer to identify these values is tedious and
Once the co-processor has been programmed, it performs theerror prone, value profiling [9, 10, 11, 20] has been proposed to

proflllng autonomously until it desires external communication. automatica”y characterize value invariance (the frequency at

In addition to the case study that follows, we briefly discuss
some applications which could be implemented with the profiling
co-processor. These profiles are not new, but can potentially be
implemented in a low-overhead manner without specialized hard-
ware.



which the value is seen) as well as to identify the most common In the section that follows, we present some of the important

values. components of the algorithm including: maximizing the benefit of
Early implementations of value profiling using instrumentation the limited co-processor resources (Section 5.1.1), thrash detection
or simulation are not feasible for large programs (Calégral. (Section 5.1.3), and how invariances are estimated (Section 5.1.5).

reports an average slowdown of a factor of 10). More recently, a Additional detail can be found in Appendix A.
sampling implementation of value profiling [9] has been demon-
strated with only 10% slow down, by sampling every 32,000 5-1-_1 Slots o ] )
instructiong. Because their implementation interprets the program ~ Given that we have a limited set of resources with which to
to collect the values, the cost of collecting each sample is high monitor the program, much of the algorithm is designed to maxi-
(hundreds to thousands of cycles per sample). mize the utilization of those resources. In order to simultaneously
Our prof”mg CO-processor can be used to emulate ghiqﬂe tré.le the maximum number of static Ioad instructions, We. mini-
samplingalgorithm and achieve comparable results at lower over- Mize the storage allocated to each static load, by only tracking one
heads. Because values are captured in hardware, interpretation i¥alue per load at a time. ) -
not required, and multiple samples can be buffered allowing the ~Each load that is being monitored by the profiling co-processor
cost of the interrupt to be amortized over many samples. Our simu-is allocated a portion of the co-processor’s storage resources,
lation results show an equiva|ent Samp"ng frequency can be Wth_h we Ca” aslot The manner that this storage is allocated is
achieved with only a 0.3 percent overhead. With such a low over- configured in software, and hence part of the co-processor’s pro-
head, many behaviors could be profiled simultaneously without grammability. A slot (shown in Figure 4) consists of storage for
significantly impacting performance. the PC, an active value, two 1-byte counters (hit and miss), and a
To demonstrate the benefit of the other features of our hardware2-byte counter (total). Although we performed our experiments in
profiler, we examine performing value profiling to support the 64-bit Alpha architecture, we found that the upper half of a
dynamic Optimization, a more Cha”enging prof|||ng scenario. In Wor_d .Often had Velfy ||tt|e information content; 32 bits was USUa”y
this context, we have the additional requirement that the profile be sufficient to discriminate between PCs (where we select bits
collected at a high rate, to maximize the portion of the execution [34:2]) and values (where the low 32 bits are stored).
that can be optimized. Although this can be acheived by greatly ~ Unlike previous value profiling techniques, each slot only keeps
increasing the sampling rate, the limits on overhead are more strictone active value at any time (although more than one value is asso-
because performance lost to profiling reduces the benefit achievedtiated with a static instruction in the data structure in main mem-
by dynamic optimization. This challenging scenario motivated the Ory). We can accurately estimate the invariance of the active value
profiling co-processor approach. by keeping track of the number of times we see a matching value
Our algorithm improves over existing algorithms in two (hits) and dividing by the total number of values seen (hits +
respects: (a) by providing mechanisms and policies for targeting misses). We simply must select the top (most invariant) values to
the profile to particular instructions, and (b) by summarizing mul- be the active values. o
tiple related samples in the co-processor, fewer updates to the Although identifying the top value cannot be doaepriori,
in-memory profile result tables are required. In the next sub-sec- When we select a random sample for the active value, we are statis-
tion (5.1) we describe our algorithm. Our experimental methodol- tically most likely to select the top value. A similar observation
ogy is described in Section 5.2. Quantitative results on profiling Was made by Balat al. [6] with regards to path profiles. Since we
accuracy and overhead, Comparing it to the Simp|e Samp"ng are not assured to get the rlght Vaer, we need to perlodlcally

approach, are provided in Section 5.3. re-select if the active value’s invariance is low.
5.1 The Algorithm 5.1.2 Informational Replacement

At a high level, our algorithm performs the following steps: When an instruction that is not currently allocated to a slot is
1. Find the N most frequently executed, unmasked instructions ~&ncountered, we have to decide whether or not to replace one of
2. Collect and summarize profile information on those instruc- the current slots. The cost of replacing a slot is the loss of any

tions information that has been gleaned about the associated instruction.

