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Abstract
Register integration (or simply integration) is a mechanism for
incorporating speculative results directly into a sequential
execution using data-dependence relationships. In this paper,
we use integration to implement squash reuse, the salvaging of
instruction results that were needlessly discarded during the
course of sequential recovery from a control- or data- mis-
speculation.

To implement integration, we first allow the results of
squashed instructions to remain in the physical register file
past mis-speculation recovery. As the processor re-traces por-
tions of the squashed path, integration logic examines each
instruction as it is being renamed. Using an auxiliary table,
this circuit searches the physical register file for the physical
register belonging to the corresponding squashed instance of
the instruction. If this register is found, integration succeeds
and the squashed result is re-validated by a simple update of
the rename table. Once integrated, an instruction is complete
and may bypass the out-of-order core of the machine entirely.
Integration reduces contention for queuing and execution
resources, collapses dependent chains of instructions and
accelerates the resolution of branches. It achieves this using
only rename-table manipulations; no additional values are
read from or written to the physical registers.

Our preliminary evaluation shows that a minimal integration
configuration can provide performance improvements of up to
8% when applied to current-generation micro-architectures
and up to 11.5% when applied to more aggressive micro-
architectures. Integration also reduces the amount of wasteful
speculation in the machine, cutting the number of instructions
executed by up to 15% and the number of instructions fetched
along mis-speculated paths by as much as 6%.

1  Introduction

Modern microprocessors rely heavily onspeculative execution
to achieve performance. Sequential processors (ones that exe-
cute sequential programs) speculate on both control and data,
executing instructions before all of their input dependences are
known with certainty. Successful speculation improves per-
formance by sparing the speculated instructions the wait of
having their execution context verified. On the other hand,
unsuccessful speculation, ormis-speculation, hurts perfor-
mance by forcing the processor torecoverto some prior non-
speculative state and start over. This paper presentsregister
integration, a mechanism for overcoming an inherent ineffi-
ciency in conventional sequential mis-speculation recovery.

The inefficiency we speak of is born of a basic antagonistic
combination found in sequential programs. While a sequential
program is composed of manylocally independent computa-
tions, thestateof the program is only defined sequentially at
dynamic instruction boundaries. Since mis-speculation recov-
ery is defined in terms of this sequential state, a mis-specula-
tion in one computation inadvertently but necessarily causes

valid work from sequentially younger computations to b
aborted, orsquashed, and re-executed. Register integratio
can be used to performsquash reuse[2, 18], to salvage the
results of squashed computations that are in fact control- a
data- independent of the particular mis-speculation event t
precipitated the recovery action.

Many processors implement speculation using a level of ind
rection that maps the architectural register name space t
larger physical register storage space. The larger physi
space allows multiple versions of each architectural locati
(all but one of which is speculative) to simultaneously co
exist. Successful speculation involves the promotion of new
mappings to non-speculative status; mis-speculation recov
restores prior mappings and recycles the speculative stora
Integration is motivated by the observation that only restor
tion of previous mappings is required for correct recovery.
the speculative values are left intact past a recovery event, th
should the processor re-trace part of the squashed path and
cover that some of the instructions were useful after all, on
the corresponding mappings will need to be restored; the v
ues themselves will already exist and will not need to be r
computed.

The matching of squashed results with re-traced instructions
accomplished using a second mapping into the physical reg
ter file, the Integration Table (IT). The IT differs from the
sequential mapping (map table) in a fundamental way. The
map table describes the contents of the physical registers i
transient, sequentially dependent way from the point of vie
of the architectural registers. In contrast, the IT describes t
contents of the physical registers in a persistent, order-ind
pendent way that reflects the operations and dataflow relati
ships used to create the values they contain. While
instruction is being register-renamed, the IT is used to sea
the physical register file for a physical register that holds th
result of a previous squashed instance of the same instruct
If a register is found such that its creating instruction instan
had the same physical register inputs as the currently renam
instance, then the currently-renamed instruction is “reco
nized” as having been previously executed and squashed.
instruction isintegratedby setting the sequential mapping fo
its output to point to the physical register allocated during th
initial (squashed) execution. The integrated instruction
complete for all intents and purposes; it can commit as soon
the retirement algorithm allows.

Integration has many advantages. Obviously, it reduces c
sumption of and contention for execution resources. It al
collapses data-dependent chains of instructions: a data-dep
dent chain of dependent instructions cannot be executed i
single cycle, but a completed chain of instructions may b
integrated in a single cycle. Integrated branch instructions a
resolved immediately, and should these be mis-predict
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branches the mis-prediction penalty and subsequent demand
on the fetch engine are also reduced. From an engineering
standpoint, integration is simple to implement. It is unambig-
uously correct, involves no explicit verification and does not
require additional data paths to either read or write any values
into the physical registers. In general, integration involves
modifications only to the register renaming stage in the pro-
cessor; the rest of the pipeline is oblivious to its existence.

Our initial experiments show that a minimal integration con-
figuration can achieve speedups of up to 8% on a representa-
tive current-generation microarchitecture. We estimate that
the speedup increases to up to 11.5% for more aggressive
microarchitectures. Integration also reduces the level of
wasteful speculation in a processor, cutting the number of
instructions fetched along mis-speculated paths by as much as
6% and the number of instructions executed by 15%.

The rest of the paper is organized as follows. The next section
presents the basic integration algorithm and argues for its cor-
rectness properties. Section 3 addresses some issues involved
in the implementation of integration. In section 4 we evaluate
integration using cycle-level simulation. Section 5 discusses
related work.  Section 6 presents our conclusions.

2  Integration

In this work, we use integration to implement squash reuse, the
salvaging of results that were unnecessarily discarded during
the process of sequential mis-speculation recovery. In this
section, we discuss the basic integration algorithm and
describe the principles that allow it to accomplish its goal in a
straightforward way. We specifically address the integration
of load instructions, which requires additional attention.

2.1  Basic Algorithm

During the course of processing, the program’s dataflow
graph, in the form of the results of its individual instructions,
is stored in the physical register file. At any point in the pro-
gram, the “active” vertices (results) of this graph are available
through a set of mappings that maps architectural register
names to physical register locations and their values. New
portions of the dataflow graph can only be attached to these
“active” vertices. As each instruction is added to the graph, a
physical register to hold its value is allocated and mapped to
the architectural output. Each instruction is annotated with
both the physical register holding its value and the prior physi-
cal register mapping of the same architectural location.
Recovery entails backtracking over a portion of the program,
restoring the previous mapping of each instruction’s output
while recycling the storage for the squashed result.

