
f
ro-
al
s
on
o-
or-
m,

ng
er

-
ing

a

-

-
de

e
ly
d
nd
g
a
,

xt
ri-
al
ed
ort
la-
n

o

la-

ed
ues
as

ly

Microarchitectural Miss/Execute Decoupling

Amir Roth, Craig B. Zilles and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison

{amir, zilles, sohi}@cs.wisc.edu
Abstract

The decoupled access/execute architecture described a
machine that enables the access of memory values to be
decoupled from the consumption of those values.
Although never widely adopted in its original form, the
decoupled design is a compelling way to tolerate mem-
ory latency. In this paper, we propose and demonstrate
a novel implementation of decoupling, one based on the
following two refinements of the original idea. First,
because the latency of cache hits can generally be toler-
ated, we only decouple from the main program accesses
that are likely to miss in the cache. Second, our decou-
pling takes place at the microarchitectural level, not the
architectural level. By treating the access stream as a
speculative thread and not allowing it to modify the
architectural state of the machine, we relax the correct-
ness constraints that were placed on it in the original
design. For many programs, this added flexibility
enables a level of decoupling and, consequently, latency
tolerance that could not be achieved under the more
constrained architectural model.

1 Introduction

The Decoupled Access/Execute Architecture was pro-
posed in 1982 [S82] and described a processor with a
two instruction stream interface. Architectural decou-
pling was attractive at the time because it provided a
means to sidestep the Flynn bottleneck of fetching/
decoding a single instruction per cycle and enabled
some load/use slip without the complexity of a full out-
of-order implementation. The appeal of these particular
features of the architecture has largely disappeared over
the past twenty years as nearly all microprocessor ven-
dors now ship superscalar, out-of-order processors.
However, access decoupling itself is still appealing, per-
haps more so than ever. Today’s processors can tolerate
latencies of about 10 cycles — enough to cover the bulk
of first level cache misses. However, the rapid increase
in processor frequency has caused relative main mem-
ory access latencies to exceed 100 cycles. Access
decoupling is a compelling method for tolerating these
latencies, since scaling the out-of-order mechanism for
this purpose has proven difficult.

The access decoupling scheme we propose for today’s
processors differs from the original design in two major
ways. First, we restrict decoupling to only those
accesses that are likely to result in cachemisses. Sec-
ond, we perform the decoupling at themicroarchitec-

tural, rather than architectural, level. Instead o
extracting an architectural access stream from the p
gram, we extract multiple speculative microarchitectur
miss streams. Rather than running these miss stream
on a second architected pipeline, we execute them
the additional hardware contexts of a multithreaded pr
cessor. Instead of requiring that miss streams bind c
rect values to registers on behalf of the execute strea
we simply ask them to perform performance-enhanci
data movement, freeing them to use speculation in ord
to perform this task more efficiently. By removing cor
rectness responsibilities from miss streams, decoupl
and latency tolerance are more easily achieved for
wider class of programs.

Our implementation of microarchitectural miss decou
pling is calledspeculative data-driven multithreading
(DDMT). DDMT is an new processing model that sup
ports the execution of speculative non-contiguous co
sequences calleddata-driven threads (DDTs). In this
implementation, the miss stream is split into multipl
sub-streams each of which is microarchitectural
forked at a certain point by the original program an
speculatively executed as a DDT. The main stream a
several DDTs execute in parallel by using an underlyin
microarchitecture that supports multiple threads, like
simultaneous multithreading (SMT) processor [HK+92
YM95, TE+96]. The main thread then attempts toreuse
the results produced by the DDTs.

The rest of the paper is organized as follows. In the ne
section, we describe the logical (not necessarily histo
cal) chain of observations that lead from the origin
decoupled architecture to the speculatively decoupl
microarchitecture we propose. We then present a sh
characterization of the estimated usefulness of specu
tive miss streams. We conclude with a brief descriptio
of DDMT and a short performance evaluation.

