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1 Introduction

Continuing improvements in semiconductor technology — as characterized by
Moore’s law — have provided computer architects with an increasing number
of faster transistors with which to build microprocessors. In the past decade,
architects have seized these opportunities to build microprocessors that bear lit-
tle resemblance to the microprocessors of the 1970s and 1980s. With Moore’s
law projected to hold beyond the next decade, microprocessor architects will
have even larger transistor budgets with which to build innovative microproces-
sors; the microprocessor circa 2010 is likely to bear little resemblance to today’s
microprocessor.

The driving force behind the innovation in microprocessors for the past two
decades has been the quest for higher performance. Arguably the best way to
achieve this goal is an integrated approach that combines innovation in all
aspects of the problem: algorithms, software, and hardware. Computer archi-
tects typically work with a given algorithm, and concern themselves with hard-
ware and software. Within this context, the best technical solution is perhaps
an integrated software/hardware solution, where a compiler works in concert
with the architecture and implementation, possibly with changes to the hard-
ware/software interface (i.e., the instruction set architecture). However, this ap-
proach has not proven to be viable in the long term for a variety of reasons, both
technical and non-technical. Perhaps the most compelling (non-technical) reason
is that it is not practical to change the instruction set frequently. Radical changes
to instruction sets for general-purpose processors happen infrequently, perhaps
only once every few decades (e.g., DEC’s change from VAX to Alpha), with in-
cremental changes/additions (e.g., Intel’s MMX enhancements to IA-32) being
more common. This changes the model for achieving the desired goal of higher
performance: both software and hardware are forced to work within the con-
straints of a fixed (or nearly fixed) software/hardware interface. Consequently,
many of the innovations in microprocessors have been in the microarchitecture,
the building blocks of a microprocessor. A circa 1990 microprocessor (e.g., the
Intel 486) and a circa 2000 microprocessor (e.g., the Intel Pentium IV) of the
same family have essentially the same instruction set architecture, but radically
different microarchitectures.



To understand the innovations in microarchitecture, let us start out with the
CPU performance equation: T ime = N×CPI×T , where Time is the time taken
to execute a program, N is the number of instructions executed dynamically, CPI
is the number of cycles per instruction, and T is the clock cycle time. Improving
execution time means reducing the three terms on the right-hand side of the
equation. The microprocessor architect typically has little influence over the
first term — that is the realm of instruction set designers and compiler writers
— so the emphasis is on decreasing the second and third terms.

Semiconductor technology allows faster transistors, and these translate into
a faster clock cycle. The clock cycle can be made even faster by pipelining the
logic into more stages. Since not all technologies improve at the same rate (e.g.,
logic speeds have increased much faster than memory speeds), a faster clock cycle
results in increasing (relative) latencies of operations, which translates into an
increase in CPI. The role of the microprocessor architect is then to develop
microarchitectural features that not only prevent an increase in CPI as the clock
cycle is reduced, but even decrease it. The additional transistors provide ample
resources for implementing new features that aim to achieve this goal.

2 10 Years Back: The Emergence of Speculative

Execution Microarchitectures

To decrease CPI, parallelism is used to overlap the processing of instructions.
For a microprocessor architect, this has meant fine-grain, or instruction-level
parallelism (ILP), leaving more coarse-grain parallelism to be exploited by mul-
tiprocessors. Exploiting ILP is a cost-effective way of making use of chip real
estate and improving performance. Many of the techniques in the microproces-
sor architect’s toolbox increase the exploitation of ILP in a program’s execution.

Techniques to exploit ILP can either be static — those used in EPIC [8], or
they can be dynamic — those used by superscalar processors such as Compaq’s
Alpha 21264, Intel’s Pentium II, and others. We will limit our discussion to
dynamically-scheduled superscalar processors since these dominated the 1990s,
whereas general-purpose microprocessors using statically-scheduled ILP tech-
niques were only announced towards the end of the 1990s.