Integration exploits the observation that mis-speculation
recovery is obligated only to restore some prior sequential
mapping into the physical register file. That the results associ-
ated with the discarded mappings are also recycled during
recovery is an implementation convenience; leaving them
intact past the mis-speculation does not impact correctness (of
course, they must be recycled eventually lest the processor
“leak” away all physical registers). Assuming the results are
kept, let us consider the point immediately after the comple-
tion of a recovery sequence. Just at this point, all squashed
instructions are, in principle, still “attached” to the current

state (dependence graph) of the program as defined by the
ister mapping. The inputs of the oldest squashed instructio
are found in this mapping. The fact that the inputs are val
validates the outputs, which are themselves inputs of young
squashed instructions, and so on. Integration is the proces
transitively recognizing this validity, instruction by instruction
For every instruction sequenced by the processor, the integ
tion logic looks for the result of a squashed instruction that h
the same input mappings. If one is found, the correspondi
physical register is “un-squashed” or “pulled back into th
sequential flow” simply by setting the sequential mapping
point to it. This action re-validates the physical register ma
ping, and makes the input mappings of squashed instructio
that depend on it valid, allowing them to be subsequently int
grated. Notice that this same mechanism naturally avoids
re-use of instructions whose data inputs have been invalidat
As the processor sequences instructions from paths differ
than the squashed one, the results of these instructions cr
mappings to new physical registers not found in the squash
dataflow graph. These new mappings effectively “detac
those portions of the squashed dataflow graph that depend
the corresponding architectural name, and prevent them fr
being integrated.

Integration of a result requires locating a squashed instance
the corresponding instruction with input physical registe
identical to those of the current instance being renamed.
facilitate this search, integration relies on theIntegration Table
(IT), an auxiliary structure that indexes and tags squash
results using instruction identity and input mapping informa
tion. Each entry in the IT corresponds to a squashed instru
tion instance and contains that instruction’s PC and t
physical registers used for that instance’s inputs and outp
The IT also contains three fields whose purpose will be ma
clear later:Jump-Targetwhich is meaningful only for control
instructions, andMemory-Addressand Memory-Valuefields
which are meaningful only for loads and stores.

We illustrate the basic algorithm using an example. Figure
shows a short program fragment with four variables X,Y,Z an
W each allocated to a different logical register. For eac
dynamic instruction, we show the instruction preceded by
PC, the state of the Map and Integration Tables immediate
after the renaming of the instruction and descriptions of th
actions taking place during sequential processing and in the
The shaded boxes and circled markers highlight the handl
of instruction A5. The program undergoes three processi
phases. In the first, instructions A1 through A8 are renam
and executed; a new physical register is allocated to ea
newly created result (marker 2). The second phase beg
after all the instructions have completed execution when
branch mis-prediction is detected at instruction A3. Instru
tions A8, A7, A6, A5 and A4 are recovered in reverse orde
and the original mappings for their output registers a
restored (marker 3). However, instead of recycling the phy
cal registers, each result is entered into the IT and tagged w
the instruction PC and physical register inputs used to creat
(marker 4). Integration comes into play in the final phas
Having recovered from the mis-prediction, the sequential pr
cessor resumes fetching at the re-convergent point beginn
at A5. We follow the renaming and potential integration o
each instruction carefully.

Intuitively, the re-traced instance of A5shouldbe integrated
since removing A4 did not change the value of Y. Indee
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when A5 is renamed for a second time Y is mapped to 51
(marker 5), the same mapping it had during A5’s original,
squashed execution (marker 1). Properly, the IT contains an
entry for an instance of A5 with input physical register 51
(marker 6). By comparing PC/input-register tuples from the
dynamic instruction and map table with the corresponding IT
tuples (marker 7 with 8, marker 5 with 6), we determine that
integration can take place. The act itself consists of setting the
output mapping of A5 to the physical register originally allo-
cated for it, 53 (marker 9). The IT entry is removed so that the
register will not be integrated by another instruction.

When A6 is renamed for the second time, it finds its input X
mapped to register 50. Changing the path has removed A4 and
changed the value of X with respect to A6, invalidating it.
This invalidation is naturally reflected in the IT, as no entry for
A6 with an input of 50 is found. The A6 IT entry has 52 as its
input; 52 was created by A4, which was squashed andnot re-
traced. Without a match, the instruction is left in the IT until it
is evicted. A new physical register, 57, is allocated to the cur-
rent instance of A6.

Recall, when we integrated A5, we entered its output (53) into
the map table. That action set the stage for A7, an instruction
that depends on A5, to be integrated now. The squashed ver-
sion of A7 was executed with input register 53, the output of
the squashed A5. When A7 is re-traced, its input is again 53
thanks to the integration of A5. A7 is integrated in exactly the
same manner that A5 was.

The final instruction in the group, A8, should not be integrated
since it depends on A6, which was itself not integrated. Such
indeed is the case. When A6 wasnot integrated, a new map-
ping (57) was created for X. This new mapping prevents A8
from being integrated, much like the removal of A4 changed
the mapping that prevented A6 from being integrated.

In a four wide super-scalar machine, the integration decisi
on these four instructions can be made in parallel. How this
done is the subject of a future section. However, the exam
demonstrated the four possible cases for super-scalar inte
tion: basic integration of an instruction (A5), basic non-inte
gration of an instruction (A6), the integration of an instructio
that depends on an integrated instruction (A7), and the no
integration of an instruction that depends on a non-integrat
instruction (A8).

2.2  Integrating Loads

An integrated instruction can be thought of as having two ex
cutions: aphysical executionwhere the instruction is actually
executed and then squashed, and anarchitectural executionin
which the integrated instruction is supposed to execute b
doesn’t actually do so. For most types of instructions, th
algorithm we have shown so far is perfectly safe. The comb
nation of operation and valid input values, denoted by PC a
physical registers respectively, guarantees that the results
the physical execution are identical to those that would be p
duced in the architectural execution, allowing the former to b
substituted for the latter. Loads are the exception. The in
gration of a particular load is not guaranteed to be safe beca
a conflicting store may have executed between the load’s ph
ical and architectural executions. A load that is either blind
integrated despite such a store conflict or that experience
post-integration conflict is termedmis-integrated. Mis-inte-
grations jeopardize correctness.