2 From Decoupled Architecture to
Speculative Decoupled Microarchitecture

The original decoupled architecture called for a tw
stream interface. Theaccess streamcontained all mem-
ory accesses and theirbackward slices(all instructions
that transitively contribute values to the address calcu
tion). The execute streamcontained everything else.
The streams communicated via a set of architect
queues. When the access stream did not need val
from the execute stream, it could run ahead as far
result queueing would allow and, in doing so, effective

nd
it
am
ly
se
.
-

of
re-
e
,

ely
g-
tly

the
e
the
’s
g
nd
ro-
al
m
e
9]
am
to
.

g
the
f
iss

g
e.

on-
lly
nd-
i-
turn
In
a-
te
,
n-

ss
pt
re
l
in.
the
se
he
e
s,
“absorb” access latency on behalf of the execute stream.
The original decoupled architecture was realized, but
did not gain widespread acceptance. Over the past
twenty years, several embodiments of decoupling were
proposed (and some were actually built) that succes-
sively solved some of the problems that hampered pre-
decessor designs.

One obstacle that slowed the acceptance of the original
decoupled architecture was a marketplace increasingly
dominated by single stream interface machines and sys-
tems with relatively high latency support for inter-
stream communication. The desire for a single stream
solution was met early on with the observation that,
when adequate decoupling is possible, the access stream
can simply be“ shifted up” with respect to the execute
stream and the two streams can subsequently bere-
merged. Software pipelining [RG+82] is the premier
instantiation of this concept.

Traditional re-merging is effective but requires that
decoupling be possible in the first place. Decoupling
works well for programs that contain many operations
that obviously don’t contribute to address calculation. It
is not surprising that workloads circa 1982 were domi-
nated by programs that fit this description — floating-
point programs. It may be that multimedia programs,
which have similar structure, will dominate future work-
loads. However, non-numeric programs, which have
been and will likely continue to be an important part of
workloads, have features — complex control flow, many
procedure calls and numerous statically unanalyzable
accesses — that make statically distinguishing “purely
execute” computations difficult [SP+98]. An observa-
tion that helped expand the scope of decoupling to diffi-
cult-to-split, non-numeric applications was that splitting
the programper seis not strictly necessary. A load con-
sists of two sub-operations. The first, bringing a data
value to the processor, is not architecturally visible and
can take a long time while the second, binding the value
to a register, is architecturally visible and takes a fixed,
small amount of time. The availability of an architec-
tural mechanism that can perform the data movement
function independently of the result binding removes the
true decoupling requirement in the following way.
Instead of decoupling and shifting an access stream
within the program, we construct anadditional stream
that performs only data movement — the latency critical
yet non-architected portion of the task. We then shift
and merge this additional stream into the original pro-
gram. An access stream that provides only data move-
ment has the advantage of not requiring binding
communication through the precious architectural regis-
ter namespace; the data movement effect is implicitly
communicated through the much larger namespace of
the cache. Reduced register pressure can greatly uncon-
strain an optimizing compiler and improve overall code
quality. Adding a second access stream to a program
does incur some execution overhead. However, this

overhead is much smaller than that of a adding a seco
conventional (full) access stream. Specifically, since
provides only data movement services, the added stre
is constructed to deal only with accesses that are like
to have long data movement components, in a sen
becoming amiss streamrather than an access stream
Indeed, the introduction of non-binding prefetch instruc
tions coupled with the demonstration that the set
static loads that miss in the cache is both small and p
dictable [AS+93] combined to spawn a host of effectiv
instantiations of this basic technique [ML+92, CB94
LS+95, LM96].

The single re-merged stream approach has been wid
adopted, but does forfeit the true decoupling of the ori
inal architecture. The fetch schedule, and consequen
the execute schedule, of the miss stream relative to
rest of the program is rigid and pre-determined. Th
miss stream cannot asynchronously run ahead when
main program stream is “pinned” by the processor
reorder buffer. This problem was solved by re-splittin
the added miss stream from the original program a
executing it as a separate thread on a multithreaded p
cessor [SD98]. Since communication is uni-direction
(main program to miss) and occurs only at a miss strea
fork, a conventional multithreaded system could b
used. Executing the miss stream in microcode [CS+9
has also been proposed. Finer control over miss stre
scheduling is achieved by splitting the miss stream in
several sub-streams and forking each one separately