The processing of an instruction requires many steps, and we want to overlap
as many steps as possible to increase throughput; more overlap requires more
ILP. To understand the increasing demand for ILP, consider the increase in the
number of instructions that can be “in flight” at a given time in a micropro-
cessor. In the 1970s, microprocessors executed one instruction at a time, taking
many clock cycles to execute that instruction — there was only one instruction
in flight. The 1980s were the decade of pipelining; a typical pipeline had 5 stages,
processing a single instruction per clock cycle, resulting in up to 5 instructions in
flight. The 1990s were characterized by deeper pipelines, and wider instruction
issue (processing multiple instructions per cycle): a 2-issue, 5-stage pipeline Pen-
tium processor, a 3-issue, 10-stage pipeline Pentium II, and a 3-issue, 20-stage



pipeline Pentium IV, have about 10, 30, and 60 instructions (more accurately,
operations) in flight, respectively.

A strategy that relies on keeping many instructions in flight can only succeed
if many “useful” instruction can be kept in flight, and this requires the processor
to identify the path that will be taken through the program. Since a branch
instruction occurs every 5 to 6 instructions in typical programs, techniques to
prevent branches from stalling instruction fetching had to be developed: the flow
of instructions cannot be stopped when a branch is encountered. (With 50-60
instructions in flight there are likely to be about 10 branch instructions in flight,
so clearly branches cannot be processed sequentially.) Early machines proposed
predicting the direction of a branch and fetching instructions from the predicted
path [1]. But fetching alone is not enough, since the number of pipeline stages
devoted to instruction fetching constitute only a fraction of the pipeline. This
then bring up the notion of speculative execution: instructions from a predicted
path of a branch must also be executed so that more instructions can be kept
in flight, and overlap in processing increased.

The 1990s were the decade of speculative execution, i.e., the decade where
speculative execution processors entered the mainstream of processor design.
Today it is more apt to call the above control speculation, since the speculation
is on the outcome of a control (branch) instruction. Other forms of specula-
tion have since appeared. With control speculation, the outcome of a branch
instruction is predicted, and instructions from the predicted path executed in
a speculatively. If the prediction turns out to be incorrect, the speculative in-
structions are squashed (or aborted). Control speculative execution necessitates
microarchitectural mechanisms to support it [17, 24]. These include mechanisms
to guide the speculation: branch predictors, and mechanisms to recover from a
misspeculation: physical registers, register renaming, and precise exceptions.

The branch predictor is a key component, since the accuracy of the predictor
directly determines the utility of the instructions being executed speculatively.
The 1990s saw a lot of research in the design of branch predictors. Early proces-
sors used simple 2-bit predictors [22], which quickly gave way to 2-level adaptive
predictors [32], as transistor resources increased. Processors of the late 1990s
even employ multiple branch predictors since experiments suggested that differ-
ent prediction automaton work better on different types of branches [14].

The first major component of speculative execution hardware is storage where
results of (speculatively-executed) instructions can reside — typically only non-
speculative values can reside in the logical (or architectural) register file and the
memory system. Storage is needed to hold values until they are consumed, or
committed to architectural state. This storage can be provided in several ways,
including reservations stations, reorder buffers, and physical register files.

The second major component is a precise exception mechanism. The program
which the processor executes is written with the assumption of sequential exe-
cution — instructions are executed one at a time. Thus while a processor may
overlap the execution of instructions in a pipeline, execute instructions out of
program order, and even execute instructions speculatively, it must appear to an



outside observer (e.g., the creator of the program) that the instructions executed
sequentially. In particular, it must be possible to recover the precise state of the
program at any given time. A precise state at an arbitrary point in a program’s
execution corresponds to the state that would result if all instructions prior to
the point of interest have completed execution (and updated machine state), and
no subsequent instructions have affected machine state. There are several mech-
anism to recover a precise machine state. These include reorder buffers, history
buffers (or checkpoints), and future files [21].