3. Interrupt the processor Therefore, the amount of information stored in the slot should be
a. Copy this information to a data-structure in memory considered when making the replacement decision. We use the
5. If an instruction has been sufficiently characterized, mask it ~number of samples observede(, a total counter that is incre-
6. Repeat, until all instructions have been masked mented every time a sample is observed) as an estimate of the

information content of a slot. In this way, infrequently executed

There are a number of nice things about this structure. First, it instructions are likely to be replaced by frequently executed
profiles instructions in the order of their importance, from most instructions.

frequently executed to least frequently executed. In Section 5.1.2,

we discuss a replacement policy that statistically retains the mos -

frequently executed instructions without prior knowledge. Second, ' 32 bits i

by predicting when we have sufficiently profiled an instruction - .

(which is discussed in Section 5.1.4), we can stop profiling that pC [34:2] } Associative Array
instruction and focus our profiling resources on the remaining VALUE [31:0]

instructions. In this way we can profile even infrequently executed TOTAL ait | viss } Data Array
instructions, which may be difficult with a traditional sampling - - -

scheme. Finally, when no unmasked instructions are found, the «—16 bits—| 8 bits| 8 bits

profile is declared complete and the co-processor can be used to

profile other behaviors Figure 4. For each static load that it is profiling, the

co-processor maintains a data structure (slot) that contains the

instruction’s PC, an active value, and some statistics about the

2. To be exact, their proposal samples 4 instructions, on every other inter- instruction’s past behavior. The PC is stored in the associative
rupt, at an interrupt frequency of about every 64,000 instructions. array for fast matching.




5.1.3 Thrash Detection and Filtering values loaded by an instruction, this computed invariance often
The algorithm that has been described so far is sufficient when over-estimates the value’s invariance for the whole program. To
the working set of unfiltered loads fits in the slot array. But if there g€t a more accurate estimate, we also consider the counts recorded
isa Working set of unfiltered loads whose frequencies are rough|y when other values were active as well as the total number of sam-

equal and that is much larger than the slot array, the algorithm Ples observed.
thrashes, cor)stantly replacing entrit_es before they have a chance tg o Methodology
observe multiple samples. When this happens, the co-processor is
throwing away information at the same rate as it is collecting it.
Thrashing can be quickly and easily detected by monitoring the
number of times that we have performed slot replacements. When
thrashing is occurring, the number of replacements will be a large
fraction of the samples observed. To avoid thrashing, we use a
divide-and-conquer technique, using the first PC-based filter to
partition the program. Each subset is profiled in turn, and this par-
titioning artificially increases the locality in the sample stream.

In order to evaluate the capabilities of our proposed profiling
architecture, we built a cycle-accurate simulator of the co-proces-
sor. The profiling algorithm described in this section was imple-
mented in the co-processor's microcode and executed by the
simulated co-processor. This co-processor model is included in a
timing simulator derived from the Alpha version of SimpleScalar
[8] that simulates the main processor. In addition to the benchmark
program, the main processor executes the profiling system code
(including the interrupt handler) that is responsible for configuring
5.1.4 Confidence Estimation the co-processor and storing the co-processor’s results into mem-

Once enough samples have been collected to estimate the invariOry. A timing simulation is required to determine which instruction
ance of an instruction within the necessary accuracy, collecting samples are dropped because the sample buffer is full and to esti-
additional samples for this instruction does not provide any bene- mate the profiling overhead. _ _
fit. The difficulty in such an approach is determining when enough ~ The simulated main processor is a 4-way superscalar, dynami-
samples have been collected. For a truly random process, given &ally-scheduled processor, roughly modelled after the Alpha
set of samples and a desired accuracy, statistical methods can b@1264 [26]. The processor has 64kB L1 caches, a shared 1MB L2
used to compute a confidence that the set of samples represents théache (10 cycle access), and an 80 cycle main memory access. We
process to the desired accuracy [37], but program behaviors are nosimulated 3 co-processor configurations to observe the co-proces-
random processes. sor’s sensitivity to the sizes of the associative and data memories;

Calder.et al. [10] investigated a scheme, callednvergent pro- these memories are a substantial portion of the co-processor’s cost.
filing, that compares a recent set of samples for an instruction to its The baseline configuration has a 1kB associative memory and a
profile as a whole to determine if the profile had converged. Upon 2kB data memory. In addition, we simulated co-processors with
converging collecting samples was discontinued. Once the rest ofhalf (.5kB/1kB) and twice (2kB/4kB) the memory resources. We
the algorithm has been streamlined, such a comparison cansimulate the co-processor executing at the same frequency as the
become expensive’ and we have found it to be unnecessary. main processor, but explore its sensitivity to this in Section 5.3.