Loads present a problem because physical register names
not sufficient to detect load/store collisions. There are tw
ways to ensure that mis-integrated loads are not allowed
retire. The first is to re-execute all integrated loads and trea
change in the output value as a mis-speculation. The secon
to store data addresses (and potentially values) with loads
the IT and use stores to invalidate matching loads. The fi
ed
Insn Action Dynamic Insn Map Table Integration Table IT Action
X Y Z W PC I1 I2 O

Rename/Alloc A1: X = 0; 50 47 48 49 No Match
Rename/Alloc A2: Y = 1; 50 51 48 49 No Match
Rename/Alloc A3: if (Z == 0) 50 51 48 49 No Match
Rename/Alloc A4:    X = 1; 52 51 48 49 No Match
Rename/Alloc A5: Y++; 52 53 48 49 No Match
Rename/Alloc A6: X++; 54 53 48 49 No Match
Rename/Alloc A7: W = Y * Y; 54 53 48 55 No Match
Rename/Alloc A8: Z = X * Y; 54 53 56 55 No Match
Recover A8: Z = X * Y; 54 53 48 55 A8 54 53 56 Enter
Recover A7: W = Y * Y; 54 53 48 49 A7 53 53 55 Enter
Recover A6: X++; 52 53 48 49 A6 52 54 Enter
Recover A5: Y++; 52 51 48 49 A5 51 53 Enter
Recover A4:    X = 1; 50 51 48 49 A4 50 52 Enter
Rename/Integrate A5: Y++; 50 53 48 49 A5 51 53 Match/Remove
Rename/Alloc A6: X++; 57 53 48 49 A6 52 54 No Match/Leave
Rename/Integrate A7: W = Y * Y; 57 53 48 55 A7 53 53 55 Match/Remove
Rename/Alloc A8: Z = X * Y; 57 53 58 55 A8 54 53 56 No Match/Leave

FIGURE 1. A Working Example of Integration.Shows the three-phase processing of a series of instructions.
The three phases are: (i) initial execution (ii) recovery and (iii) squashed-path re-execution. The shad
quantities and circled markers highlight the actions surrounding instruction A5.
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method uses a simple IT but reduces the positive impact of
successful integration, forcing integrated loads to consume
execution bandwidth. The second increases the potential
impact of successful integration, but complicates the IT some-
what.  Our framework models store invalidations.

3  Implementation Aspects

In this section we discuss several implementation aspects of
integration including all modifications that must be made to
the base microarchitecture, the integration circuit itself, and
the mechanism that ensures the safe integration of loads.

3.1  Base Micro-architecture Requirements

Integration is not a technique that can be applied to all specu-
lative microarchitectures. Its implementation requires that the
base microarchitecture allow speculative results to remain
intact past a mis-speculation recovery action and support the
out-of-order allocation and freeing of speculative storage.

These requirements disqualify many current microarchitec-
tures. In-order speculative microarchitectures like Sun’s
UltraSparc-III that use working (future) register files indexed
by architectural register number both disallow arbitrary
assignments of physical results to architectural names and
overwrite the mis-speculated instructions results during recov-
ery. Intel’s P6 [10] core processors and HAL’s SPARC64 V
[7] keep speculative results in the re-order buffer, preventing
their preservation past a mis-speculation recovery. IBM’s
Power [19] processors and (we believe) AMD’s K7 [5] have
physical register files separate from the re-order buffer, but
also have an architectural register file and require that physical
registers be allocated and freed in-order. Microarchitectures
with physical register models thatcan support integration are
the out-of-order Alpha processors starting with the 21264 [11],
those of MIPS beginning with the R10000 [21], and (we
believe) Intel’s Pentium 4 NetBurst microarchitecture [9].

3.2  A Micro-architecture with Integration

We now examine a microarchitecture that includes integration
and comment on changes in the flow of instructions through
the modified pipeline. A pipeline with integration is shown in
Figure 2(a); the structural modifications and new register tag
and data paths are in bold. We work from the back of the pipe-
line to the front, explaining how instructions become candi-
dates for integration before dealing with the flow of integrated
instructions. A later subsection is dedicated to explaining the
integration circuit itself in detail.

Since integration deals with salvaging the results of squashed
instructions, the most natural time to insert instructions into
the IT is during mis-speculation recovery. Implementation of
IT insertion is straightforward for micro-architectures that
implement recovery using serial rollback. Most microarchi-
tectures, however, including the Alpha 21264 [11] and MIPS
R10000 [21], implement recovery as a monolithic copy from a
checkpoint. IT insertion is slightly more involved in this case,
but its particulars do not affect integration performance. For
clarity, we explain the process as serial.

One important qualification to the IT entry procedure is the
exclusion of all instructions that have not completed execu-

tion. The reasoning behind this decision is that it is the int
gration of completedinstructions that contributes most to
performance. Integration provides two main performance be
efits: it allows instructions to bypass the issue engine and
collapses dependent chains of instructions. Neither of the
benefits applies to instructions that have not issued and o
the first applies to instructions that have issued but not co
pleted. However, the number of instructions likely to be inte
grated while in this post-issue/pre-completion state is sma
and in return for forfeiting them, we simplify the handling o
integrated instructions by assuming that all integrated instru
tions are complete. Faulting instructions are also exclud
from the IT, since faults may have side effects that would ne
to be reproduced on integration.

One of the principles of integration is that it allows speculativ
physical registers to “survive” recovery. This means that du
ing recovery output registers of instructions that are enter
into the IT are not reclaimed and added to the free list as usu
However, we must be explicit about who is responsible fo
eventually freeing the registers of instructions thatare in the
IT, so that these registers are not “leaked”. The policy is act
ally quite straightforward. The IT assumes responsibility fo
the physical registers of its entries. If an entry is evicted with
out having been integrated, it physical register is added to t
free list. Conversely, if an entryis integrated, responsibility
for the register returns to the re-order buffer, which handles
in the usual way. One caveat is that the IT entry of an int
grated instruction must be cleared so that no other sequen
instruction will attempt to get ownership of the correspondin
register (the output of two simultaneously active instruction
may not be allocated to the same physical register). Notic
the change of ownership mechanism also allows the sa
instruction to be repeatedly squashed and integrated.

The next subsection describes the integration related modifi
tions to the register renaming logic. Here, we describe wh
happens to an instruction after it has been integrated whi
having decided that only completed instructions can be in
grated, is not much. An integrated instruction is entered in
the re-order buffer marked as completed and the integra
physical register is set as its “current mapping”. Integrate
loads (and stores) are allocated load (or store) queue ent
that are filled using the ITMemory-Addressand Memory-
Valuefields and marked as completed. These entries, too,
ordinary. Finally, if the integrated instruction is a branch, th
resolution and potential recovery sequences are started im
diately using theJump-TargetIT field as a recovery address.
The integrated instruction can bypass the out-of-order exe
tion core; it does not need to be allocated to a reservation s
tion, scheduled, executed, or written back.

3.3  Integration Circuit

The most delicate piece of the integration mechanism is t
integration circuit itself. The integration circuit examines eac
dynamic instruction and decides whether or not that instru
tion may be integrated. Of course, it must do so for multipl
potentially dependent instructions in parallel. In this sectio
we describe one possible implementation of this logic and
complexity. We begin with a scalar description of the circui
before proceeding to the super-scalar case.

Scalar register renaming occurs in two logical steps. First,
instruction’s logical inputs are renamed to physical outpu
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using lookups in the map table. Second, its logical output is
allocated a new physical register and this new logical-to-phys-
ical mapping is entered into the sequential map table, allowing
future instructions that need the value to obtain their inputs
from the correct location. We call the two stagesinput routing
and output allocation, respectively. Integration adds a piece
calledoutput selectionin which the output mapping must be
chosen between a newly allocated physical register and a
physical register obtained from an IT entry. The output selec-
tion circuit occurslogically afterthe input routing circuit since
the integration test must compare the input physical registers
of the sequential instance with those in the IT entry. However,
the scalar implementation of integration can be thought of as
occurring in one of two ways. In the first, output selection is
implemented serially after input routing with the integration
table indexed by instruction PCand input physical registers.
In the second, output selection is split intoIT lookup, which
happens in parallel with input routing, and anintegration test,
which occurs logically after it. In this organization, shown in
Figure 2(b), the IT is indexed byPC onlyand the physical reg-
ister numbers are used to match tags. Both schemes likely
require pipelining register renaming into at least two stages.

