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Abstract

Common hardware exceptions, when implementedby
trapping unnecessarilyserialize program execution in
dynamicallysdheduledsupescalarprocessas. To avoidthe
consequencesof trapping the main program thread,
multithreaded CPUs can exploit contol and data
independenceby executing the exception handler in a
sepaate hardware context. Themainthreaddoesnt squash
instructionsafter the exceptinginstruction,conservingetd
bandwidth and allowing execution of instructions
independentf the exception.This leadsto earlier branch
resolution in the post exception code and additional
memorylatency tolerance As a proof of concept,using
threadsto handlesoftwae TLB misseds shownto provide
performanceapptoading that of an aggressivehardware
TLB miss handler

1 Introduction

Exceptionhandlingis a mechanismto flexibly, and with
low implementationcost, handle“exceptional” eventsin a
way thatdoesnt impactthe executionof the commoncase.
This is performedby insertinga shortsoftwareroutineinto
the dynamicinstructionstreamat the site of the exception.
This exceptionhandlerresohesthe exceptingevent so that
the eecution of the application can continue.

Currentsequentiaéxecutionparadigmgprovide nomech-
anismto insertthe exceptionhandlerbetweeninstructions
which are alreadyin the processof execution. Typically,
in-flight instructionsyoungerthanthe exceptinginstruction
are squashednd refetchedfollowing the executionof the
exception handler (Figurel.a). Like a branch mispredict,
this significantly impactsperformancein the locus of the
exception; for a numberof cycles after the exception is
detected,fewer instructions are available for execution.
Sincemary of the squashednstructionswere control and
dataindependenof the exceptionhandler This unnecessar-
ily penalizes thexecution.

To avoid squashingve requirea mechanismwhich pro-
vides the appearancef sequentialexecution,namelycor-
rectdataflov andretirementorder despitethe factthatthe
exceptionhandleris fetchedwhenthe exceptionis detected.
Correct dataflav implies observing true register depen-
dencesbut becausdittle datapassebetweeranapplication
andan exceptionhandler often only valuesassociatedvith

*Alpha Development Group
Compag Computer Corporation
emer@vssad.hlo.dec.com

the excepting instruction, a general purposeout-of-order
register renamingmechanismis not required.The correct
retirementorder is different from the fetch order because
theexceptionhandleris retiredbeforethe exceptinginstruc-
tion. By allocating the handlerto a separatethread, the
desiredretirementordercanbe enforcedwhile maintaining
FIFO resourcemanagementvithin a thread (Figurel.b).
Retirementis controlled so that the exception handleris
retiredin its entiretyafterall pre-exceptioninstructionsand
before all post-eception instructions retire (Figufiec).

This work explores using separatethreadsin a multi-
threadedorocessofor exceptionhandlingto avoid squash-
ing in-flight instructions. The exception thread does not
have direct accessto the application$ registers, avoiding
complex renamerhardware, and memory operationsare
executedspeculatiely, recoveringif anorderingviolationis
detected Although this mechanismis applicableto mary
classesf exceptions,in this paperwe focus on software
TLB miss handling. The multithreadedexceptionhandling
approachhalvesthe cycles-pefinstruction (CPI) attributed
to software TLB miss handling,andwith an optimization,
which we call quick-starting the performancealiscrepang
betweensoftware and hardware TLB misshandlerscanbe
reducedby 80%. We expect similar benefits for other
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Figure 1. Traditional vs. Multithreaded Exception Handling.

Six instructions have been fetcthed when an exception is

detectedon the fourth. Traditionally (a), instructions4-6 are
squashedand mustbe refethed after the exceptionhandleris

fetched. With our multithreaded medanism (b), a second
threadfetchesthe exceptionhandler (A-D), and thenthe main
threadcontinuedo fetch (7,8). Theexceptionhandleris retired
before the excepting instruction. (c) This males the global

retirementorder different than the fetch order, but eac thread
retires instructions in is fetd order



classesof exceptions,which cannot be implementedin
hardware state machines.

This paperis organizedasfollows: In Section2 we pro-
vide morebackgroundn exceptions focusingon software
TLB misshandlers Section3 motivatesthis work by dem-
onstratinghow the performancempact of traditional soft-
ware TLB miss handlingincreaseswith currenttrendsin
microprocessorsln Sectiond, we describethe hardware
requirementsfor TLB exceptionsand walk through the
exception process.In Section5, we presentperformance
resultsfor amultithreadedsoftware TLB misshandleralong
with our simulationmethodologyand model.In Section6
we briefly describehow to generalizethe mechanismfor
othertypesof exceptions.Finally, in Section7, we discuss
the related wrk and, in Sectio8, conclude.

2 Background

Exceptionsare eventswhich are eitherimpossibleor too
costly to handle through normal program execution. An
illustrative exampleis arithmeticoverflow; software could
test whetheran overflow occurredafter every arithmetic
operationand branchto fix-up codeif necessarybut this
would add substantiabverheado the executionsincesuch
overflows are uncommon.

Sincea purely software solutionis not appealinganda
purely hardware solution arent cost effective nor provide
the flexibility requiredby mary exceptions,a hybrid hard-
ware/softvare solution is generallyused.The hardware is
responsibldor identifying the exceptionalevent, at which
pointit haltsthe executingprogramandtransferscontrol to
asoftwareroutinecalledtheexceptionhandler This handler
attemptsto rectify the causeof the exception and deter-

mines if and when to return control to the user application.

Exceptionsanbe separatedhto two classesun-recover-
able andrecoverable. Un-recaverableexceptionswherethe
systemcannotrestorethe applicationto a meaningfulstate,
areinfrequent,at mostonceperapplication,sotheir perfor-
manceis not a concern.n contrastrecoserableexceptions
can be called repeatedlyto perform “behind-the-scenes
work on behalf of the programmerand can affect system
performanceThey, in general,have a control independent
nature;afterthe exceptionhandleris executedthey returnto
the site of the exception. This recorvergent behaior
enablesour multithreadedexceptionhandlingarchitecture.
If the exception handlerdoesnot return to the excepting
instruction we cannot avoid squashingand re-fetching.
Some examplesof recoverable exceptionsare unaligned
accessprofiling, andinstructionemulation In this papemwe
study TLB miss handlers.