The third major component is a register renaming mechanism. With many
in-flight instructions, there may be many distinct values associated with a logical
register; register renaming helps find the correct value. With a renaming mech-
anism values that would reside in a logical register at different points in time
during the execution of a program (e.g., results of two instructions separated by
a branch) can reside in different physical storage elements, thereby allowing the
execution of the two instructions to be overlapped. Without different storage el-
ements to hold the results, and an accompanying register renaming mechanism,
only one of the instructions could be processed at a time.

Different dynamically-scheduled superscalar processors of the 1990s used dif-
ferent combinations of mechanisms to support speculative execution (e.g., physi-
cal register files with history buffers for precise exceptions, or reservation stations
and reorder buffer) — no two processors implement the same functionality in the
same way. Some processors even used different mechanisms for recovering precise
versions of different state (e.g., reorder buffers for registers, and history buffers
for register rename mappings). Collectively, the mechanisms allow instructions
to be scheduled dynamically to maximize overlap in instruction processing, yet
retain the appearance of sequential execution. Many microprocessor architects
have viewed the constraint of maintaining the appearance of sequential execu-
tion as an asset rather than a liability: sequential execution provides a precise
definition of a total order in which events have to occur, and this facilitates de-
bugging and verification of hardware. Without a total order, it can be difficult
to verify and debug hardware and software, since the sequence of events that
creates a problem cannot be repeated. Thus, even though out-of-order execution
and register renaming was proposed in the 1960s (albeit, without speculative ex-
ecution) [28], the lack of precise state recovery mechanisms, and the consequent
difficulties of debugging, had cast a shadow on these techniques.

The increased processing rate brought on by microarchitectural innovations
has placed increasing demands on the memory system. Already handicapped by
a widening gap between logic and memory speeds, more innovation was needed
to deal with the increasing latency, as well as with increasing bandwidth de-
mands. Multi-level caches arose to plug the latency gap; most high-performance
microprocessors today have two levels of cache on the chip, and many have an
additional level of cache off chip. To meet the bandwidth demands, the upper
levels of the cache hierarchy (the ones closer to the CPU) became non-blocking,
allowing requests to be overlapped, i.e., allowing misses to be overlapped with
hits, and with other misses [12, 25]. In addition, to service multiple hits per cy-



cle, caches have recently become multi-ported [25]. The impact of the increasing
bandwidth demands has stretched all the way to the main memory, with high-
bandwidth Rambus DRAMs (RDRAMs) replacing traditional DRAMs for high
performance applications.

3 Current: The Blossoming of Speculative Execution

Microarchitectures

While there was resistance to speculative execution and dynamic scheduling in
the late 1980s and early 1990s, this resistance was overcome, and today high-end
processors from most companies support both. Having implemented microarchi-
tectural mechanisms to support these techniques within existing transistor bud-
gets, microarchitects asked: (i) what else could these microarchitectural mecha-
nisms be used for, (ii) how to use the additional transistors made available by
Moore’s law? These lead to an “obvious” question: could we use speculation to
overcome other constraints? The basic mechanisms to support one form of spec-
ulation could possibly support other forms of speculation as well, and additional
resources can be used both to increase the amount of speculative execution, as
well as to improve the accuracy of different forms of speculation.

Processors that have been announced circa 2000 extend speculation beyond
the basic control speculation model of the 1990s. In control speculation, a spec-
ulation was made on the outcome (taken or not taken) of a branch instruction.
Modern microprocessors extend the notion of speculation to include data spec-
ulation, where the data values, or instruction relationships that are based upon
data values, are speculated. Data speculation can be used to overcome arbitrary
dependence constraints, including ambiguous- and true-dependence constraints.
In its most general form, speculation could be applied to predict the value of
arbitrary data items, e.g., the result of an address calculation operation [2],
or the value loaded from memory [13]. There has been a significant amount of
research on this subject recently, but the prediction accuracies for the general
form of data value speculation are currently not sufficient to allow this technique
to achieve performance improvements; in many cases performance actually de-
grades. However, data speculation can be used profitably in other forms. Two
forms used in circa 2000 microprocessors are described next.