While multithreading restores decoupling, executin
miss streams in architecture-level threads obligates
machine to execute them in full, fixing the amount o
imposed overhead. A better approach is to specify m
streams ashints and to allow themicroarchitectureto
execute them non-architecturally at its discretion, usin
either dedicated [RM+98] or generic [RS01] hardwar
By giving the microarchitecture flexibility in allocating
resources to miss streams, miss stream resource c
sumption and overhead can be controlled dynamica
and adapted to anticipated need and available ba
width. The use of speculative, non-architectural mult
threading has another advantage: it can be used to re
miss streams to being parts of the original program.
fact, depending on the underlying thread implement
tion, the execution of a miss stream may contribu
directly to the execution of the original program thread
and as such would no longer constitute overhead. Co
sider the following arrangement. Rather than split mi
streams from the original program, the program is ke
intact and instructions belonging to miss streams a
insteadannotated. Since they are composed of origina
program instructions, miss streams are “binding” aga
The processor executes the annotated portions of
original program as speculative threads. Since the
portions execute ahead of their architected place in t
original program, their accesses implicitly perform th
data movement function. The bindings themselve

’s
the
the
xe-
is
er-
fi-
s

n
g

ve

n

f a

e

of
iss
re
l-

y
1.
l

nd,
lls
n-
-

m
n
in-
r-
d.

ns

ll
ing
t

he
er-
y
ce,
the

d

however, arebufferedrather than exposed architectur-
ally. Now, when the main program thread catches up to
the speculative thread, it “recognizes” it as actually
being the same piece of code it is about to execute.
Rather than repeating the work, the main program
thread simply “picks up” the buffered bindings of the
appropriate instructions and skips over their execution.
Overhead is minimized because miss streams actually
contribute to the execution of the original program. This
is exactly the arrangement proposed by the original
decoupled architecture!

A simple example of microarchitectural decoupling is
shown in Figure 1. At the top, we show source and cor-
responding Alpha machine code for a simple list tra-
versal loop. The instructions in bold areA3, the first
data access to each node — which results in a cache
miss — andA5, the pointer-chasing loop induction —
which when unwound comprises the full backward slice
of A3. To tolerateA3 latency, we choose the speculative
miss streams to contain one instance ofA5 and one of
A3. A miss stream is forked by the previous instance of
the induction instructionA5. This choice of miss stream
and fork point allows us to leverage one full loop itera-
tion, including the entire invocation ofprocess, for
latency tolerance purposes. The bottom of the figure
shows an abstract execution of these speculative miss
streams on a multithreaded processor. Each instance of

the induction instructionA5 forks a new speculative
miss stream to absorb the latency of the next iteration
accesses. When the architectural thread (executing
entire program) reaches the next iteration, it reuses
values computed by the miss stream rather than re-e
cuting the corresponding instructions. As shown in th
example, miss streams can be small and have low ov
head, while allowing likely-to-miss accesses to be ef
ciently decoupled from the main program. In thi
example, decoupling allowsA5 andA3 of a given itera-
tion to proceed while the processor is executing thepro-
cess invocation code from the previous iteration.

3 Characterizing Speculative Miss Streams

Miss streams aredynamic backward slices(or just
slices) of loads that are likely to miss in the cache. A
slice is constructed by walking the dynamic instructio
stream backward from the offending load and addin
any instruction that satisfies one of three kinds of acti
dependences: (1) aregister dependencein which the
instruction writes a register that is read by an instructio
already in the slice, (2) amemory dependenceif the
instruction is a store that writes to the same address o
load in the slice or (3) acontrol dependenceif the
instruction is a branch on which an instruction in th
slice is control-dependent.

In this section, we present a short qualitative study
the slices we intend to extract and pre-execute as m
streams. A more complete study can be found he
[ZS00]. We characterize slices in terms of their size re
ative to the original program regions with which the
overlap — these definitions are illustrated in Figure
The size metric tells us how far ahead of its origina
place in the program a miss stream can be shifted a
consequently, how much latency it can hide. It also te
us roughly how many resources a miss stream will co
sume when executed in parallel with the original pro
gram. A “good” miss stream is small and highly
concentrated towards end of the original progra
region, near the offending load. Such a distributio
implies that the miss stream can be forked at the beg
ning of the region and finish execution before the ta
geted load is processed by the original program threa

The graph in Figure 2 shows several size accumulatio
for the slice of a single static load from the program
compress. These results are illustrative of slices in a
benchmarks. We show a single slice because averag
the slices of multiple static loads blurs the importan
qualitative details. Three accumulations are shown. T
top accumulation (the one with the largest area und
neath it), is obtained by including all register, memor
and control dependences in the slice. For the next sli
we exclude control dependences. Doing so makes
resulting miss streamgreedy— unable to determine at
runtime which computations really need execution an