To provide the virtual memory abstractionwithout sub-
stantially sacrificingperformancemodernmicroprocessors
include a translationlookaside buffer (TLB). The TLB

senesasa cacheof recentlyusedtranslationgfrom virtual
addressedo physical addresses)When a virtual address
that is not currently mappedby the TLB is accessedthe
processohandlesthe TLB missby fetchingan entry from
the page table.

TLB missesoccur becausethe TLB cannot map the
whole application$ addressspace;in fact, mary machines
cannoteven maptheir whole L2 cache As memoriessizes
continueto grow at anexponentialrate,we expectprogram
data setsto grow proportionally TLB size, on the other
hand,is limited by processocycle time, power dissipation,
andsilicon areain proximity to the memorydatapathMost
architecturessupportlarge pages,which can increasethe
amountof memory mappedby the TLB, but large pages
have provento be difficult to useandcanreducethe utiliza-
tion of memorydue to internal fragmentation.Secondary
TLBs canscalemoreefficiently with datasetsize,but exe-
cution of future applicationswill likely continueto stress
the virtual memory sub-systemmaintaining TLB perfor-
manceasanimportantcomponenbdf overall systemperfor-
mance.

A numberof architecturegrovide TLB miss handling
through a dedicated,hardware finite-state-machineThis
structureis capableof walking the pagetableandwriting a
new entryinto the TLB. Instructionswhich missin the TLB
are stalled while the hardware page-valk takes place; no
instructionsneedto be squashedand, in machineswhich
permitout-of-orderexecution,independeninstructionscan
continueto execute. This TLB widget competesnormal
instructionexecutionfor the cacheports, making the core
somavhat more comple

In contrast,onefeaturecommonto someRISC architec-
tures (Alpha, MIPS, SparcV9) is the software-managed
TLB. Software-managedLBs save hardware and provide
flexibility to softwareon how pagetablesareorganizedand,
in somecasesallow softwareto control replacemenpoli-
cies.In addition,they canbe usedto simplify implementa-
tions of software distributed shared memory (DSM),
copy-on-write, and concurrentgarbagecollection. In cur-
rent processorsfor these architectures,the pipeline is
flushedat the memoryinstructionwhich missedn the TLB.
The software TLB miss handleris fetchedand executed,
and then the application is restartedwith the faulting
instruction. This serializing nature of the traditional soft-
ware TLB miss handlingis not intrinsic to the nature of
TLB fills, but merely an artéct of the implementation.

This paper presentsmultithreadingas an alternatve to
both traditional mechanismsMultithreadinghasbeenpro-
posedasa techniquefor toleratinglateng, typically mem-
ory lateny [14]. Recently microprocessorsvhich support
multithreadinghave begun shipping [16]. By time-multi-
plexing resourcedetweermultiple program“threads; high
aggreatethroughputcanbe attaineddespitechronicstalls,



becauseachthreads stallstendto beindependentin addi-
tion, simultaneousnultithreading(SMT) [9,17,19], unlike
coarse-grainednultithreading, provides the flexibility to
issueinstructionsfrom multiple threadsin the samecycle.
This toleratesthe lack of parallelismin the individual
threads, further increasing throughput.

3 Motivation

In this section,we demonstratehat the performanceof
traditional software TLB miss handlingis increasingat a
slower rate than programexecutionasa whole. With TLB
miss handling becomingan increasinglylarge fraction of
execution, alternatve mechanismdor exception handling
become appealing.

At the 1998 Microprocessoforum, Compagpresented
breakdevn of the executiontime of thetransactiorprocess-
ing benchmark TPC-C for their current and future
Alpha-basegroductq1]. Theenhancednicro-architecture
of the out-of-order21264spentthe sameamountof time on
traphandlingasthein-order21164(atthe samefrequeng),
but dueto the 212645 increasedxploitation of ILP in the
restof the applicationthe percentageontritution for traps
increase$rom about8 percento aboutl3 percentlncreas-
ing the clock frequeng (of the 21264)andintegratingthe
L2 cache(the 21364)do not significantly changethe per-
centagecontribution from its 13 percentlevel. This evi-
denceimplies a relationshipbetweenthe sophisticationof
the coreandrelative overheadf exceptionhandling;in this
sectionwe presentsimulation results which explore this
relationship in more detail.

Dynamically-scheduledsuperscalailis the paradigm of
choicefor currenthigh-performancenicroprocessorsThe
processorseekto achieve high levels of instructionlevel
parallelism(ILP) by speculatingpastunresolhed branches
andrelaxingartificial constraintdo issueinstructionsout of
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Figure 2. Overhead of software TLB miss handling as a
function of pipeline length. With an increasing number of
stages betweenfetch and execute overhead of traditional
exception handling in@ases.

programorder Typically, thesemachinesmaintaina “win-

dow” of instructionsfrom the predicteddynamicinstruction
stream,from which readyinstructionsare selectedor exe-
cution in the functional units.

Achievable ILP is strongly dependenbn usefulwindow
occupany, the numberof instructionsfrom the correctpath
in theinstructionwindow availablefor execution.Thetradi-
tional mechanisnfor executingexceptionhandlersreduces
usefulwindow occupang by squashingall post-exception
instructions.As machinescontinuetheir currenttrendsof
increasingsuperscalawidth, windowv size, and pipeline
length, the importanceof keepingthe instructionwindow
full of “useful” instructions increases.

TLB fill lateng is not a good metric for characterizing
programexecutiontime becausét doesnot accountfor the
extent that the execution of the TLB miss handlercan be
overlappedwith otheroperationsTo measurgerformance
directly, we comparesachsimulationto oneperformedwith
a perfectTLB to identify the performancedegradationdue
to TLB misshandling.Ratherthandividing this penaltyby
the numberof instructionsexecuted,as would be doneto
computethe CPI contritution, we divide by the numberof
TLB misses.This “penalty cycles per TLB miss” metric
allows comparisorbetweerbenchmarksvith widely differ-
entTLB missrates.Detailsaboutour simulationmodeland
benchmarksare available in Section5.1 and Section5.2,
respectiely.