The merits of each implementation are open to debate in the
scalar realm, but in a super-scalar environment only the second
is viable. While the first scheme interleaves and serializes the
input routing and output selection decisions that must be made
for each instruction, the PC-only indexed scheme permits a
parallel prefix implementation similar to the one used to super-
scalarize conventional register renaming. Let us review con-
ventional super-scalar renaming. Super-scalar renaming is
more complex than scalar renaming because its input routing
decisions must reflect intra-group dependences. To do so,
dependency-check logic acts in parallel with output allocation.
This logic compares the logical input of each instruction in the
group with the logical output of each previous in-group
instruction; a match overrides the initial input routing retrieved
from the map table and routes the input to the appropriate

newly allocated physical register. For example, in a group
four two-input, one-output instructions each of the secon
instruction’s inputs has to be compared with the first instru
tion’s output, each of the third instruction’s inputs has to b
compared with the outputs of the first two instructions an
each of the fourth instruction’s inputs has to be compared w
the outputs of the first three instructions. The total number
comparisons for this case is 12 and in generalI * N(N-1)/2,
with I the number of inputs per instruction andN, the super-
scalar width or the number of parallel renaming operations.
general, the depth of the circuit is linear withN and the num-
ber of comparisons grows asN2.

In addition to the conventional dependence-check circuit th
compares logical registers, integration requires that we imp
ment output selection and any corrections it might imply fo
input routing for subsequent instructions. Recall, for the sc
lar integration test we compared each IT entry input with th
corresponding register retrieved from the map table. In t
super-scalar case, we must also compare it to the physical r
ister outputs for all integration candidates of all prior instruc
tions in the group. Note, we do not have to compare th
candidate inputs with the newly allocated physical registe
corresponding to each prior instruction: the situation in whic
an instruction is dependent on a prior instruction in the grou
and is integrated while the prior instruction is not is obvious
impossible. Nevertheless, although the priority encodin
depth of the circuit is stillN, the superscalar width, the numbe
of physical register comparisons now grows with bothN and
the number of possible IT matches,M. The precise formula is
I * (((N(N-1)/2)M + N) * M) ; the growth of the function is
IN2M2. The complexity of the circuit is very close to that o
register renaming for a direct-mapped IT, but diverges f
higher-associativity implementations. For instance, a fou
wide machine with a direct-mapped IT requires 20 physic
register comparisons to implement integration. The sam
machine with a 2-way IT needs 64 comparisons. Just f
scale, an 8-wide machine with a 4-way IT requires 960 com
h
xed

ee
p
is
FIGURE 2. Implementation Aspects. (a) A micro-architecture with integration. Integration-specific
modifications in bold. In addition to the actual integration table (IT) and modified rename logic, there are
additional paths from the instruction ordering buffer (ROB) to the IT that are used during recovery, a pat
from the IT to the free list, and paths between the IT and the load and store queues. (b) Scalar, PC-inde
integration circuit. A scalar integration circuit in which the IT and map table are accessed in parallel. An
extension of this circuit implements super-scalar integration. The diagram traces the IT, map table and fr
list, as well as the instruction itself through the two steps of integration-enabled register renaming. At the to
of the figure, the instruction shown is raw and the structures are as they appear before the instruction
renamed.  At the bottom, the instruction is renamed and the structures reflect that fact.
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parisons! Certainly, a highly associative integration circuit is
challenging to build. In the evaluation section, we quantify the
performance impact of higher associativity.

We should mention here that some of the complexity of the
integration circuit may be moved off-line into the IT itself.
For instance, the IT could internally perform the intra-group
dependence checks and store groups of dependent instructions
in a kind of “trace” that can be integrated usingI*N*M com-
parisons. However, IT management becomes much more
complex in this case, and there is the added problem of choos-
ing the grouping of instructions into traces. An investigation
of such optimizations is outside the scope of this work.

3.4 Safe Load Integration via Store Invalidation

When first presenting integration, we remarked that special
support must be provided to ensure that loads that have been
invalidated by intervening stores are removed from integration
consideration. At the very least, the mis-integration should be
detected so that alternative corrective action can be taken.
Mis-integration detection and avoidance are implemented
using a simple extension to the processor’s basic load specula-
tion mechanism. Processors that supportload speculation
(advancing loads past incomplete stores) detect store/load
ordering violations as follows. The load and store queues con-
tain address and value fields. Completed stores check their
address and value against address/value pairs ofyoungerpre-
viously completed loads. An address overlap coupled with a
value mismatch signals a memory ordering violation which is
handled by replaying the load in some way.

The solution handles two cases. The mis-integration detection
case covers conflicts with stores that completeafter the load
has been integrated. Mis-integration detection is implemented
naturally by the native load speculation mechanism. Recall,
loads are entered into the IT along with their address and value
fields from the load queue. When they are integrated, these
fields arerestored tothe load queue. To a completing store,
therefore, an integrated load looks just like any other com-
pleted load and conflicts are handled in the usual way. Mis-
integration avoidance targets conflicts with stores that com-
pletebeforea load is integrated. To implement avoidance, we
simply extend the store-invalidation procedure to include IT
loads. The IT essentially “snoops” completed stores, match-
ing their address/value pairs with the Memory-Address/Mem-
ory-Value pairs of IT loads. An address match/value
mismatch causes the invalidation of the corresponding load,
preventing it from being integrated. Detection and avoidance
can also be implemented using purely address-based criteria.

Our results show that most mis-integrations are avoided.
Those that aren’t, while not impacting correctness, can
degrade performance as they are equivalent to normal load or
value mis-speculations. Our performance evaluation section
will measure the prevalence of mis-integration.

3.5  Handling Data Mis-Speculations

The discussion of load integration brings up an important note
regarding integration and the way it must deal with instruc-
tions squashed due to data mis-speculations like speculative
memory-ordering violations [14, 22] and value mis-specula-
tions [12]. Specifically, for micro-architectures like the Alpha
21264 [11], in which data mis-speculations are handled by

squashing, integration must be careful not to confuse a va
mis-speculated instruction and its dependent instructions w
correctly executed squashed instructions. IT entries that cor
spond to data mis-speculated results must not be integra
One broad solution to this problem would be to not ent
squashed instructions into the IT during recovery from the
kinds of mis-speculations. However, this solution is too har
since it prevents the correctly executed instructions that we
lost during recovery from being salvaged. An effective trick i
to enter all completed instructionsexceptfor the value mis-
speculated instructionitself into the IT. This omission effec-
tively “detaches” all dependent instructions from possible int
gration, while leaving all independent instructions intact.