FIGURE 1. An example of microarchitectural
miss/execute decoupling.

ldq r1, 0(r1)A5:
jmp A2A6:
beq r1, A7A2:
ldq r2, 4(r1)A3:
jsr processA4:

ldq r1, 0(r1)A5:
jmp A2A6:
beq r1, A7A2:
ldq r2, 4(r1)A3:
jsr processA4:

for (l = list; l; l = l->next)
 process(l->data);

addq r1, zero, list
beq r1, A7
ldq r2, 4(r1)
jsr process
ldq r1, 0(r1)
jmp A2

A1:
A2:
A3:
A4:
A5:
A6:

jsr processA4:

ldq r1, 0(r1)A5:
jmp A2A6:
beq r1, A7A2:
ldq r2, 4(r1)A3:

ldq r1, 0(r1)A5:
ldq r2, 4(r1)A3:

ldq r1, 0(r1)A5:
ldq r2, 4(r1)A3:

ldq r1, 0(r1)A5:
ldq r2, 4(r1)A3:

Entire program
(architectural thread)

Miss Streams
(microarchictural threads)

fork
reuse results

sl
ic

e

or
ig

in
al

 p
ro

gr
am

 re
gi

on

o
iss

f
s

cy

es
n-

nal
c-
d.

l-

ed
he
g
he
l-

nt
e
of
,
s,

to

t

m-
al
all

e-
n

DT

or-
k-
a
ut
is
By
d
in

FIGURE 2. Average cumulative slice sizes as functions of dynamic instruction distance from the load for a
single static load from compress.

0 100 200 300 400 500

dynamic instruction distance from cache missing load

0

50

100

150

200
cu

m
. s

lic
e s

ize

100% control + register + memory

register + memory

register (memory converted to register)
which can be ignored, forcing it to execute all of them.
However, it also drastically reduces the size of the miss
stream, enhancing its run-ahead ability.

In the final accumulation, we convert stable memory
dependences into register dependences. This is accom-
plished by identifying store/load pairs that consistently
communicate (incidentally, this is the only way a miss
stream will ever contain a store), annotating the store/
load communication, and excluding the address calcula-
tion of both instructions from the slice since it is no
longer needed to propagate the data value. This micro-
architectural “register allocation” requires a hardware
mechanism for passing values from stores to loads with-
out calculating the addresses. Cloaking [MS97] is one
such mechanism.

Our results indicate that conservative generation of miss
streams yields large streams that likely will not provide
sufficient lookahead and will exact too much overhead.
However, by utilizing the speculative nature of miss
streams to optimize away first control dependences then
memory dependences, we can construct streams that are
short enough to support sufficient decoupling to tolerate
long memory latencies.

4 An Implementation of Miss Decoupling:
Speculative Data-Driven Multithreading

The fact that miss streams are small relative to the origi-
nal program region they overlap and that the bulk of the
work is concentrated towards the latter end of the region
tells us that the potential to hide latency by pre-execut-
ing miss streams exist. To realize this potential, we need
an engine that can execute miss streams.

The engine we propose is asimultaneous multithreading
(SMT) processor modified to support the speculative
sequencing and execution of non-sequential pieces of
code. We call this new execution model speculative
data-driven multithreading (DDMT)[RS01]; the non-
sequential code segments are calleddata-driven threads
(DDTs). DDMT’s unique support for non-contiguous
speculative threads is important because miss streams
are not composed of sequential instructions. It should
be noted that other, more conventional speculative
thread models that supportcontrol-driven (sequential)

threads[F93, SB+95, DO+95, SM98] may be used t
execute miss streams. However, these require that m
streams be expanded to includeall instructions that are
sequentially interleaved with the computation (slice) o
interest. Including irrelevant instructions in miss stream
detracts from their ability to run ahead and hide laten
and increases the load on the system.

The ability to execute non-contiguous code sequenc
does come at an implementation cost. Since a DDT ca
not be sequenced with a program counter, an additio
mechanism is required to precisely describe the instru
tions that comprise the DDT and how these are ordere
In DDMT, the mechanism that provides this functiona
ity is thedata-driven thread cache (DDTC). The DDTC
contains static representations of DDTs “straighten
out” and packed to look like linear code sequences. T
DDTC isolates the fetch engine from the sequencin
details of DDTs in much the same way that a trace cac
[RB+96] abstracts the sequencing details of contro
driven code. A DDMT processor fetches DDTs from
the DDTC in chunks and places their compone
instructions into the instruction queue. The rest of th
processor is oblivious to the non-contiguous nature
the DDT instructions. DDT instructions are renamed
scheduled and executed like any other instruction
although they are not retired nor are they allowed
modify architected state.