Ambiguous dependences constrain the scheduling of load instructions. With-
out speculation, a load instruction cannot be (dynamically) scheduled to exe-
cute before a prior store instruction, because they might access the same mem-
ory location. This restriction, which unnecessarily constrains parallelism, can be
overcome with data dependence speculation — speculating that the ambiguous
dependence is actually not a dependence, i.e., the load is independent of prior
stores (whose store addresses are unknown). When a dependence exists, however,
the speculation is incorrect; speculation accuracy can be improved by speculat-
ing when the ambiguous dependence is likely to resolve to no dependence, and
not speculating otherwise. One way to improve the speculation is to predict the
addresses which the store (and load if need be) will access, and use these pre-



dictions to assess if a true dependence is likely to be violated. This technique is
cumbersome, due to the need for predicting different store addresses, and not
very accurate. An alternative is to use data dependence prediction, where the
dependence relationships (between stores and loads) are predicted. Recent work
has shown that these dependence relationships are very stable, and can be pre-
dicted with very high accuracy [4, 15]. Dependence prediction and speculation is
being used in several processors that are being designed circa 2000.

Another form of data speculation is used in Intel’s Pentium IV processor [7].
Traditionally a cache operation is carried out atomically: data is accessed from
the cache data array and the cache tags are checked to see if the correct data
is being accessed. Typically these two sub-operations take different amounts of
time. An atomic cache access means waiting for the slower operation (typically
tag matching) to complete, increasing the latency of the overall operation. Spec-
ulation can be used to reduce the expected latency of a cache access as follows:
the access is divided into its two constituent operations, data access and tag
matching. Data is read from the data arrays, a speculation is made that it is
a cache hit, and the data returned to the processor immediately. Later when
the tags are checked, the speculation is verified. If the speculation was incorrect,
i.e., the reference was a cache miss, the offending instruction, and instructions
dependent on it, are replayed. (Another way of looking at this speculation is as
a load value speculation, with the cache serving as the “value predictor,” and
the tag matching logic providing the verification.)

In addition to the two new forms of speculation described above, other forms
of speculation are being researched, and are likely being considered for processors
that are being designed. These new forms of speculation are also resulting in re-
finements of techniques to recover from misspeculations. For example, for control
speculation, machines typically squashed all instructions following a misspecu-
lated branch, since these instructions were unlikely to contain instructions that
were control- and data-independent of the misspeculated branch. However, for
data speculation, a brute-force squashing is likely to squash useful instructions
(instructions that are independent of the offending instruction). Accordingly,
selective squashing or selective recovery/replay mechanisms have been invented.

4 Near Future: The Emergence of Clustered and

Multithreaded Microarchitectures

The coming decade will bring even more challenges, as well as opportunities,
for microprocessor architects. The challenges will include ease of design and
verification, the growing importance of wire delays, and the increase in power
consumption. Monolithic designs occupying many tens or hundreds of millions of
transistors will be very difficult to design, debug, and verify, and increasing wire
delays will make intra-chip communication and clock distribution costly. These
technology constraints suggest designs that are made of replicated components,
where each component may be as much as a complete processing element. Dis-
tributed, replicated organizations can “divide and conquer” the complexities of



design, debug and verification, and can exploit localities of communication to
deal with wire delays. The impact of power consumption on microarchitecture is
still being investigated, but some researchers believe that distributed, replicated
microarchitectures are likely to have better power/performance characteristics
that centralized microarchitectures. Meanwhile, opportunities will be provided
by even more transistor resources, and by the emergence of multithreaded work-
loads. Important workloads, such as server workloads, are being written as mul-
tithreaded applications, inviting microprocessor architects to use multithreading
to improve the overall processing effectiveness.