There is an interesting interaction between integration a
another technique for salvaging work lost to a data mis-spec
lation,selective squashing[8, 12, 15, 16]. In selective squash-
ing, instructions are kept in reservation stations un
retirement allowing them to simply re-issue as data mis-spec
lations are resolved. If selective squashingis implemented,
integration is not “activated” during data mis-speculation
since the instructions are not squashed and re-fetched. In
gration, on the other hand, still handles control mis-specu
tion squashes which, quite conveniently, cannot be handled
selective squashing. Integration and selective squashing co
plement each other nicely. However, we do not explore the
interaction experimentally; our simulations model full squas
ing for all mis-speculations.

3.6  Setting the Size of the Physical Register File

A final implementation note concerns the size of the IT and
relationship to the total size of the physical register file. T
avoid resource stalls, the number of physical registers sho
be equal to the maximum number of values (both architectu
and speculative) that can be “in play” at any time. For a spe
ulative machine this is equal to the number of architected re
isters plus the maximum number of renamed in-fligh
instructions (the size of the re-order buffer). Now, the IT i
simply a mechanism for keeping physical registers “in circul
tion” for longer periods of time; values in the IT are still con
sidered “in play”. Consequently, to avoid resource stalls in
micro-architecture with integration, the size of the physic
register file should be equal to the number of architected reg
ters plus the size of the re-order bufferplus the size of the IT.
In our simulated configurations, we use this formula to ensu
that the machine never stalls for lack of a free physical regist

4  Performance Evaluation

We evaluate the potential performance impact of integrati
using cycle-level simulation. We present a full set of resul
for one specific design meant to represent a potential curre
generation (or very near future) microprocessor. We th
briefly look at two dimensions in the IT design space, size a
associativity. To be fair, we quantify the adverse performan
effects of any additional pipeline stages required by integr
tion. Finally, we try to project integration’s impact on more
aggressive future-generation microarchitectures.

4.1  Experimental Framework

We evaluate integration using the SPEC2000 integer ben
mark suite. The programs are compiled for the Alpha EV
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architecture by the Digital UNIX V4cc compiler with optimi-
zations-O3 -fast . We use the test datasets for reporting
performance for all benchmarks exceptperlbmk. There we are
forced to use the training set because the test set contains fork
and exec calls that our simulation environment does not sup-
port. Where multiple test data sets are given we use the longer
running one, specificallyplacefor vpr andkajiya for eon. We
simulate all programs in their entirety.

The simulation environment is built on top of the SimpleScalar
3.0 [1] Alpha toolkit. The cycle-level simulator models an out-
of-order machine similar in organization to an unclustered
Alpha 21264 [11] with nominal stages fetch, register rename
and dispatch, schedule, execute, writeback and commit. The
out-of-order scheduling logic speculates loads aggressively,
issuing them even in the presence of prior stores with unavail-
able addresses. A mis-speculation causes the load and all
downstream instructions to be squashed and re-fetched. Our
model does not include a dependence-speculation mechanism
that may reduce the incidence of memory-ordering violations
[3, 14, 22]. However, we don’t believe that the inclusion of
such a mechanism would take away a significant portion of the
impact of integration, since most integration candidates are
produced by control mis-speculation. The recovery mecha-
nism itself is modeled as serial with bandwidth equal to com-
mit. Recovery stalls renaming, but execution and retirement
from the head of the machine may continue. We model a
memory system with non-blocking caches, finite write-buffers
and miss-status holding registers (MSHR), and cycle accurate
bus utilization. Table 1 shows the simulation parameters in
detail. IT configuration is specified inline with the respective
presentation of results. The Alpha has 64 architectural regis-
ters; the number of physical registers for a given configuration
is therefore always set to be 64 + ROB size + IT size.

4.2  Base Configuration Results

Table 2, which is split into two for readability, shows the per-
formance impact of integration using a 256-entry direct-
mapped IT on the configuration described above. Data is pre-
sented in four main parts. The first two characterize the perfor-
mance of the base and modified system in terms of instructions
fetched and executed, branch mis-predictions and branch mis-
prediction resolution latency, and total memory-ordering vio-

lations. These numbers give a feel for the degree of mis-sp
ulation in each program and its causes. Comparing the
groups of numbers pair-wise gives an idea of the overall effe
of integration on speculative (mis-speculative) processor act
ity. The next two parts measure the activity and effectivene
of integration using more direct metrics. We report absolu
counts of instructions integrated, loads integrated, and m
predicted branches integrated (and ostensibly, immediat
resolved).

The shaded at the bottom computes the characteristic and
formance metrics of integration and its impact on perfo
mance. Thecontribution rateis the number of instructions
integrated as a percentage of the total number of instructio
committed; it is the amount of work integration contributes t
the architectural execution of the program. Thesalvage rateis
number of instructions integrated as a percentage of squas
(and completed) instructions and measures the rate at wh
integration candidates are harvested. The contribution and s
vage rates measure both a program’s inherent suitability
integrationandour mechanism’s ability to capture integration
candidates. The final three metrics measure the percentag
instructions fetched, instructions executed and total execut
time saved by integration.

The performance figures show that integration is equally effe
tive on all benchmarks. On some, likegzip, vpr, crafty and
twolf, it cuts execution time by upwards of 5%. On others,
achieves speedups of less than 1%. To explain this behav
we appeal to the structure of the programs and to the contrib
tion and salvage rates, which help correlate this structure w
suitability for integration. There are some programs that f
structural reasons simply cannot take advantage of integrati
One possibility is that the programs have few squash-caus
branch mis-predictions and memory-ordering violation
Another is that branch mis-predictions are present but that
code within the conditional arms is so long that the process
does not have time to fetch and execute the re-converg
region before the branch is resolved. Finally, if the re-conve
gent regionis reachable along the mis-speculated path, it
possible that it contains no data-independent instructions,
ones that can later be integrated.

How do the benchmarks break down according to these cri
ria? Bzip2, for instance, encounters branch mis-prediction
ative
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Front-End Symmetric 16K-entry combined 10-bit history gshare and 2-bit predictors. 2K entry, 4-way associ
BTB, 32 entry return-address-stack. 3-cycle fetch. 32-entry instruction buffer. Up to 8 instructions fr
two cache blocks fetched per cycle. A maximum of one taken branch per cycle. 8-wide single-c
decode.  Direct, unconditional jump mis-predictions recovered at decode.

Issue
Mechanism

8-way superscalar out-of-order speculative issue with a maximum of 128 instructions or 64 loads o
stores in flight. 2-cycle schedule/register read. Loads speculatively issue in the presence of earlier
with unknown addresses. The load and subsequent instructions are squashed and re-fetched on a m
ordering violation. Recovery from all forms of mis-speculation is serial with a bandwidth of 8 instructio
per cycle. Recovery stalls register renaming, but execution of unrecovered instructions may proce
parallel. Store to load bypass takes 2 cycles. Memory and control instructions have the highest sched
priority. Priority within a group is determined by age.