One component of DDMT we mention here but do no
describe in detail is theintegrationfacility. DDTs’ non-
contiguous nature prevents them from describing a co
plete picture of program state. As a result, the origin
program thread must re-sequence and re-execute
work performed in DDTs. Integration is a mechanism
that removes the re-execution portion of that requir
ment. Re-sequencing is still mandatory, but integratio
uses the re-sequencing process to match up D
instructions with their corresponding original program
thread counterparts. The main thread integrates (inc
porates) results computed by DDT instructions by ma
ing the buffered result bindings architecturally visible (
process we alluded to earlier). The decision abo
whether or not a given instruction can be integrated
implemented as an extension to register renaming.
choice, we allow only instructions that have complete
execution in the DDT before being renamed in the ma
thread to be integrated.

a
a
ns.
re
the
o-

or-
or
,
it
n
-

is

ts.
ue

ut-
es,
es
at

’s
h
u-
al

d,
a

the
for
he
te
of
ge
5 Performance Evaluation

We evaluate a DDMT implementation of miss/execute
decoupling for six programs — selected for their rela-
tively high data cache miss rates — two each from the
SPEC95, SPEC2000 and Olden benchmark suites. We
compile the programs for the Alpha EV6 architecture
using the Digital UNIX V4cc compiler with flags-O3
-fast and simulate them in their entirety.

Our cycle-level simulator is built using the SimpleScalar
3.0 [BA97] Alpha toolkit. It models an 8-wide SMT
processor with out-of-order speculative execution and a
maximum of 128 instructions, 64 loads or 32 stores in-
flight. The pipeline has 3 fetch, 2 decode/rename and 2
schedule/register-read stages. Up to 2 loads and 2 stores
may issue per cycle. Address generation takes 1 cycle,
with an additional cycle for either a first level cache hit
or a store queue bypass. Loads issue in the presence of
older stores with unknown addresses — on a mis-specu-
lation, the load and younger instructions are squashed.
The memory system consists of a 32KB instruction
cache and a 64KB data cache, both 2-way set-associa-
tive with 32 byte lines, a shared 1MB, 4-way set-asso-
ciative, 64-byte line second level cache and 32-entry
TLB’s. Up to 16 load misses can be simultaneously out-
standing. The second level cache takes 12 cycles to
access, main memory access takes 70 cycles. The sec-
ond level cache and memory buses are 32 and 16 bytes
wide and operate at full and one-fourth processor fre-
quency, respectively. The simulated processor has 4
hardware contexts which share all resources, and is
capable of running the original program thread and up to
three concurrent speculative streams. Thread priority is
explicit at fetch only with bandwidth allocated in round-
robin fashion among active threads on a cycle basis.

We model an offline, profile-driven implementation of
DDT-annotation generation. The selection algorithm
processes a program trace that is generated from a run

using a different, shorter input data set. We permit
maximum DDT length of 32 instructions and require
run-ahead head-start of at least 64 dynamic instructio
We assume that the resulting DDT annotations a
encoded into the executable and are loaded from
executable into the DDTC on demand. None of our pr
gram use more than 11 distinct DDT miss streams.

Performance results are summarized in Table 1. Perf
mance improvements range from a negligible 0.1% f
li to 17.3% formst. The higher speedups tell us that
while a significant portion of second level cache h
latency can be hidden by a machine with 128 instructio
re-ordering capability, the additional decoupling pro
vided by DDMT, specifically its ability to generate
cache misses while the original program thread
“pinned”, further increases memory-level parallelism
(MLP) — the degree of memory access overlapping.

We provide several metrics to support these resul
Load latency is the average difference between the iss
and completion times of everycommittedload. MSHR
occupancy is the average number of simultaneously o
standing misses — an MLP measure. In most cas
average load latency decreases while MLP increas
suggesting that the DDT’s are overlapping misses th
are further away than a single instruction window
worth. In mst, the dominant DDT encapsulates a has
table search including hash function calculation. Exec
tion of this DDT overlaps a second hash bucket travers
with the one taking place in the main program threa
doubling the MLP but increasing bus contention to
level thatslightly increases the average load latency.