Figure2 shaws the trendsfor increasedpipeline length
(3, 7, and 11 stageshetweenfetch and execute,the mini-
mum branchmispredictpenalty)for an 8 issuemachine.n
correspondencdo branch misprediction penalties, we'd
expectlonger pipelinesto have proportionallyhigher TLB
miss handlingpenalties and we are not disappointedThe
various benchmarksdiffer in their ability to tolerate the
squashedyut the slopeof the graph(i.e. its dependencen
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Figure 3. Overhead of software TLB miss handling as a
function of superscalar width. Wider madinesspendlarger
percentage of their executiontime on TLB miss handling
becauseTLB miss handling does not benefit mud from
increased issue width.



the pipelinelength)is around2 for mostbenchmarksThis
roughly corresponddo the time to refill the pipe at the
exception,and once again after the return from exception
since our simulator doesnot have a return addressstack
(RAS) like mechanisnfor predictingthetargetof exception
returns.

A similar experimentwas performedto shav the perfor-
mancetrendswith respectio superscalawidth. In general,
asthe machinewidth increasesthe percentag®f the time
spenthandlingTLB missesincreasesThe wider machines
areableto executethe misshandlerslightly faster but exe-
cution in the locus of a TLB miss doesnot benefitfrom
wider issue nearly as much as the programas a whole.
Figure3 shaws relative percentagef executiontime spent
handling TLB missesfor 2, 4, and 8 wide machineswith
instructionwindows of size 32, 64, and 128 respectiely.
The performancarendin gccis a symptomof cachepollu-
tion from speculatie memoryaccesses the basecaseand
is described in detail in Secti&n3.

Theseperformancedrends,which we expectto be repre-
sentatve for othertypesof exceptionsaswell, demonstrate
a steadilyincreasingopportunityfor alternateimplementa-
tionsfor exceptionhandling.Giventhatcommonexception
handlerdendto beshort,in thetensof instructions purging
the instructionwindow representsa significant portion of
the exception penalty in future machines.

4 Description of the proposed hardware

In this sectionwe walk throughthe multithreaded:xcep-
tion handlers executionanddiscussin detail the hardware
requirementgor this mechanismThis work is presenteds
an extensionto a simultaneousnultithreading(SMT) pro-
cessoarFor clarity, we focuson the executionof a software
TLB miss handler

4.1 Starting/Stopping Threads

Whena TLB missoccurs,the faulting memoryinstruc-
tion (and ary dependentinstructions which have been
scheduledhasto be restoredto a statefrom which it can
re-executewhen the TLB fill hascompleted.This means
returning the instruction to the instruction window and
marking the instructionas not readyto execute.A similar
recovery mechanismis requiredfor machinesvhich specu-
latively scheduleinstructionsthat are dependenbn loads,
beforeit is determinedvhethertheload hashit in thecache
[12]. Presumablyan extensionto sucha mechanisntould
support TLB misses as well.

To accomplishthe fill, a threadcontet is selectedand
instructedo begin fetchingthe TLB misshandler The priv-
ilegelevel for the TLB misshandlemay be higherthanthe
application code; we assumea processorwhich allows
instructionsfrom multiple privilege levelsto co-&ist in the

pipeline. This threadcould be one of the generalpurpose
threadcontectsin the SMT, or it couldbeaspecial-purpose,
reduced-functionalitghreadcontet. Typically, the proces-
sor would select from idle threads, but lower priority
threadscould be preemptedto run exception handlerson
behalf of higher priority threads sacrificingtheir through-
put to benefit the higher priority thread.

ThethreadlD andtheinstructionidentifierof the except-
ing instructionarestoredby the allocatedthread(Figure4).
This executionof the TLB misshandlemproceedsn parallel
with the execution of independentinstructionsfrom the
applicationthread.When the TLB write is complete,the
faulting instruction is made ready and scheduled normally

Instructionsare not retiredin the orderthey arefetched;
the exceptionhandleris splicedinto the retirementstream
of the application(Figure 1). Whenthe exceptinginstruc-
tion is the next to retire, retirementfrom the application
threadis halted. This can be detectedby comparingthe
sequencenumbersof retiring instructions with those of
exceptinginstructionswhich have spavnedthreadg(Figure
4). At this point the exceptionthreadcan begin retirement.
Whenit hascompletelyretired (signified by the retirement
of a RETURN FROM EXCEPTION) it resetsits threadstateto
idle, signallingthatretirementof the applicationthreadcan
recommenceAlso, eventswhich causesquashegfor exam-
ple controlmispredicts)checkexceptionsequencaumbers
to reclaim exceptionthreadsif the faulting instructionhas
been squashed.

4.2 Register and Memory Communication

Inserting an arbitrary piece of code into the dynamic
instruction stream requires re-renamingthe instructions
after the insertion. Any post-insertioninstruction which
readsa logical register definedby the insertedcode will
have a stalephysical register numberfor one of its source
operandsThis stalelD shouldbe updatedwith the physical
registernumberassignedo theinstructionfrom theinserted
code. This operationis equal in complity to register
renaming.

Fortunately exceptionhandlersarenot arbitrarypiecesof
code and do not require a general-purposee-renaming
mechanismSpecifically the TLB misshandleronly reads
the virtual addressgeneratedby the faulting memory
instruction (which is provided from a privileged register
read) and the pagetable (which is not accessibleby the
application)and only writes an entry into the TLB (which

[[I] state (Normal, Idle, Exception] | ] Master Threa
[T T T T T 111Sequence Number of Excepting Inst.

Figure 4. Additional Per-Thread Control State (in bits). When
anidle threadis allocatedto handlean exceptiontheID (log,
(# of threads)bits) of the threadwhich causedthe exceptionis
put into Master Thread, and a “pointer” to the excepting
instruction (~l@2 (window size) bits) is stenl.



the application reads indirectly). The exception handler
begins and endswith the sameregister state.The fact that
no direct register communicationtakes place allows the
hardware to be greatly simplified. The exceptionthreadis
provided with an independentet of registerswhich begin
the exception handlercontainingundefinedvalues. These
registers are only used to hold temporaajues.