We found that many confidence decisions can be made with Our benchmarks are from the SPEC2000 integer benchmark
much less information. Statistical confidence increases with mea- suite. We used modified reference inputs that attempt to maintain
sured bias of the sample. Thus it is easy to be confident of highly the reference data set size while reducing execution duration; the
invariant and highly variant instructions. Hence, when we are stor- modified inputs ran between 9 and 44 billion instructions. A 100
ing data into memory (in the interrupt handler) we test if the invari- Million instruction region, selected from a dominant execution
ance is above a high threshold or below a low one, and if so we phase of each program, was used for simulation. Typically, the
mask off the instruction, using the second, larger PC-based filter. Profiler characterizes a program in a much shorter interval.
Otherwise the instruction should be profiled multiple times to _In this set of experiments, we only concern ourselves with iden-
attempt to characterize all of the dominant values; we allow the tifying load values that account for at least 200 dynamic instances
instruction to be sampled 4 times before masking it. of a particular load and have invariances of at least 25%. In gen-

Because of phase behavior, it is necessary to periodica”y e.ral, such loads al'e unllkely to benefit from ValU.e'baS.ed Optlm_lza-
re-sample to ensure that all important behaviors are observed. Ouitions, and are difficult to accurately characterize with anything
time-based re-sampling could be improved by including an other than a complete profile. When a.smgle static instruction ha;
explicit phase detector. A special case of phase behavior is whatmultiple values that exceed these requirements, we attempt to esti-
has been referred to as glacial values [5]. Some benchmeugs (  Mate the invariance of all such values.
gap and vpr) have loads that will load a single value for a long 5.3 Results
interval (thousands of instances) and then change to repeatedly™ " ) .
loading a different value. Because we may not sample the phases OF €ach run we collect a complete profile, and compare it to our
equally, our profiler can have trouble determining what fraction of €Stimated profile. Figure 5 shows estimated invariance of values
the execution is associated with each value. We can, however, easYersus _the true_ invariance f(gcc_, th_e program with the largest
ily diagnose that this behavior is occurring (multiple profiled val- instruction working set. Each point in the scatter plot represents a

ues with many good counts and zero or few bad counts) which is SINdl€ <static instruction, value> pair; the shape of the point
likely to be more important than knowing the exact contributions. roughly indicates the frequency of the value (x's for values loaded

Performing this diagnosis could be difficult for a traditional sam- €SS than one-thousand times, triangles for between one-thousand
pling profiler. and ten-thousand, and squares for values loaded more than

ten-thousand times). Ideal results would have all points on the
5.1.5 Invariance Estimation Algorithm dashed line; the pair of dotted lines are to aid visualization and rep-
To estimate a value’s invariance, we need to reconstruct the data'esem a 5 percent over- and under-estimate. The points along the
we did not collect from the data we did collect. Each static instruc- X-axis are values which were not sampled and are largely due to
tion is post-processed in isolation by the main processor. For eachinfrequently executed instructions. In general, the estimates are
value that accumulated hit counts, we can compute its invarianceVery accurate; most estimates are within 5 percent. In fact the
— hits / (hits + misses) — for the regions it was selected as the results are even better than they appear because points near the
active value by the profiler. Because of clustering in the stream of diagonal often obscure other points at the same location. In general



we more accurately predict values with high invariances and the hence, its overhead is largely a function of the size of the pro-
outliers tend to be the infrequently executed values. gram’s instruction working set. Percentage slowdowns, although

Quantitative Results.To obtain a quantitative estimate of the ggfptr';iergsojrt a%%?ﬂhnrﬁfugrm?getg rfgéﬁzigtcghnﬁp3¥§rt';1?3v§;|tg§.
quality of the profiles, we compute the root-mean-square error rithms '
(weighted l:l)y th?} value’s_ freqﬁenﬁy) of the _estilmations._We ?cor;:- The.measured overheads, shown in Figure 6(b), include all ini-
e o s bacen ot 20 " talzation an h processn requre (o st e it bis ut o
we have increased its sampling rate to once every 1024 loads té)t.he fmal_ estimation algorl_thm (desc_nbed in Section 5'1'5.’)' This
enable faster profile collection. final estimation overhead is linear with the number of static loads
Figure 6(a) compares the profile quality generated by the two proflled. For both mechanisms all overheads are Ies; than. 2%, and
algorithms, demonstrating that there is a lot of variation in accu- $h?s!l igeﬁz(?s'efh%fgihfﬁg g;_thriccggspgfﬁﬁts;% atlignorlttﬂtran 'folog?r:'
racy. The accuracy of the simple sampling approach is largely fewer timegs a);]d therefore mgking fewer upda’?es ?o theFi)n-r%em-
inversely proportional to the size of the instruction working set; ' !