Memory
System

32KB, 32B lines, 2-way associative, 1-cycle access L1 instruction cache. 64KB, 32B lines, 2-way ass
tive, 2-cycle access, L1 data cache. A maximum of 16 outstanding load misses. 16-entry store buffe
entry ITLB, 32-entry DTLB with 30-cycle hardware miss handling. Shared 1MB, 64B line, 4-way assoc
tive, 12 cycle access L2 cache. 70-cycle memory latency. 32B bus to L2 cache clocked at processo
quency. 16B bus to memory clocked at 1/3 processor frequency. Cycle level bus utilization modeled.

Functional Units
(latency)

8 INT ALU (1), 2 INT mult/div (3/20), 3 FP add (2), 1 FP mult/div (4/24), 4 load/store (2). The FP adde
and all multipliers are fully pipelined.

TABLE 1. Simulated machine configuration.
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infrequently (fewer than once every 400 instructions). It falls
under the first category.Bzip2’s salvage rate is close to 40%,
but it executesso few instructions along mis-speculated paths
as compared to other programs that the overall pool of integra-
tion candidates is small. The second two categories are some-
what more difficult to distinguish from one another, but five of
the other benchmarks:gcc, mcf, parser, perlbmkandgap fall
into them. These programs incur branch mis-predictions or
memory ordering violations every 100 instructions or so (or
more frequently), execute (and squash) somewhat more
instructions than they commit, yet permit the successful inte-
gration of only around 20% of squashed instructions.Vortexis

a strange case. It executes many instructions along squas
paths but, since many squashes are due to load mis-spec
tion, integrates only a relatively low percentage of them. Pe
formance gain is achieved because many of the integra
instructions are mispredicted branches. The four benchma
we mentioned at the top execute a lot of work along mis-spe
ulated paths and integrate that work at a high rate. These p
grams benefit the most from integration. Other factors th
contribute to the observed impact of integration but are dif
cult to quantify directly are the parallelism in the high-integra
tion regions and the extent to which the integrated instructio
help collapse dependence chains.
.56
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.72
8
8
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.33
.10
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5
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.73
0.94
.94
9
6
2
.40
.77
9
8
2

gzip vpr gcc mcf crafty parser
Committed instructions (M) 3367.27 1566.70 2015.64 259.63 4264.78 4203
Base Fetched instructions (M) 5555.67 3667.92 3816.01 527.87 8080.35 7515

Executed instructions (M) 4114.58 2069.79 2327.15 292.49 5158.60 4854
Mispredicted branches (M) 16.61 20.48 22.93 2.54 38.80 38.0
Misprediction resolution lat. (c) 29.72 18.41 16.85 33.37 21.48 20.7
Mis-speculated loads (M) 2.50 0.00 0.20 0.01 1.35 0.1

Base
+ IT

Fetched instructions (M) 5376.16 3424.83 3709.65 509.96 7659.44 7374
Executed instructions (M) 3481.16 1774.06 2133.07 271.98 4649.16 4582
Mispredicted branches (M) 15.91 20.90 22.97 2.54 38.84 38.0
Misprediction resolution lat. (c) 27.56 15.66 15.86 31.96 19.27 20.1
Mis-speculated loads (M) 3.29 0.59 0.36 0.02 1.41 0.2

Integrated instructions (M) 640.70 249.35 167.73 15.85 450.31 274.49
Integrated loads (M) 177.12 90.69 55.60 3.28 200.29 78.19
Integrated mispredicted branches (M) 0.78 0.59 0.17 0.01 0.53 0.54
Integrated/committed (%) (contrib.) 19.0 15.9 8.3 6.1 10.6 6.5
Integrated/squashed (%) (salvage) 61.9 46.7 29.1 24.0 45.3 28.3
Fetched insns saved (%) 3.2 6.6 2.8 3.7 5.2 1.9
Executed insns saved (%) 15.4 15.3 8.3 7.0 9.9 5.6
Execution time saved (%) 4.8 8.1 2.0 1.1 5.2 1.1

eon perlbmk gap vortex bzip2 twolf
Committed instructions (M) 458.29 27684.23 1169.58 9808.12 8822.14 258
Base Fetched instructions (M) 987.32 51890.55 1738.94 17977.94 10694.62 53

Executed instructions (M) 554.43 30300.91 1227.20 11673.81 9067.05 295
Mispredicted branches (M) 4.34 261.86 9.80 34.98 24.40 2.8
Misprediction resolution lat. (c) 14.32 60.65 24.82 12.41 19.56 16.5
Mis-speculated loads (M) 3.92 13.66 0.15 43.15 0.16 0.3

Base
+ IT

Fetched instructions (M) 957.22 51341.83 1722.18 17111.10 10638.29 505
Executed instructions (M) 501.30 28964.36 1186.67 9919.20 8917.34 268
Mispredicted branches (M) 4.31 262.07 9.87 33.85 24.49 2.8
Misprediction resolution lat. (c) 13.56 59.88 24.35 10.36 19.10 14.9
Mis-speculated loads (M) 3.74 13.56 0.18 40.14 0.52 0.3

Integrated instructions (M) 41.35 1308.39 3.80 157.36 132.05 22.35
Integrated loads (M) 12.37 435.56 1.04 34.93 44.27 8.38
Integrated mispredicted branches (M) 0.30 7.67 0.02 11.73 0.27 0.27
Integrated/committed (%) (contrib.) 9.0 4.7 0.3 1.6 1.5 8.6
Integrated/squashed (%) (salvage) 44.8 22.4 22.4 7.3 33.4 41.4
Fetched instructions saved (%) 3.1 1.1 1.0 4.8 0.5 4.8
Executed instructions saved (%) 9.6 4.4 3.3 15.1 1.7 9.2
Execution time saved (%) 3.0 0.9 0.4 3.1 0.4 5.6

TABLE 2. Detailed Performance Impact of Adding a Direct-Mapped, 256-entry IT to a Current Generation
Microarchitecture. Raw quantities are listed in millions of events (M) or cycles (c).
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To a first order, integration is primarily a technique for reduc-
ing the number of instructions executed in a program. To that
end it is fairly successful, reducing the consumption of execu-
tion bandwidth by 1% to 15%. However, a rather striking
trend is the incredibly strong correlation between the perfor-
mance of integration and its second order effect, reducing the
number of instructions fetched, which it does at rates that vary
from close to nil to near 7%. Integration is a technique that
operates at decode/rename time. It is is therefore unable to
eliminate the latency and bandwidth of fetch from the cost of
an integrated instruction. Integration frees up execution band-
width for new instructions, but does not directly free up more
fetch bandwidth to fetch those new instructions (it actually
can, but only indirectly via the accelerated resolution of mis-
predicted branches). As a result, the reduced consumption of
execution bandwidth generally leaves bubbles and open slots
in the execution pipelines. Actual performance gain is more
closely related to the number of instructions eliminated from
processing completely.