Sincethereis no direct register communicatiorbetween
the TLB misshandlerandthe applicationthread,no order-
ing violations can occur in registers.On the other hand,
because&xceptionhandlersanexecutememoryoperations,
we needto correctly enforcetrue dependenciedetween
these memory operationsand memory operationsin the
application thread. The TLB miss handler performs no
storesandloadsonly from the pagetable. Theseloadswill
only aliaswith a storethat is modifying or invalidating an
entry of the pagetable.Sincewriting the pagetablealready
hasspecialsemanticsnecessaryo keepa coherentview of
virtual memoryin multiprocessorsensuringproperorder-
ing for the TLB miss handlers memoryoperationsshould
be manageable.

4.3 Handling the Uncommon Case

Due to the concessionsve madeto simplify the hard-
ware,theexceptionthreadwill notbeableto handleall pos-
sible tasksthatan exceptionhandlermight needto perform.
If a TLB missis discoreredto be a pagefault the process
stateneedsbe saved. To allow the applications registersto
be read, we revert to the traditional exception handling
mechanism.

This reversionprocessis complicatedby the fact that it
cannotbeknown a priori whetheran exceptionwill require
thefull functionality of thetraditionalmechanisnor canbe
handledby an exceptionhandlerthread.Only by loadinga
pagetable entry canwe detectthat the desiredpageis not
residenin memory but atthatpointthe handlerhasalready
beenpartially executed.Clearly, the mechanismmust be
ableto recoverfrom incorrectlyspavning anexceptionhan-
dler threadfor an exceptionwhich requiresthe traditional
mechanism.

The handlerneedsa mechanisnto communicateto the
hardwarethatit requirestraditionalexceptionsupport.This
could be accomplisheccompletelyin hardware (requiring
the machineto recognizethat the handleris trying to per-
form someaction of which the multithreadedmodelis not
capable)utis probablysimplerto accomplistby providing
software a mechanismwhich communicatesthis fact
directly to the hardware. This hard exception mechanism
could be in the form of an new instructionor a storeto a
specialaddressmuchlik e aninter-processointerrupt. This
instruction should be presentin the exception handler
beforeary instructionswhich permanenthaffect thevisible
machine state.

When a hard exception instruction is encounteredthe
exceptionhandlerhasbeenpartially executedby the excep-
tion thread.The machinewill either have to meige state
from the application and exception threadstogethey or
throw away thework in progressn the exceptionthreadand
re-fetch and re-executethe whole handlerfrom the main
thread.Sincememoryoperandswill have beenprefetched
into the cache,we expect the performanceof a complete
re-executionshouldnot be substantiallyworse,andre-exe-
cution is likely to be significantly simpler to implement.
ThethreadlD andinstructionnumberstoredby the excep-
tion thread(Figure4) can be usedto trigger a squash.To
avoid repeatingbranchmispredictionsin the re-execution,
thebranchoutcomesouldbe bufferedandusedinsteadof a
predictor for the pndously executed rgion.

Some operatingsystemsmay chooseto not implement
spavnableexceptionhandlersfor all exceptions.For these
exceptions,attemptingto spavn the handlerwill only add
lateng to theexceptionhandling;this canbe avoidedeasily
The OS could explicitly inform the hardwarewhich excep-
tionsshouldbe spavnedby settingbits in a controlregistet
Alternatively, the hardware could learn which exceptions
shouldbe spavnedby trackingthe useof the hard exception
instruction.A small predictor perhaps2-4 bits for eachof
16 or so exception types, could detectwhich exceptions
were implementedwith spavning in mind. In addition, it
might be ableto adaptto dynamicbehaior, like clustering
of page &ults.

4.4 Resource Allocation

Oncethehandlerthreadhasbeenallocatedjt hasto com-
pete for processorresourcesPrevious work on SMT has
shavn that properallocationof fetch bandwidthis critical
for high throughput[17]. The handlerthread should be
given fetch priority over the main threadsincethe instruc-
tions in the handlerthreadwill needto retire before ary

instructionsafter the exceptiort. Prioritizationin the pres-
enceof multiple applicationthreadsis more complicated.
Givena schemdike ICOUNT [17], which givespriority to

threadswith lessin-flight instructions,it is likely that all

active threadshave approximatelyequalnumbersof instruc-
tionsin-flight. Statisticallythe exceptinginstructionshould
beatleastascloseto retirementasthe mostrecentlyfetched
instructionsfor other threads,implying that the exception
handler which should be retired before the excepting
instruction, should be given fetch priority. This policy is

naturallyimplementedn ICOUNT becausavhenthe han-
dler thread is started it will e no in-flight instructions.

To avoid wasting fetch bandwidth, the handler thread
should stop fetching once the completeexceptionhandler

1. Althoughthe exceptionhandlercanbelaunchedcontrol-speculatiely,
andmaybe squashedueto a branchmispredict,it is nomorespecula-
tive than the postxeeption instructions.



has beenfetched. The common-casesoftware TLB miss
handleris typically in the tensof instructionslong. By the

time the RETURN FROM EXCEPTION instructionis decoded,
signallingthe endof the exception,multiple cyclesworth of

instructionspastthe end of the handlercould have been
fetched.To avoid the performancempactof theselost fetch

cycles (approximately0.5 cycles/miss).the machinecould

predict,usingthe previous handlerexecution,the numberof

fetchcyclesanexceptionhandlerrequiresandpreventaddi-
tional fetching until the initial instructions have been
decoded.

Out-of-orderfetch providesthe opportunityfor deadlock
unlessinstructionwindow resourcesre properlymanaged.
Deadlockoccursif the window is full of post-exception
instructions. Instructionsfrom the handlerthread, which
mustbe retired beforethe instructionsin the window, will
never completebecausehey can not be insertedinto the
instruction window and executed. Even for caseswhen
deadlockdoesnt occut performancewill suffer if sufficient
window resources are novailable.