gcc and perl have the largest number of loads in the simulated ory data structure. The overhead of each update is higher for the

region. The co-processor implementation has better accuracies foro0-Processor algorithm (because typically multiple counters have

most of the benchmark&ap is worse because our algorithm has xa%?e)u%d?tggcgnget?ﬁednecrﬁt;%? glfs to d\évtgesth:rséommiﬁkmmlésrt ttk)li
inaccurately characterized some of the glacial values mentioned inoverhéaduis IoweLrj u up ! u wer,
Section 5.1.4Bzip2 and parser have lower accuracy because the )
algorithm was satisfied with the accuracy and discontinued profil- Convergence RatePotentially more important for a dynamic
ing; for these benchmarks the overhead is substantially lower for optimization scenario is the rate at which the profiles converge.
the co-processor algorithm. Figure 7 shows the relationships between accuracy, overhead and
Crafty is a special case; its accuracy suffers in both algorithms time for both the co-processor algorithm and simple sampler on
because it has many 64b bit-flags (for tracking the state of a chessgcc It can be seen that the co-processor’s profile converges much
board) whose values are aliased together because we only store themore quickly. It interrupts frequently in the beginning because it
bottom 32 bits of the value. We are currently working on an exten- can quickly characterize the frequent instructions. This leads to
sion to our algorithm to detect this condition, by taking a second higher overhead initially, but as it shifts to profiling the less fre-
pass over invariant instructions to capture 64-bit values. quent instructions, the interrupt frequency drops, leading to a
Overhead.The overhead of profiling, as discussed in Section 3.5, 2:;;%??;: Sé?é?ii%‘ulrtaian(lgsv;eir: rcl)r;)l:flcg);ru;enk TC::] tg\?e(r:r?g;:jq-
comes from transferring state to and from the co-processor and thethis is true for all of the benychmarks Y9 '
associated cache pollution. It is difficult to compare the overhead )
of the two algorithms; the simple-sampling approach has a fixed
overhead per unit time, whereas the co-processor algorithm will 6 =
cease execution when it is satisfied with the profile collected, and,
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the benchmark gcc with the baseline array size (256 slots).
Because of the sheer number of such points, we chose notto  Figure 6. Results for all benchmarks: (a) weighted

plot points with estimated and actual invariance below 25 root-mean-square error in invariance estimation, (b) overhead.
percent; this causes the empty box in the lower left. In both cases, smaller numbers are better.




Gcceandperl, the largest benchmarks and, hence, the most likely
to represent real workloads, best demonstrate the capabilities of
our co-processor algorithm. Both see a substantial increase in
accuracy (almost 4 and 8 times, respectively) with a significant
reduction in overhead (30% and 45% less, respectively).

Sensitivity Analysis.To explore the sensitivity of our profiler on
the co-processor’s design, we ran the same experiments with twd
other configurations: one with twice the storage resources and on¢
with half as much. The major differentiation between the configu-
rations is that the rate at which the profiles can be captured ig
almost linearly related to array size (shown fgocin Figure 8).

The accuracies and overheads, on the other hand, are less dramatti

cally affected (shown in Figure 9). In general, the accuracies are
better with more resources, but the relationship is sub-linear. In
some cases, smaller arrays provide better profiles. This is due t
second-order effects including when interrupts are performed an
the interaction between filtering and the rate at which samples ca
be processed. More interestingly, smaller arrays tend to hav
slightly lower overhead because the increase in interrupt frequenc
is less than the corresponding decrease in samples per interrupt.

The frequency at which the co-processor executes does no
appear to have a substantial impact on its results. Comparin
results between co-processors clocked at 1, 1/2, 1/4 and 1/8 th
main processor’s frequency, we found that all were able to achiev
comparable profile accuracies eventually, and achieve those accu-

T normalized error

normalized error

time (1076 cycles)

overhead (10"5 cycles)

racies with roughly equivalent overheads. The rate at which the
profiles were collected was somewhat affected for the 1/4 and 1/8
cases in the largest benchmarksgy(, gc¢ perl), but it appears to

be largely due to poor decisions by the profile software on when to
perform interrupts. We expect that further tuning of the algorithm

Figure 8. The rate at which a profile can be collected is
sensitive to the storage resources in the co-processor (a),
although the overhead for collecting a profile of a given
accuracy is not (c). Data shown for gcc.

could mitigate much of this penalty.
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for co-processor and simple algorithms. The co-processor
algorithm converges faster (a) by taking much of its overhead
early (b) and by having better accuracy for a given amount of
overhead. Data shown for gcc.