One opportunity for integration to do harm is by precipitating
squashes through mis-integrations. However, our figures show
that although memory-ordering squashes are sometimes
increased with integration, the number of introduced squashes
is small in comparison with the number of loads integrated.
On the whole, integrationreducesthe amount of mis-specula-
tion activity in the processor, cutting down the number of
instructions fetched and (to a lesser degree) executed. This
fact suggests two interesting applications for integration. The
first is as a dynamic power and energy reduction technique
[13]. This use, of course, requires that the power characteris-
tics of integration itself be acceptable, something that has not
yet been investigated. The second application is in a simulta-
neous multithreading (SMT) processor [6, 20], where several
narrow front-ends share a large out-of-order execution engine.
This could be an ideal environment for integration, which
would reduce contention in the back end, and would require
only (replicated) narrow, low-complexity integration circuits.

4.3  Impact of Table Size and Associativity

Two important parameters in the design of the IT are its si
and associativity. Since the IT always contains themost
recently squashedinstructions, its size determines the degre
to which it can salvage work fromolder squashed regions. If
the IT is too small, older squashed instructions would b
evicted before they could be integrated. However, an ove
large IT is also undesirable since it implies an overly larg
(and overly slow) physical register file.

The effect of IT size on the performance impact of integratio
is shown in Figure 3(a). The trends certainly support our pr
gram-structure explanation for the bimodal nature of integr
tion, as each group of benchmarks responds differently
changes in IT size. Those benchmarks that fail to benefit fro
integration for structural reasons do so consistently, regardl
of IT size. More integration resources do not change the fa
that the product of program and machine does not produ
many valid integration candidates. On the other hand, pr
grams whose structure does allow them to support integrati
can draw additional benefit from additional integratio
resources. In general, however, a very large IT is not nec
sary. A significant fraction of the benefit can be achieved wi
a small IT that can buffer the squashed results from the la
mis-speculated region. For this set of programs and o
machine configuration, 256 entries (enough space to buf
instructions from between 4 to 8 mis-speculated region
appears to be sufficient. The corresponding number of phy
cal registers is 448.

The associativity of the IT has two different uses that impa
performance in two ways. From the standard viewpoint, ass
ciativity is a mechanism for more efficient management of co
lisions in the IT. Specific to the integration circuit, howeve
associativity can also determine the number of squash
instances of the same static instruction that are simultaneou
considered for integration. Although the first use does n
ing
.

FIGURE 3. Effect of IT Size and Associativity on Performance Impact of Integration.Percentage of
execution time saved using (a) a direct-mapped IT of four sizes: 64, 128, 256 and 512. (the correspond
physical register file sizes are 256, 320, 448 and 704) and (b) a 256-entry IT with associativities 1, 2 and 4
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necessarily imply the second, we use associativity to quantify
both IT eviction policy and integration circuit complexity in
order to simplify the discussion. The impact of IT associativ-
ity on integration performance is shown in Figure 3(b). The
trends are similar to those observed when changing the size of
the IT; the bimodal effect is still present for the same program-
structural reasons. The trends are much less pronounced, how-
ever. Except for in the cases ofgzipandvortex, there is little
benefit to having anything more complex than a direct-mapped
IT that supplies a single integration candidate per instruction.
That higher associativities that would overly complicate the
integration circuit are unnecessary is good news indeed.

4.4  Impact of Increased Pipelining

Earlier we mentioned that an implementation of integration
mayrequire register renaming to be pipelined into two stages.
Such an increase in pipeline depth will erode some of the per-
formance gained by integration, and potentially induce abso-
lute slow-downs for programs that did not originally benefit
from integration and would now be forced to pay for its imple-
mentation. The increased number of physical registers may
also require adding additional register read/schedule cycles.

The impact of increased pipelining for both register renaming
and register read is shown in Figure 4(a). Integration-induced
increased pipelining does mitigate the performance impact of
integration, even producing slow-downs for those benchmarks
which integration does not help. The dominant effect is an
increase in the branch resolution latency which cuts integra-
tion’s fetch savings. There is an interesting interplay between
increased pipelining and integration. On one hand, it length-
ens the branch resolution latency, increasing the number of
instructions that can be executed along mis-speculated paths.
On the other, it slows down the execution ofall instructions,
reducing the completion rate of squashed instructions. The
overall effect on the number of integration candidates and inte-
grations is small.

Although the effects of pipeline depth increases take aw
some of integration’s performance, such increases are by
means mandatory. The access times of large physical regi
files can be controlled using techniques like replication [1
19] or banking [4] and while integration probably require
two-stage register renaming, it should not add stages
already pipelined renaming implementations.

4.5  Impact of Base Microarchitecture

One final piece of data we would like to provide is an estima
of the impact of integration for more aggressive microarchite
tures. To model a microarchitecture that hopefully represen
a next-generation microprocessor, we begin with the organiz
tion of our basic 8-way machine. We double the re-orderin
capability by doubling the sizes of the instruction and memo
ordering buffers; the number of physical registers is increas
accordingly. In the memory system, we double the size of t
L2 cache to 2 MB and increase the number of simultaneou
outstanding misses to 16. To simulate a faster clock, w
deepen the pipeline to 5-cycle fetch, 3-cycle decode/rena
and 4-cycle register read, lengthen cache array access time
cycles, and slow raw memory access time and the memory
by 50%. In Figure 4(b), we compare the speedups achieved
our baseline integration configuration (a direct-mapped 25
entry IT) when applied to both the current-generation an
next-generation microarchitectures.

One trend that is noticeable by its novelty is that, unlik
increasing IT size or associativity, a more aggressive micr
architecturedoes increase the impact of integration on pro
grams that do not benefit from it in a more conservative impl
mentation. The reason for this is that a more speculati
machine changes the structural behaviorof the program.
Larger re-order buffers that provide more room for speculatio
and a deeper pipeline that increases the time it takes to d
cover and resolve branch mis-predictions combine to raise
total number of instructions executed along mis-speculat
FIGURE 4. Effect of Increased Pipelining and a More Aggressive Base Microarchitecture on Performance
Impact of Integration. Execution time saved using a direct-mapped 256-entry IT for (a) our base
microarchitecutre with integration-deepend pipeline and (b) a more aggressive base microarchitecture.
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paths. That increases the number of potential integration can-
didates and, in turn, successful integrations. For example, a
larger machine can mis-speculate longer along a conditional
arm and is more likely to reach (and squash) the re-convergent
region along the mis-speculated path. Our results indicate that
between 5% and 50%more instructions are integrated in the
more aggressive, more-speculative configuration.