A mechanismis requiredto restrict the original thread
from monopolizingwindow resourcesand reclaim them
when necessarySince other application threadsare not
dependentn the handlerthread they will continueto retire
instructions(and hencereclaimwindow resourcesyegard-
lessof the conditionof the handlerthread.Otherapplication
threadsare ignored for instruction window management
purposesln ourimplementationwhenanexceptionoccurs,
a “resenation” is madefor the window resourcesequired
to hold the handler(usingthe predictionof handlerlength
mentioned above). The main thread is prevented from
insertingadditionalinstructionsinto theinstructionwindow
if no unresered slots are available. In addition, to avoid
deadlock,if the handlerthreadever hasinstructionswhich
arereadyto be putin thewindow, instructionsfrom thetalil
of the mainthreadaresquashedo make room (unlesssuch
a squashwouldkill the exceptinginstruction,in which case
the exception handler is stalled). Such a squashis an
extremely rare occurrence in our simulations.

4.5 Multiple Exceptions

Multiple exceptionscan occurin the samewindow of
instructions;o avoid unnecessargerializationtheseshould
be handledin parallelwhen possible.Our hardware model
providessupportfor renamingandspeculatre executionfor
privileged architecturestate. This allows the traditional
mechanisno handlemultiple exceptionhandlersn parallel
assumingheir controlflow is predictableput it cannotdis-
patchthemin parallelbecause¢he secondexceptinginstruc-
tion will be squashedvhenthe first handleris fetched.In
contrastthe multithreadedsolutiondoesnot needto squash
the secondexcepting instruction, allowing both exception
handlergo belaunchedmmediately In addition,the multi-

threadedsolutioncangracefullyhandlelaunchingexception
handlers out-of-order

Therearetwo implementatioroptionsto handlethe case
when more exceptionsoccur thanidle threadcontets are
available:1) stall exceptionsuntil threadsareavailableor 2)
handlethe additionalexceptionstraditionally by squashing
and re-fetching. Stalling exceptions introduces another
deadlockcase(when exceptionsare detectedout-of-order
andthe oldestis not allocatedto a thread)to be avoided.
This, coupledwith the fact that the traditional exception
handlingmechanisrmris alreadyrequired,leadsus to adwo-
cate using the traditional scheme.

One case,particularto TLB miss handlers,is detecting
TLB missesto the samepage out-of-order which occurs
1-2%of thetime. To maintaincorrectretirementsemantics,
the handler should be retired before the first offending
instruction and only affect the state of later instructions.
Traditionally, the handleris squashedndre-fetchedat the
correctinstruction boundary Since the correcthandleris
alreadyin-flight, the unnecessargelay of re-fetchingcan
be avoided. Our proposedmultithreadedhardware detects
this situationandre-links the exceptionthreadwith earlier
exceptinginstruction,by updatingthe sequenceaumberof
the exceptinginstruction(Figure4). We believe this canbe
implementedvith minimal additionalcompleity. Whether
or notthisrelinking is supporteda mechanisnfor buffering
secondaryTLB misseswill be requireddueto their preva-
lence.

5 Experimental Results

To demonstratéhe performancebenefitof multithreaded
exceptionhandlingwe performeda seriesof experiments
using software TLB miss handling as an example. Since
there is no benefit to spavning exception threads for
instructionTLB missespnly dataTLB missesaremodeled.

5.1 Simulation Infrastructure

This researchwas performed using a simultaneous
multi-threadedsimulatorevolved from the Alpha architec-
ture version of the SimpleScalarToolkit [2], version 3.0.
This execution-drven simulator supports precise inter-
rupts/exceptionswhich allows usto trapat TLB missesand
run the TLB miss handler The simulatorsupportsenough
of the 21164privilegedarchitecturd4] to run the common
caseof the dataTLB miss handlerfrom the 21164 privi-
leged architecturdibrary (PAL) code.The basesimulated
machine configuration is described iablel.

The simulatorhas an abstractfront-end which provides
the benefitsof a tracecachewithout a specificmechanism.
It is capable of supplying instructions from multiple
non-contiguoudasicblocksin the samecycle andthe num-
ber of taken brancheser cycle is not limited. To simplify



and BExecute.

Core Dynamically-scheduled simultaneous multithreading with 2 or 4 threads. All threads share a single fetch unit,
branchpredictor decodercentralizednstructionwindow (with 128entries) schedulermemorysystemsandpool
of functional units. Fetch, decode, angeution bandwidth are equal, nominally 8. The fetch chooselygslic
described in Sectiof.4. Instructions are scheduled oldest fetched first.

Branch YAGS[7] with 24 entry table, 22 exceptions with 6 bit tags, with perfect branctytirprediction. Indirect

Prediction branches predicted by an cascaded indirect predictor [6] \%'emzy table, with ¥ exceptions. Returns are pre
dicted by a 64 entry checkpointing return address stack (RAS) [10].

Pipelining 3 gycles for Fetch, 1ycle Decode, 1ycle Schedule, 2ycle Rayister Read for nominal 7 stages between Fetch

Functional Units
(Latency)

8 integer ALUs (1), 3 intger mult/dv (3/12), 3 Float Add/Mult (2/4), 1 Float WSQRT (12/26), 3 Load/Store
ports(3/2) for an 8 ay machine. All functional units are fully pipelined.

Memory System

(best load-use latends 104 gcles)

64 KB, 2 way set associat (32 B lines) L1 instruction cache, 64 KB, ayset associat (32 B lines) L1 data
cache, up to 64 outstanding (primary + secondary) misses, LUA B 16B wide ging a 2 gcle occupang per
block, 1 MB (64 B lines) 4 ay set associat fully-pipelined unified L2 cache with a gae lateng (best
load-use latencis 12 gcles), L2/memory bs occupied for 11ycles during transfeB0 g/cle memory latenc

Translation

Perfect ITLB, 64 entry DTLB. &L instructions can cosést in pipeline with usemode instructions, TLB misses
are handled speculadlly, and TLB miss rgisters are renamed to allonultiple in-flight misses simultaneously
Assume common case (no pagelfs or double TLB misses), enabling perfect prediction of handler length.