Figure 9. Profiling accuracy (a) and overhead (b) have only
moderate sensitivity on amount of storage resources available
to the co-processor.



6 Related Work passing it to the main processor, thereby reducing the overhead of
" . ) ) collecting each data sample. This post-processing can be per-
. Our proposed profiling architecture builds upon previous work  formed efficiently because the co-processor implements common
in instruction-based sampling [18, 39]. In these schemes, an yqfiling operations in hardware as primitives. The co-processor
instruction is selected for profiling at fetch time and, as the instruc- gpgy1d only modestly impact the design of the main processor
tion proceeds down the pipeline, each stage captures informationpecayse we estimate that it can be implemented in less than a half
about it. In addition to micro-architectural events, our system pjjlion transistors, the majority of which can be far away from the
assumes that the architectural state associated with the instruction,5in processor’s core.
(e.g, register values) is captured also, as is proposed in [14]. " Because the co-processor is programmable, it is capable of col-
Unlike these approaches that interrupt the processor after everyjecting a wide range of profile data. As a demonstration we imple-
sample, our scheme can buffer multiple samples as well as con-mented load value profiling. This application can be demanding

dense the profile data into a reduced form. In addition, we include pecayse it has a large state space of values in which to detect pat-
afilter that constrains which instructions are selected for sampling. terns. Our profiling algorithm monitors its own results and termi-

_ Other previous work has proposed mechanisms to coalesce proyates profiling an instruction when it is confident that it can

file information from multiple samples for specific types of profil-  estimate its invariance. In this way, the algorithm successively pro-
ing, typically control flow profiling. Conteet al. proposed the fjjes instructions from most frequent to least frequent, and termi-
profile buffer[16], which tracks retired branch outcomes by incre-  pates when it is satisfied it has a good enough profile. We believe
menting counters based on branch address. Mettahpropose a 4t the structure of this profiling algorithm and the techniques to

slightly more complicated structure, tlh@t spot detecterwhich implement it are applicable to other types of profiling.
uses retired branch outcomes to identify program hot spots and

captures branch biases [32]. In [33], they extend the hot spot detec-g Acknowledgements

tor to enable autonomous re-layout of frequently executed pro- ) ] ) )
gram regions_ In these SchemeS, the merging a|gorithm is The authors would like to thank Amir Roth, Milo Martin, Ras

implemented in hard-wired logic, while our proposed profiling Bodik, and the anonymous reviewers for their comments on earlier
approach trades off efficiency for flexibility by using a program- drafts of this paper. This work was supported in part by National
mable Co-processor to perform the reduction. Science Foundation gl’ants MlP‘9505853, CCR-9900584 and

Recently, Chowet al. described amstruction path co-processor ~ EIA-0071924, donations from Intel and Sun Microsystems, and
(|_COP) [13] another programmab|e co-processor that observesthe UanerSIty of Wisconsin G!’aduate School. Cl’alg _ZIIIeS Wa.S
the retirement stream. They describe how their array of processorssupported by an Intel Foundation Graduate Fellowship and Wis-
can be used for trace construction and optimization for trace consin Distinguished Graduate Fellowships during the academic

caches, and estimate that the I-COP is roughly the size of 256KB Years 1999 and 2000, respectively.

of fast SRAM. Because the profiling co-processor exclusively per-
forms profiling, the hardware can be tailored to provide high pro-
filing rates with resources more than an order of magnitude
smaller. In addition, because a richer set of information is provided [q)
with the retirement stream, the profiling co-processor can collect a
broader range of profiles.

Concurrently with this work, Heil and Smith proposed th&a-
tional profiling architecture(RPA) [23]. This architecture shares
much in common with the profiling co-processor approach, but is 3
designed to exploit characteristics of their underlying co-designed
virtual machine model. For example, instructions include an extra
bit field that can be set to control whether or not instructions
should be profiled (serving the same purpose as our PC filter bit 4]
array). Rather than post-processing samples in a dedicated co-pro-
cessor, the RPA sends messagesetwice threadswhich execute
on small, general-purpose, peripheral processors. In addition, they 5]
demonstrate that the datapath for communicating profile informa-
tion out of the core should be feasible, and propose the concept of
assured sampling, where every instance of a set of instructions is 6]
monitored, enabling the RPA to be used to ensure correctness in
the presence of speculative optimizations.