The challenges and opportunities of the next decade are likely to lead to
microprocessors with clustered microarchitectures that are capable of running
multiple threads of code simultaneously. Several multithreaded processor models
are currently being explored. Simultaneous multithreading (SMT) [5, 11, 30, 31]
extends a “traditional” dynamically-scheduled superscalar processor to support
the simultaneous execution of multiple programs. Chip multiprocessing (CMP)
[9], as the name implies, proposes a distributed design, along the lines of a more
traditional multiprocessor, on a single chip. The distinction between the SMT
and CMP microarchitectures is likely to blur over time. Increasing wire delays
will require decentralization of most critical processor functionality, while flexi-
ble resource allocation policies will enhance the appearance of resource sharing.
In either case, multithreaded processors will logically appear to be collections
of processing elements with support for speculative execution. In this context,
microprocessors are expected to employ thread-level speculation to overcome bar-
riers to traditional methods of parallelizing a single program. Thus, in addition to
executing conventional parallel threads, the logical processors could execute sin-
gle programs that are divided into speculative threads. Speculative multithreaded
processors will provide not only high throughput but also high single-program
performance when needed.

5 10 Years Ahead: The Blossoming of Speculative

Multithreaded Microarchitectures

With support for both speculation and multithreading, novel techniques for us-
ing speculative threads are likely to be discovered. Research into some of these
techniques is already in progress, and the expectation is that some of these re-
search discoveries will be implemented in circa 2010 microprocessors. We briefly
review some of this ongoing research below.

Threads can broadly be classified into control-driven and data-driven threads,
depending on whether threads are divided primarily along control-flow or data-
flow boundaries. Each category can be further sub-categorized as either non-
speculative — the threads are completely independent from the point of view
of the processor and any dependence is explicitly enforced using architectural
synchronization constructs, or speculative — the threads may not be perfectly
independent, or synchronized, and it is up to the hardware to detect and poten-
tially recover from violations of the independence assumptions.



Despite extensive research, compiler generated non-speculative threads (e.g.,
those generated by parallelizing compilers) have not held much promise beyond
numeric programs because of the difficulties of statically dividing a program
into such threads. The analysis required to create threads statically has too
many unknowns (e.g., ambiguous dependences), thwarting parallelization efforts.
Again, speculation can be used to overcome constraints imposed by unknown
information, and a program dynamically parallelized into speculative threads.
Thus a program will appear to be sequential, statically, but speculatively execute
in parallel, dynamically. Speculation is likely to be applied to both control- and
data-driven threads.

Speculative control-driven multithreading has been the subject of academic
research in the 1990’s [10, 23, 27] and is slowly finding its way into commer-
cial products. Sun’s MAJC architecture [29] supports such threads, via its Space
Time Computing (STC) model. More recently, NEC’s Merlot chip [16] uses spec-
ulative control-driven multithreading to parallelize the execution of code that
cannot be parallelized by other known means. We expect that more processors
will make use of speculative control-driven threads in the coming decade, as this
technology moves from the research phase into commercial implementations.

Speculative data-driven threads are likely to be employed as “helper” threads
which assist the “main” program thread. These helper threads that run ahead
and pre-execute or “solve” performance-degrading problem instructions before
they have a chance to cause stalls in the main program thread. There has been
a fair amount of research into this issue recently [3, 6, 18–20,26, 33], with com-
mercial adoptions likely over the course of the next decade.

6 Summary

The microarchitecture of microprocessors has seen a dramatic change in the past
decade; the same is expected for the next decade. The most significant transi-
tion of the past decade is that simple in-order processing microarchitectures
have given way to dynamic-scheduling, out-of-order execution, and speculative
execution. Speculative execution, initially applied to overcome control depen-
dences, is now being used in a variety of ways, to overcome ambiguous- and even
true-dependence constraints. The coming decade is expected to result in even
more innovation in microprocessor microarchitectures, as microprocessors begin
to support multithreaded execution, and as even more novel uses of speculation
are found. A promising model for next decade microprocessors is thread-level
speculation, where speculation is applied to parallelize the execution of programs
that defy traditional methods of parallelization.
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