Table 1. Base simulated mdtne configuration

simulation, instructionsare scheduledin the samecycle

they are executed,which in effect provides perfectcache
hit/miss prediction.To accountfor the delayrequiredfor a
registerfile read,instructionsarepreventedfrom scheduling
until a numberof cycles after they are put in the window.

Limited executionresourcesand bandwidthare modeled,
but writeback resourcesare not. Instructions maintain
entriesin the instructionwindow until retirementand must
retire in ordet but retirementbandwidthis not limited. A

multi-level cachehierarcly andrequest/transfdsandwidths
betweerlevelsof thehierarcly aremodeled.The pagetable
entriesaretreatedik e ary otherdataandcompetefor space
in the cache as such.

The simulatedmachineincludesa 64 entry data TLB,
smaller than contemporarymachines,to accountfor the
moderatelysmall data sets of the benchmarksSince all
results are presentedn terms of cycle penalty per TLB
miss, ratherthan absolutespeedupresultsare not signifi-
cantlyaffectedby TLB size.UsingasmallerTLB increases
the numberof missegper simulatedinstruction.ThreeTLB
miss handler mechanisms are studied:

* The traditional software TLB handler squashesall
instructionsfrom the TLB misson, fetchesthe handler
andthenresumeghe applicationcode.Instructionsare
free to usetranslationsspeculatrely, but the translation
is only permanentlyenteredinto the TLB at retirement
of the exception handler

* The multithreadedTLB miss handlerexecutesthe han-
dler codein a separatehread whenavailable;otherwise
it reverts to the traditional mechanism.

¢ Lastly, for comparisona hardware TLB misshandleris
studied.The hardware schemedoesnot requireinstruc-

tions to be fetched,but requiresmemory systemband-
width, and its load from the page table must be
scheduledik e otherloads.The finite statemachinecan
handlemultiple missesn parallelandspeculatiely fills
the TLB if thefaultinginstructionhasnt beensquashed
by the time the translation has been computed.

5.2 Benchmarks

Five benchmarksthosewith non-trivial dataTLB beha-
ior, were selectedfrom Spec95.Three additional bench-
marks from various sources (X Windows, verification,
object-oriented5]) areincludedfor additionalbreadth All
benchmarksvererun for 200 million instructions.To avoid
the initialization phaseof the programs,the simulations
were startedfrom checkpointspartway into the execution.
The benchmarks are listed iafile2.

5.3 Analysis

Figure5 shavstherelative performancédor four different
exceptionarchitecturesicrosghe benchmarksuite. Thetra-
ditional software TLB miss handlerhas an average TLB
miss penalty (run time differencecomparedto a perfect
TLB, divided by the numberof TLB fills, asdescribedn
Section3) of 22.7cyclespermiss.The hardware TLB miss
handlerusually hasthe bestperformancegthe only excep-
tion is gcc which is describedn the next paragraphith a
TLB misspenaltyof 7.3 cycles,arounda third of the tradi-
tional software handler The multithreaded(1)solution,
which hasoneidle threadavailable for exceptionhandling
is a significantimprovementover the traditionalmechanism
with an averagepenaltyof about11.7 cycles per miss, or
just over half of the traditional miss penalty Additional



Name Data Set TLB misses description

alphadoomddn) | -playdemo rockin | 11,000 X-windows first-person shooteagie Doom, from Id Softare.

applu @pl) test input 16,000 parabolic/elliptical partial diérential equation sobr (SpecFP 95)
compressdmp 100000 q 2131 230,000 text compression using adaiLempel-2v coding (Speclint 95)
deltablue ¢bl) 5000 16,000 object-oriented incremental datafl@onstraint soler (C++)

gce @co jump.s 14,000 GNU optimizing C compilergenerating SARC assembly (Specint 95
hydro2d g2d) test input 23,000 astroplysics-tydrodynamical Neier Stoles soler (SpecFP 95)
murphi (nph adash.m 36,000 finite state spacexploration tool for erification (C++)

vortex (vor) persons.250 86,000 single-user object-oriented transactional database (Specint 95)

Table 2.Benchmark summary TLB missesacords appoximate number of TLB misses in runs of 100 million instructions.

threadsprovide only modestbenefit; the multithreaded(3)
experimentswhich have 3 idle threadsyeducethe average
the miss penalty to about 11 yctes.

The multithreadedmechanismhas better performance
than the hardware mechanismon the benchmarkgcc
becausdhe hardware mechanisnspeculatiely updateshe
TLB, andgccsuffersfrom mary TLB misseson mis-specu-
lated paths. The speculatie loads that causethese TLB
missescausecachepollution in the perfect-TLB case(the
TLB filters thesespeculatie accessereducingcachepollu-
tion) giving the perceptionthatthe TLB penaltyfor gccis
lower than other benchmarks.

Although the multithreadedmechanisnregains much of
the performancdost to traditional software miss handling,
thereis still a discrepang betweerits performanceandthat
of the hardware state machine.The multithreadedmecha-
nism hasa numberof overheadsot presentn a hardware
mechanismlateng for fetchinganddecodinginstructions,
fetch and decode bandwidth, execution bandwidth, and
instructionwindow space.To quantify theseoverheadsve
performeda seriesof limit-study style experimentswhere
we eliminatedeachof theseoverheadsn turn andanalyzed
their effect on performanceTheselimit studieswere per-
formed with 3 idle threads to maximize performance.

traditional software
multithreaded(1)
multithreaded(3) —
hardware

40

20

penalty cycles per TLB miss

average

vortex

applu dellablue hydr02d
alphadoom compre: cc murphi

Figure 5. Relatie TLB miss performance of traditional,
multithreaded and hardware handlers.