The observed speedups are somewhat smaller than
latency and MLP diagnostics suggest. The reason
this is that miss streams contend for resources with t
main program thread, slowing it down. We approxima
the contention effect by measuring the number
instructions fetched by DDTs. These numbers ran
compress li gzip vpr em3d mst

Insns committed (millions) 331.39 1188.37 3367.27 692.50 248.88 230.77

Loads (millions) 42.68 302.63 677.78 198.37 71.59 32.58

Base L1 misses (millions) 3.08 3.46 23.12 8.46 24.50 4.16

Avg. load latency (cycles) 3.63 2.70 2.76 3.41 42.41 19.85

Avg. MSHR occupancy (/cycle) 1.89 1.51 0.83 1.67 10.76 0.94

Base +
DDMT

DDT’s forked (millions) 3.57 4.32 26.28 7.09 0.80 0.52

DDT insns fetched (millions) 104.08 29.20 671.02 145.24 23.20 16.24

DDT insns integrated (millions) 15.82 13.38 248.52 37.14 12.82 10.30

DDT loads integrated (millions) 2.12 4.00 13.80 5.04 5.61 2.52

Avg. load latency (cycles) 3.34 2.44 2.11 3.37 29.58 21.19

Avg. MSHR occupancy (/cycle) 3.05 2.50 1.05 1.81 12.58 1.81

Speedup over base 1.6% 0.1% 15.4% 12.0% 7.2% 17.3%

TABLE 1. Using speculative data-driven multithreading to pre-execute miss streams.

f

re

i-

:

.
es

r-

l

:
-

n
n.

i-

on
-

w
.

d

-

d

ng

c-

s-

e-
f

d
-

d
n
r.

r

of
from reasonable 5-10% to a quite high 30% forcom-
press. In the latter case, when overhead and contention
increase to the point of offsetting all benefit, DDMT
should be suppressed. A mechanism for doing so
dynamically is straightforward but beyond the scope of
this paper.

One interesting metric is the percentage of fetched DDT
instructions that are eventually integrated — lower than
60% for all benchmarks and as low as 15% forcom-
press. Low integration rates indicate that DDTs fetch
and execute many instructions unnecessarily. This is
due in part to working set differences in data sets used
for DDT selection and execution, but more so to the
inherently greedy nature of DDTs. As we mentioned
earlier, DDTs represent control greedily, not explicitly.
A DDT may contain computations that exist along
dynamically exclusive paths. However, rather than take
the time to synchronize with the original program thread
or to execute a piece of code to decide which computa-
tions to execute and which to discard, it simply executes
all of them. The result is some amount of wasted work.
Note, DDT efficiency isnot tied to main thread branch
prediction accuracy. In fact, efficiency may increase
with decreased prediction accuracy. We are investigat-
ing DDT extensions for reducing this waste.

6 Summary

As initially proposed, the decoupled access/execute
architecture has not been widely adopted. However, its
motivating observations and key features have formed
the basis for many load latency tolerance techniques.
The latest incarnation is data-driven multithreading
(DDMT). Unlike other recent variants, DDMT imple-
ments decoupling at the microarchitectural, rather than
architectural, level, freeing the access stream from cor-
rectness obligations. This added flexibility minimizes
synchronization with the main thread and promotes
higher degrees of decoupling and, consequently, latency
tolerance.

Acknowledgements

This work was supported in part by National Science
Foundation grants MIP-9505853 and CCR-9900584,
donations from Intel Corp. and Sun Microsystems, the
University of Wisconsin Graduate School and Intel
Ph.D Fellowships. The authors thank the anonymous
referees for their reviews.

References

[AS+93] S. Abraham, R. Sugumar, D. Windheiser, B. Rau and R.
Gupta. Predictability of Load/Store Instruction Latencies.
Proc. MICRO-26, Dec. 1993.

[BA97] D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-

sion 2.0. Technical Report CS-TR-97-1342, University o
Wisconsin-Madison, Jun. 1997.

[CB94] T.-F. Chen and J.-L. Baer. A Performance Study of Softwa
and Hardware Prefetching Techniques.Proc. ISCA-21, Apr.
1994.