Programmable co-processors have been previously proposed to[7]
manage other sub-tasks on the processor’s behalf. Kuetkal
proposed using a programmable co-processor, MAGIC, to imple-
ment cache coherence [28], and they demonstrated its use for 8]
coherence performance monitoring [31]. More recently, Hallnor
and Reinhardt proposed a software-managed cache that uses a
co-processor to implement the replacement policy [22]. 9]

(2]

7 Conclusion

We propose a new profiling architecture based around a profil- [10]
ing co-processor that performs local post-processing on the profil-
ing data. This post-processing condenses sample data before

9 References

Intel Corporation. Vtune: a visual tuning environment. ht-
tp://support.intel.com/support/performancetools/vtune/.

J. Anderson, et al. Continuous Profiling: Where have all the
cycles gone? IfProc. 16th Symposium on Operating System
Principles Oct. 1997.

J. Auslander, M. Philipose, C.Chambers, S.Eggers, and
B. Bershad. Fast, effective dynamic compilation. Rroc.
SIGPLAN'96 Conference on Programming Language De-
signh and Implementatiopages 149-159, May. 1996.

T. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. IRroc. 32nd International Sym-
posium on Microarchitecturgpages 196—207, Nov. 1999.

T. Autrey and M. Wolfe. Initial results for glacial variable
analysis. InProc. 9th International Workshop on Languages
and Compilers for Parallel Computingugust 1996.

V. Bala, E. Duesterwald, and S. Banerjia. Transparent Dy-
namic Optimization. Technical Report HPL-1999-77,
Hewlett Packard Labs, June 1999.

T. Ball and J. Larus. Efficient Path Profiling. Rroc. 29th
International Symposium on Microarchitectyrepages
46-57, Dec. 1996.

D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical Report CS-TR-97-1342, University of
Wisconsin-Madison, Jun. 1997.

M. Burrows, et al. Efficient and Flexible Value Sampling. In
Proc. 9th Conference on Architectural Support for Program-
ming Languages and Operating Systehsv. 2000.

B. Calder, P. Feller, and A. Eustace. Value Profiling. In
Proc. 30th International Symposium on Microarchitecture
pages 259-269, Dec. 1997.



[11] B. Calder, P. Feller, and A. Eustace. Value Profiling and Op- and Operating Systemgages 138—-147, Oct. 1996.

timization. Journal of Instruction Level ParallelispMarch [30] M. Martonosi, D. Clark, and M. Mesarina. The SHRIMP
1999. Hardware Performance Monitor: Design and Applications. In

[12] B. Calder, G. Reinman, and D. Tullsen. Selective Value Pre- Proc. 1996 SIGMETRICS Symposium on Parallel and Dis-
diction. InProc. 26th International Symposium on Computer tributed Tools May 1996.

Architecture pages 64—74, Jun. 1999. [31] M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Perfor-

[13] Y. Chou, P. Pillai, H. Schmit, and J. Shen. PipeRench Imple- mance Monitoring and Communication in Parallel Comput-
mentation of the Instruction Path CoprocessoPtac. 33rd ers. In Proc. 1996 SIGMETRICS Conference on
International Symposium on Microarchitectuizec 2000. Measurement and Modeling of Computer SysteMay

[14] G.Chrysos, J.Dean, J.Hicks, C.Waldspurger, and 1996.

W. Weihl. Apparatus for sampling instruction operand or re- [32] M. Merten, A. Trick, C. George, J. Gyllenhaal, and W.-M.
sult values in a processor pipeline. US Patent 5923872, July Hwu. A Hardware-Driven Profiling Scheme for Identifying
1999. Program Hot Spots to Support Runtime Optimization. In

[15] C. Consel and F. Noel. A general approach for run-time spe- Proc. 26th International Symposium on Computer Architec-
cialization and its application to C. IRroc. Conference on ture, pages 136-147, Jun. 1999.

Principles of Programming Languaggsages 145-156, Jan.  [33] M. Merten, A. Trick, E. Nystrom, R.Barnes, and W.-M.
1996. Hwu. A Hardware Mechanism for Dynamic Extraction and

[16] T. Conte, K. Menezes, and M. Hirsch. Accurate and practical Re-layout of Program Hot Spots. Rroc. 27th International
profile-driven compilation using the profile buffer. Proc. Symposium on Computer Architectudene 2000.
27th International Symposium on Microarchitectupages [34] J. Montanaro etal. A 160-Mhz, 32-b, 0.5-W CMOS RISC
36-45, Dec. 1997. Microprocessor. IEEE Journal of Solid-State Circuits

[17] T. Conte, B. Patel, and J. Cox. Using branch handling hard- 31(11):1703-1712, Nov. 1996.
ware to support profile-driven optimization. Rroc. 27th In- [35] T. Nakra, R. Gupta, and M. Soffa. Value Prediction in VLIW
ternational Symposium on Microarchitectuggages 11-21, machines. InProc. 26th International Symposium on Com-
Nov. 1994. puter Architecturgpages 258-269, Jun. 1999.