Table3 shaws the averageresults of the theseexperi-
ments,comparingthem with averagesfor traditional soft-
ware, multithreadedsoftware, and hardware mechanisms.
Instantaneousetch is the only optimizationwhich signifi-
cantlyaffectsperformancereducingthe misspenaltyby 2.5
cycles.In thenext sectionwe proposea hardwareoptimiza-
tion to reducethe fetch/decoddateny of the software TLB
miss handler

5.4 Quick Start

Sincefetch and decodelateny is the major contritutor
preventing equialent performanceto the hardware TLB,
we explored a possible optimization which reducesthe
lateng incurredbeforethe exceptionhandlerbegins execu-
tion. Specificallywe predict the next exceptionto occug
prefetch the xception code, and store it in the fetalifér.

At fetchtime, it canbe difficult to predictwhetherthere
will be room for instructionsin the instruction window
giventhatit is unknovn wheninstructionswill retire. Our
microarchitecturancludesfetch buffers, which sene asa
holding placefor instructionswhich have beenfetchedbut
not decodedbecausehe instructionwindow is full. In our
SMT processqrtheseresourcesresuppliedon a perthread
basisWhenathreadis idle, sois its buffer. Theseidle fetch

Configuration Average
Penalty/Miss

Traditional Softvare 224
Multithreaded 11.0

Multi w/o execute bandwidthwerhead 10.7

Multi w/o window overhead 105

Multi w/o fetch/decode bandwidthverhead | 10.2

Multi w/ instant handler fetch/decode 8.5
Hardware TLB miss handler 7.1

Table 3. Averagenumber of penaltycyclesper missfor differ-
ent configurations. The“Multi” configuationsare limit stud-
ies of the multithreadedmedanismwith one of its overheads
remaed. Thelatencyof fetch and decodeis a major contribu-
tor to the performanceliscrepancybetweemmultithreadedand
the hadware mebanism.



buffers can be usedto hold the exception code that was
prefetched before thexeeption occurred.

To prefetchthe exception handler we have to predict
which exceptionis likely to occurnext. Sinceit is likely that
a particularapplicationis dominatedby a small numberof
exceptiontypes,asimplehistory-basegbredictoris likely to
perform well. Since our experimentsonly modelled data
TLB missespredictionof the next exceptiontype wasper-
fect and thus optimistic.

Figure6 shaws thatthe quick startmechanisndoespro-
duce a sizable performancemprovement,on averagel.7
cyclesper miss. This improvementfalls shortof the instant
fetch/decodédimit studyfrom Section5.3, asthe quick start
mechanismcannot avoid the lateny for decoding the
exception handler and the instructions have not always
been prefetched.

Speedups afunctionof the numberof penaltycyclesper
miss, the TLB miss rate and the baselPC. Although we
don't feel thatthesebenchmarkswith their relatively small
data sets,have TLB miss ratesthat are representatie of
important workloads, for completenessve have included
Table4 with speedups, TLB miss rates and base IPC.

5.5 Multiple Application Threads

Sincean SMT processomwill often be running multiple
applicationthreadsijt is importantto investigatethe benefit
of ourtechniquen thatervironment.We performedexperi-
mentswith 3 applicationthreadg(arbitrarycombinationsof
our 8 benchmarks)and one idle thread. Figure7 shows
theseresults.The benefitsof our techniquehereare more
modestbut arenot unsubstantialkeducingthe averageTLB
miss penalty by 25% (30% with quick start).

One threadproved to be sufficient for supporting3 of
these benchmarkapplications.The exception thread was

multithreaded(1)
quick start(1)
hardware

25

20

15

10

penalty cycles per TLB miss

0 deltablue hydro2d . vortex
ss gcc murphi average

applu
alphadoom PP compre!

active between5 and 40 percentof the time, averaging
about 20% actity.

Thereare mary factorswhich affect theseresults.SMT
processorare more tolerantof the delayscausedoy TLB
missesbecauseahe other threadscan continueto execute
normally. This leadsto a reductionof the overall penalty
reducing the opportunity for our optimization. However,
becaus&MT tendto have higherthroughputin generalthe
lost fetch and decode bandwidth due to unnecessary
squashesbecomesmore harmful, hence our technique
shavs benefit. Similarly, the hardware TLB miss handler
has an adwantageover the software techniquesbecauset
doesnt allocatepreciousfetchanddecodebandwidthto the
exception handler itself.

6 Generalized Mechanism

In Sectiond4, we focusedon the mechanismsiecessary
for TLB missexceptions.Otherexceptions,like unaligned
accesor floating-pointexceptions,cant easily be imple-
mentedwithout someaccesso registers.Up to this point
we've relied on the traditional exception mechanismfor
generalpurposereadingandwriting of the registerfile, but
the multithreadedmechanisntould be extendedto provide
read access to thegister file.

Sinceall threadsn anSMT processosharea centralpool
of physicalregisters thedifficulty of providing crossthread
register accesss not in adding extra datapath but rather
finding the correctphysical registernumber The exception
handlerthreadcould be startedwith a copy of the applica-
tion threads registerrenamemapasit existedimmediately
precedingthe exceptinginstruction(mechanismdor copy-
ing registermapsareproposedn [18]). The SMT will cor-
rectly handletheseread-onlyregistersnaturally:the normal

traditional
multithreaded(1)
quick start(1)
hardware

12

10

penalty cycles per TLB miss
»

0

adm-gcc-vor
adm-cmp-vor ~ adm-h2d-mph

apl-cmp-h2d apl-dbl-vor dbl-gcc-h2d
apl-dbl-mph cmp-gcc-mph average

Figure 6. Performanceof the “quick-starting” multithreaded
implementation.

Figure 7. Average TLB miss penaltieswith 3 applications
running on the SMT



schedulingmechanismhandlesthe cross-threaddataflav,
the registerswill remainvalid for the life of the exception
handlersincethey cant bereclaimeduntil instructionsafter
the handlerretire,andthe normalrenamingmechanisnwill

not allow the original threads registersto be polluted. The

difficulty with this solution is that the rename map might no

longer exist when the exception is detectedand may be

expensve to regenerateAlthougha mechanismo roll back
the renamingmapsto an arbitrary instructionboundaryis

necessaryor traditional exception handling, utilizing this

hardware to recovrer renamingmapsfor running threads
might add unacceptable comyiky.