The relative increase in the effectiveness of integration is prob-
ably larger than a simple increase in integrated instructions can
account for. As the graph shows, integration is 50% to 120%
more effective in reducing execution time in the aggressive
configuration than in the base configuration. Absolute perfor-
mance improvements for the next-generation micro-architec-
ture are close to or over 10% for several benchmarks. The
reason for this boost is that in the more aggressive, more
deeply pipelined implementation, the benefit of each inte-
grated instruction is also relatively higher. Specifically, the
longer register-read times make integration’s ability to col-
lapse dependent chains of instructions more important. The
absoluteimportance of instant branch mis-prediction resolu-
tion is also increased by longer register-read times. However,
the relative impact of this effect is somewhat mitigated
because the depth of the front end increases as well.

5  Related Work

The termsquash reusewas introduced to describe one of the
tasks performed byInstruction Reuse (IR)[18]. IR is a table-
based technique for avoiding the execution of an instruction
that has been previously executed with the same inputs. In
addition to squash reuse, in which the reused value comes
from the same instance of the instruction that has merely been
squashed, IR implementsgeneral reuse, in which the reused
value comes from a different (not necessarily squashed) previ-
ous instance that just happens to have the same input operands.
Integration implements only squash reuse because it requires
that the value already exist in the register file and that the
physical register inputs of the squashed instruction match
exactly with the inputs of the instruction it will “replace”. IR
lifts these constraints by storing the squashedvalueinside the
lookup table (which is called areuse bufferor RB) and writing
it into the register file when reuse is detected and by basing the
reuse criterion itself is oninstance-independent architectural
quantities like values or logical register names, rather than
instance-dependent micro-architecturalones like physical reg-
ister numbers. IR is very applicable, it can exploit general
reuse and be implemented on any microarchitecture, but has a
somewhat complex implementation. A value-based reuse test
implies the need to read registers, which not only complicates
the register file, but also moves IR further back in the pipeline,
reducing its impact. An architectural-name-based reuse test
removes the need to read registers but requires an explicit
dependence-tracking scheme within the RB so as not to
become too conservative. Both IR forms require additional
write data-paths into the register file. In integration, the reused
values are already stored in physical registers so no additional
register data-paths to read or write any values are required. At
the same time, the physical-register-based nature of the reuse
test implements dependence-tracking naturally.

The Dynamic Control Independence (DCI)[2] buffer is
another result salvage mechanism that operates in a centralized
window environment. The DCI buffer is a shadow re-order
buffer whose contents persist past mis-speculation events that

invalidate the architectural buffer (this is a familiar theme
Shadow buffer tags and results can be re-used if the instruct
proves to be control- and data- independent. Control indepe
dent instructions are found by associatively searching t
squashed region of the shadow buffer; their data-independ
nature is checked using an architectural-name-based invali
tion scheme. The DCI buffer is essentially an architectura
name-based implementation of squash re-use similar to IR t
uses a shadow re-order buffer rather than an RB.

We have already alluded to the interplay between integrati
andselective squashing[8, 12, 15, 16], which allows instruc-
tion instances to execute multiple times “in-place” befor
retirement. Selective squashing is an effective way of deali
with data mis-speculations, in which the correct instruction
are already in the machine. Selective squashing allows
penalty of squash and re-fetch to be avoided at the cost
keeping instructions in the reservation-station longer a
increasing reservation-station contention. Selective squa
ing, however, cannot salvage work lost to control mis-specu
tion. Integration and selective squashing are duals. Bo
techniques salvage instructions by keeping around informat
for longer than is conventionally required, physical registe
for integration and reservation stations for selective squashi
However, while selective squashing actively picks out instru
tions dependent on the mis-speculation, integration waits
all squashed instructions to be re-processed then picks out
ones that were actually mis-speculation independent.

6  Conclusions and Future Work

We present register integration (or justintegration), a tech-
nique for salvaging valid results that have been unavoidab
lost due to the sequential nature of speculation and mis-spe
lation recovery. Integration is a discipline that allows specul
tive results to remain in the physical register file past recove
events with the hope that they were independent of the m
speculation in question and can be used once the particular
that mis-speculation have been resolved. Integration logic
implemented as a modification to conventional register rena
ing that recognizes the validity of squashed results using th
data-dependences and spares the processor from having t
execute the corresponding instructions.

Our initial evaluation shows that integration has the potent
for noticeable performance improvements of up to 8% at co
figurations representative of current-generation processors
up to 11.5% for more aggressive, more speculative, mo
deeply pipelined next-generation configurations. These spe
ups are achieved through a combination of reduction in t
consumption of execution and fetch bandwidths, the collap
ing of dependent instruction chains, and the acceleration
branch resolution. Our numbers indicate that programs ty
cally are able to reuse between 20% and 60% of all squash
instructions that have completed execution prior to squashin
representing between 1% and 19% of committed instruction

Perhaps more important than integration’s performance ch
acteristics, are its mis-speculation reduction characteristics.
addition to improving performance, integration reduces th
overall level of wasted work performed by the processor.
reduces the number of instructions executed by re-usi
squashed computations and its acceleration of branch res
tion reduces the number of instructions fetched along m
speculated paths. According to our results, the number
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instruction fetches saved can reach 6% and the number of
instruction executions saved, 15%. Both of these numbers
grow relatively as the underlying micro-architecture becomes
more aggressive. These characteristics make integration an
interesting candidate for reducing dynamic-power and energy
and also suggest its use in reducing resource contention in
simultaneously multi-threaded (SMT) processors.

The implementation of integration is simple, requiring only an
integration table (IT), a small cache-like structure with limited
content-addressible capabilities and an integration circuit,
which is added to the register renaming logic. No changes to
either the fetch or execution engines themselves are necessary
and integration does not require the reading or writing of any
register values, only map table manipulations are used. The
performance improvements we present are all achievable with
the minimal complexity implementation of integration.

Future work in the area of integration includes a more thor-
ough evalutation of the IT design space, experiments with
more varied benchmarks, and a more detailed investigation
into the interaction of different micro-architectural parameters
with integration. A study of the high-level characteristics of
programs that draw benefit from integration is also interesting.
We have mentioned possibility for interesting synergy between
integration and selective squashing; that possibility needs fur-
ther investigation. The power aspects of integration and its
potential use as a power-reduction technique are also subjects
of open research.

The most interesting future direction for integration lies in its
ability to support new speculation models. As we have pre-
sented it, integration is a mechanism that can re-impose lost
sequential semantics on a set of instructions using only their
data-dependences. The real power of integration, however,
may be in its ability to impose such semantics on a set of
instructions that werenot executed sequentially in the first
place. Integration enables a new form of speculation,data-
driven speculation, in which speculative execution proceeds
along statically annotated data-dependence arcs with no
regards to sequencing. Integration is used subsequently to
sequence the results into a control-driven sequential form
required by the architectural interface. In fact, integration was
invented during the course of our investigation into a new form
of speculative multithreading calledspeculative data-driven
multithreading (DDMT) [17].
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