[18] J. Dean, J.Hicks, C.Waldspurger, W.Weihl, and [36] A. Srivastava and A. Eustace. ATOM: A system for building
G. Chrysos. ProfileMe: Hardware Support for Instruc- customized program analysis tools. Broc. SIGPLAN'94
tion-Level Profiling on Out-of-Order Processors. Rroc. Conference on Programming Language Design and Imple-
30th International Symposium on Microarchitectupages mentation 1994.

292-302, Dec. 1997. [37] P. Tryfos.Sampling Methods for Applied Research: Text and

[19] D. Engler, W. Hsieh, and M. Kaashoek. ‘C: A language for CasesJohn Wiley & Sons, Inc., 1996.
high-level, efficient, and machine-independent dynamic code [38] D. Tullsen and J. Seng. Storage-less Value Prediction using
generation. IrProc. Conference on Principles of Program- Prior Register Values. IfProc. 26th International Sympo-
ming Languagegages 131-144, Jan. 1996. sium on Computer Architecturpages 270-279, Jun. 1999.

[20] F. Gabbay and A. Mendelson. Can program profiling support [39] D. Westcott and W. White. Instruction sampling instrumen-
value prediction? IfProc. 27th International Symposium on tation. US Patent 5151981, Sept. 1992.

Microarchitecture pages 270-280, Dec. 1997. [40] M. Zagha, B. Larson, S. Turner, and M. ltzkowitz. Perfor-

[21] S. W. GolumbShift Register Sequencésegean Park Press, mance Analysis Using The Mips R10000 Performance
revised edition, 1982. Counters. InProc. 1996 Conference on Supercomputing

[22] E. Hallnor and S. Reinhardt. A Fully Associative Soft- Nov. 1996.
ware-Managed Cache Design. Rroc. 27th International [41] X.Zhang, Z. Wang, N. Gloy, J. Chen, and M. Smith. System
Symposium on Computer Architectusane 2000. Support for Automatic Profiling and Optimization. Froc.

[23] T. Heil and J. Smith. Relational Profiling: Enabling Thread 16th Symposium on Operating System Principlas. 1997.

Level Parallelism in Virtual Machines. roc. 33rd Interna-

tional Symposium on Microarchitectyi@ec 2000. : " . .
[24] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic Pro- Appendix A Value Profiling Algorithm Details

gram Instrumentation for Scalable Performance Tools. In This section covers details that are important for achieving the

Proc. Scalable High Performance Computing Conference resu[ts presented for our value profiling algorit.hm, but aren.’t
'94, May 1994. required by a casual reader. A flow-chart (which is referred to in

[25] M. Horowitz, M. Martonosi, T. Mowry, and M. Smith. In- the text) for the value profiling algorithm is shown in Figure 10.

forming Memory Operations: Providing Memory Perfor- A 1 \glue Re-sampling
mance Feedback in Modern Processors.Hroc. 23rd

International Symposium on Computer Architectyvages In our implementation, if the measured invariance drops below
260-270, May 1996. 20 percent (tested in state D of Figure 10), we re-select the active
[26] R. Kessler. The Alpha 21264 MicroprocessS®EE Micro, value (in state H of Figure 10) and set the hit and miss counters to
19(2), Mar./Apr. 1999. 1 and 0, respectively. In addition to updating hit and miss counters,
[27] A. Klaiber. The Technology Behind Crusoe Processors. each sample increments the total counter that enables us to track
Technical report, Transmeta Corporation, Jan. 2000. how many samples have been dropped when the active value is

[28] J. Kuskin, et al. The Stanford FLASH Multiprocessor. In re-selected.
Proc. 21st International Symposium on Computer Architec- .
ture, pages 302-313, Apr. 1994. A.2 Counter Saturation
[29] M. Lipasti, C. Wilkerson, and J. Shen. Value Locality and
Load Value Prediction. IProc. 7th International Confer-
ence on Architectural Support for Programming Languages

When a slot has learned something useful, which could be dam-
aged by additional updates, we turn it off (by clearing its valid bit
in the associative array, so no further matches occur). The most



important case is the saturation of either of the hit or miss counters counter, which is incremented every time a replacement fails and is
(state F, in Figure 10). When this occurs, no further updates are decremented every time one succeeds. The counter is initialized to
added to the slot, in order to preserve the ratio of hits to misses. zero, and when it hits its threshold, it interrupts the processor. In
Also, if we decide to select a new active value, but the previous many cases, this mechanism implicitly detects program phase
active value has accrued a non-trivial number of samples (at leastchanges because the new instruction working set is not represented
16 in our current implementation), then we turn off the slot to in the slot array.

retain that information (state 1). Lastly, in the uncommon case that . . .

the total counter satura(tes, wg turn o)f/f the slot to maintain an accu—A'5 Thrash Detection and Fllterlng
rate count of the number of samples observed. When a static
instruction’s slot has been turned off, new instances of that instruc-
tion have to compete for the remaining slots like instructions that
never had a slot.