Someexceptionhandlers,including thosefor unaligned
accessand emulatedinstructions (those implementedin
software),only needto readandwrite the sourceanddesti-
nation registersof the faulting instruction. Simpler hard-
ware could be built which would provide accessto only
those registers which were involved in the excepting
instruction.In ary machinein orderto execute,aninstruc-
tion needsto know the IDs of its sourceand destination
physical registers;whenan exceptionoccurswe keeptrack
of thoseregisteridentifiers.In this way we canprovide read
accesdo the exceptinginstructions sourceregisterswith-
out the need to reconstruct the wholgisesr map.

Write accesgo the instructions destinationcan be simi-
larly provided. Whenthe exceptionis detectedthe faulting
instructions destinationregisteris recordedandit and all
dependentnstructionsare returnedto the instructionwin-
dow. We canprovide the exceptionhandlera mechanismnio
write directly to this physical register Upon this write, the
exceptinginstructionis corvertedto a nop (to make sure
thattheregisteris not re-written)andarny consumer®sf that
registerthatarein theinstructionwindow aremarked ready
and scheduled normally

Othertypesof exceptionsalsoneeda moregeneraimem-
ory ordering solution. Typically, dynamically scheduled
processorsnclude a mechanismto support out-of-order
memory operationswithin a thread, but this needsto be
extendedto handleRAW violations betweenthe exception
threadandthe applicationthread.This interprocessmem-
ory orderingsupportis alreadypresentin machineswhich
enforcesequentialconsisteng in the presenceof specula-
tive memory operations [20].

7 Related Work

A wealth of researchhas beendone on multithreading
and simultaneousnultithreading,in particular for increas-
ing throughput of multi-programmed workloads and
multi-threadedapplications.Recently Chappellet. al. [3]
and Song and Dubois [15] have investicated mechanisms
which allow subordinatehreadsto assistthe executionof
an applicationthread.This work differs from the previous

work in threeways:1) the exceptionthreadsarefull-fledged

SMT threadswhich areidle, ratherthanspecializedhreads
with reducedegisterfiles [3] or aregisterfile whichis par-

tially sharedwith theapplicationthread[15], 2) instructions
arefetchedfrom the instructioncache;no micro-RAM has

to be managed[3], and 3) the threadsare synchronous;
instructionsexecutedby the subordinateéhreadareinserted
into the applicationthreads retirementstream,andall syn-

chronization between threads is implicit.

Significantwork hasbeendonein TLB designto reduce
thefrequeny of TLB missesMultithreadedTLB misshan-
dling does not reduce the number of TLB misses,but

instead reduces the performance impact of each TLB miss.

Previously, Henry explored mechanismswvhich acceler-
ated interrupts and exceptionsin a superscalaprocessor
using the traditional mechanisn8], including taggingall
in-flight instructionswith a kernel/usebit ratherthanusing
aglobalkernel/usebit to avoid flushingthe pipeatthetran-

sition. This mechanism is assumed in our implementation.

Concurrentlywith this work, Keckleret. al. performeda
study on the performancémpact of using separatehreads
for exception and interrupt handling for the M-Machine
[11]. Becausehe M-Machineis an in-order machine,the
work reliesonthe“instructionslack” betweerthe excepting
instructionandthe first instructionwhich requiresits result
to overlap the handler with thadlting thread.

Our proposedmechanismexploits the control indepen-
dencepresentin exceptionhandlerexecution.Micro-archi-
tectureswith generalmechanismsfor exploiting control
independencé¢l3] shouldbe able to likewise exploit this
aspect of eception handlers.

8 Conclusion

This paperpresentsa nev exceptionarchitecturewhich
usesidle threadsin a multithreadedprocessorto execute
exceptionhandlers.The exceptionhandleris executedin a
separatehread,but instructionsare forced to retire in the
correctordermaintainingthe appearancef sequentiakxe-
cution. Squashingand re-fetching instructions after the
faulting instructionis avoided,and,with dynamicschedul-
ing, independenbperationancontinueto executein par-
allel with the &ception handler

This executionmodel only appliesto exceptionswhich
returnto theexceptinginstructionandlimits accesso regis-
ter valuesfrom the main thread.Despitetheselimitations,
this architectureseemspromisingfor acceleratinghe exe-
cutionof theclasse®f exceptionswhich arefrequentlyexe-
cuted.

The performanceof this mechanismappliedto software
TLB misshandlingis investigated. The overheadof tradi-
tional exception handlingis rapidly increasinggiven the
currenttrendsin microprocessorsWith the multithreaded



Name base IPC | TLB misses Perfect H/W Multi(1) Multi(3) Quick(1) Quick(3)
alphadoom 43 11,000 1.0% 0.6% 0.4% 0.4% 0.5% 0.5%
applu 2.6 16,000 0.9% 0.4% 0.1% 0.1% 0.2% 0.2%
compress 2.6 230,000 12.9% 9.0% 6.8% 7.3% 7.8% 8.4%
deltablue 2.2 16,000 1.4% 0.8% 0.6% 0.6% 0.7% 0.7%
gcc 2.8 14,000 0.5% 0.4% 0.4% 0.4% 0.4% 0.4%
hydro2d 1.3 23,000 0.7% 0.4% 0.1% 0.1% 0.2% 0.2%
murphi 3.9 36,000 3.2% 2.2% 1.6% 1.7% 1.8% 1.9%
vortex 4.9 86,000 9.6% 7.1% 4.8% 5.3% 5.7% 6.3%

Table 4. Table of speedups (over traditional software), TLB missrates and base | PC for 100 million inst. runs of the benchmarks.

mechanisnthe TLB misspenaltycanbereducedy afactor
of two. With a small optimization, speculatrely fetching
the exceptionhandlerandstoringit in anidle threads fetch
buffer, the penaltycanbe further reducedyivaling the per-
formanceof hardware TLB miss handling.When multiple
applicationsare being executedthe benefitis reducedto a
25% reduction ofwerage TLB miss penalties.
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