[CS+99] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. S
multaneous Subordinate Microthreading (SSMT).Proc.
ISCA-26, May 1999.

[DO+95] P. Dubey, K. O’Brien, K. O’Brien, and C. Barton. Single-
Program Speculative Multithreading (SPSM) Architecture
Compiler-Assisted Fine-Grained Multithreading.Proc.
PACT-1995, Jun. 1995.

[F93] M. Franklin. The Multiscalar Architecture. Ph.D. Thesis
Technical Report #CS-TR-1993-1196, Computer Scienc
Dept., University of Wisconsin-Madison, Nov. 1993.

[HK+92] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nish-
imura, Y. Nakase, T. Nishizwa. An elementary processor a
chitecture with simultaneous instruction issuing from
multiple threads. In Proc. of the 19th Annual Internationa
Symposium on Computer Architecture, May 1992.

[LS+95] M. Lipasti, W. Schmidt, S. Kunkel and R. Roediger. SPAID
Software Prefetching in Call and Pointer Intensive Environ
ments.Proc. MICRO-28, Nov. 1995.

[LM96] C-K. Luk and T. Mowry. Compiler Based Prefetching for
Recursive Data-Structures.Proc. ASPLOS-7, Oct. 1996.

[MS97] A. Moshovos and G. Sohi. Streamlining Inter-Operatio
Memory Communication via Data-Dependence Predictio
Proc. MICRO-30, Dec. 1997.

[ML+92] T. Mowry, M. Lam and A. Gupta. Design and Evaluation of
a Compiler Algorithm for Prefetching.Proc. ASPLOS-5,
Oct. 1992.

[PG99] J.-M. Parcerisa and A. Gonzalez. The Synergy of Mult
threading and Access/Execute Decoupling.Proc. HPCA-5,
Jan. 1999.

[RG+82] B. Rau, C. Glaeser, and R. Picard. Efficient Code Generati
For Horizontal Architectures: Compiler Techniques and Ar
chitectural Support. Proc. ISCA-9‚ Apr. 1982.

[RB+96] E. Rotenberg, S. Bennett and J. Smith. Trace Cache: A Lo
Latency Approach to High Bandwidth Instruction Fetching
Proc. MICRO-29, Dec. 1996.

[RM+98] A. Roth, A. Moshovos, and G. Sohi. Dependence Base
Prefetching for Linked Data Structures.Proc. ASPLOS-8,
Oct. 1998.

[RS01] A. Roth and G.S. Sohi. Speculative Data-Driven Multi
threading.Proc. HPCA-7 (to appear), Jan. 2001.

[RS00] A. Roth and G.S. Sohi. Register Integration: A Simple an
Efficient Implementation of Squash Reuse.Proc. MICRO-33
(to appear), Dec. 2000.

[SP+98] S. Sastry, S. Palacharla and J. Smith. Exploiting Idle Floati
Point Resources for Integer Execution.Proc. PLDI ‘98, Jun.
1998.

[S82] J. Smith. Decoupled Access/Execute Computer Archite
ture.Proc. ISCA-9, Jul. 1982.

[SB+95] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Proce
sors.Proc. ISCA-22, Jun. 1995.

[SD98] Y. Song and M. Dubois. Assisted Execution. Technical R
port #CENG 98-25, Dept. of EE-Systems, University o
Southern California, Oct. 1998.

[SM98] J. Steffan and T. Mowry. The Potential for Using Threa
Level Data-Speculation to Facilitate Automatic Paralleliza
tion. Proc. HPCA-4, Feb. 1998.

[TE+96] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, an
R. Stamm. Exploiting Choice: Instruction Fetch and Issue o
an Implementable Simultaneous Multithreading Processo
Proc. ISCA-23, May 1996.

[YM95] W. Yamamoto and M. Nemirovsky, Increasing Superscala
Performance Through Multistreaming.Proc. PACT-95, Jun.
1995.

[ZS00] C. Zilles and G. Sohi. Understanding the Backward Slices
Performance Degrading Instructions.Proc. ISCA-27, Jun.
2000.

	1 Introduction
	2 From Decoupled Architecture to Speculative Decoupled Microarchitecture
	3 Characterizing Speculative Miss Streams
	4 An Implementation of Miss Decoupling: Speculative Data-Driven Multithreading
	5 Performance Evaluation
	6 Summary