Our algorithm counts the number of replacements, and it inter-
rupts the processor when it exceeds a threshold. Because replace-
ments are infrequent when not thrashing, a low threshold (four
times the number of slots) allows thrashing to be detected quickly
A.3 Informational Replacement with a minimum number of false positives.

When thrashing is detected, we attempt to estimate the extent of

Because it would be expensive to consider all slots for replace- it to decide how finely the program should be partitioned. Our
ment, we only consider one (which is denoted ot in algorithm looks at the number of samples processed (an indicator
Figure 10). Our current scheme has an index into the array of slotsof how fast thrashing was detected) to decide if the current parti-
that tracks the next slot up for replacement. When a slot miss tion should be sub-divided in 2 or 4 ways. When an interrupt is
occurs, the total counter is compared to a pseudo-random numbercaused by thrash detection, we do not copy the captured samples to
between 0 and 15, inclusive. If the random number is greater, the memory because they generally have low information content.
slot is replacedij.e., the new instruction’s value is stored as the . . .
new active value and the hit and miss counters are reset (state M inA'6 Estimation Algorithm
Figure 10). Otherwise, the replacement fails and the current sam-
ple is ignored (state K). In this way relatively infrequently exe-
cuted instructions might not make it into the array until the
frequent ones have been masked. Whether the entry is replaced o
not, the index of the next slot up for replacement is incremented
giving a new slot some time with which to take hold before being
re-considered for replacement.

Our algorithm assumes that the captured samples are represen-
tative of the full program and estimates invariances by first esti-
mating the number of captured samples that belong to each value.
Each value gets samples from three sources: (1) its own hits
' counter, (2) a portion of the miss counters from other values, and

(3) a fraction of the remaining samples measured by the total
counter. Each value gets all of its associated hit samples. The miss
A.4 Interrupt Strategy samples for each value are divided between the other values pro-
portionally according to the number of hit counts those values

Eventually, most of the slots will become un-replaceable (when have. Finally, each value gets a share of the counts measured by
their total count exceeds 15). As long as the current working set of the total counter that are un-accounted for. These counts are
instructions is represented in the slots we can continue collecting divided equally between values, but no value is given more than 20
data. When we start ignoring many samples from instructions that percent of them because these counts are derived from regions
are not allocated to slots, it is time to copy the profiler state to main where the active value had an invariance of less than 20 percent.
memory and recommence with a clean slate. To identify when to The estimated counts are divided by the total number of samples
perform an interrupt, our algorithm includes a saturating failed recorded to compute each value’s invariance.

E NO INTERRUPT

RSLOT++; FAILED++;
IS FAILED < 2*#SLOTS? YES

NEW INSTRUCTION (PC, VALUE)

DONE

YES
DOESPCMATCH RSLOT.PC = PC, RSLOT.HITS = 1; RSLOT.MISSES= 0;
ANY SLOT? NO NO | RSLOT.ACTIVE_VALUE = VALUE; RSLOT.TOTAL = 1;
——| IS RSLOT.TOTAL > RAND15()? IF (FAILED > O) { FAILED --;}
YESl A DROPPED++; IS DROPPED< 4*#SLOTS?
ALWAYS
MSLOT.TOTAL++;
DOESVALUE EQUAL NO IS MSLOT.MISSES NO
IS MSLOT.HITS > 157
MSLOT.ACTIVE_VALUE ? > (4 * MSLOT.HITS)? TURN OFF MSLOT
YESl YESl
INCREMENT MSLOT.HITS; INCREMENT MSLOT.MISSES MSLOT.ACTIVE VALUE = VALUE:
IS MSLOT.HITS < 2557 IS MSLOT.MISSES< 2557 MSLOT.HITS=1" MSLOT.MISSES=0"
YESl NO YESl Nol IS MSLOT.TOTAL < 655357
YES| NG
DONE TURN OFF DONE
MSLOT; DONE

Figure 10. Flowchart of the co-processor value profiling algorithm: Each instruction processed by the co-processor has a PC and a
VALUE; MSLOTIs the slot with a matching PC, if one exisksLOTis the next slot up for replacemermalLED and DROPPEDare counters
maintained to determine when to interrupt the main processanDl5() generates a random number between 0 and 15; final states
(DONE, INTERRUPY have a darker border
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