Read-After-Read Memory Dependence Prediction

Andreas Moshovos Gurindar S. Sohi
Electrical and Computer Engineering Department Computer Sciences Department
Northwestern University University of Wisconsin-Madison
moshovos@ece.nwu.edu sohi@cs.wisc.edu

Abstract: We identify that typical programs exhibit highly a number of.0AD1-USE,...LOAD\-USE, chains into a single,
regular read-after-read (RAR) memory dependence streamyet speculative OAD-USE;...USE, producer/consumer graph.
We exploit this regularity by introducing read-after-read (RAR) Consequently, the first load can propagate its value to the con-
memory dependence prediction. We also present two RASumers of all its RAR dependent loads.

memory dependence prediction-based memory latency An advantage of our techniques is that they can be imple-
reduction techniques. In the first technique, a load can obtairmented as surgical extensions to the recently propssecl-

a value by simply naming a preceding load with which a RARative memory cloaking (cloakinggnd speculative memory
dependence is predicted. The second technique speculativeédypassing (bypassinggspectively [15]. Figure 1 provides an
converts a series afoAD;-USE,,...LOAD,-USE, chains into a overview of these techniques. Part (a) shows the original
single LOAD;-USE...USE, producer/consumer graph. Our RAW-prediction-based cloaking and bypassing, while part (b)

techniques can be implemented as surgical extensions to tﬁé“’?’vs our RAR-prgdiction-based Fechniques. Our RAR-pre-
recently proposed read-after-write (RAW) Oleloendencedlctlon-based cloaking and bypassing complement their RAW

prediction based speculative memory cloaking and specuIativgoumer,p"’lrts by predicting loads that the original clogking and
memory bypassing. On average, our techniques proVidgypasslng cannot. These are loads that do not experience RAW

correct values for an additional 20% (integer codes) and 30%d|ependences. However, the utility of our tecﬂhniques extends
(floating-point codes) of all loads. Moreover, a combined 2150 0 loads that have RAW dependences ditantstores.

RAW- and RAR-based cloaking/bypassing mechanisrwh“e RAW-based cloaking and bypassing is theoretically
improves performance by 6.44% (integer) and 4.669,P0ssible for such loads, practical considerations may prevent

(floating-point) even when naive memory dependencé’s from detecting the corresponding RAW dependences. As
RAW-based cloaking)"’e explain in detail at the end of Section 3.1, this is the result

the limited scope of the underlying dependence detection
echanisms.

ST Ry

speculation is used. The original
bypassing mechanism yields improvements of 4.28% (integeﬁ}:c
and 3.20% (floating-point).

Memory

v
m
T
P
<

1 Introduction

Modern high-performance processors exploit regularities in
“typical” program behavior. Extensively studied examples
include caching, branch prediction and value prediction. This
experience points to a possible direction for further perfor-
mance improvements: identifying currently unknown regulari-
ties in program behavior and exploiting these regularities to
our advantage. Following this rationale, we identify that typi- (a) RAW-based (b) RAR-based
cal programs exhibit highly regular “read-after-read” (RAR) —> register = address direct speculative link

memory dependence streams. A RAR dependence ex'sﬁgure 1. Speculative Memory Cloaking and Bypassing. (a)

petweeq two loads .n‘ both access the same address and E)?iginal proposal: Exploiting RAW dependences. (b) Our
intervening store writes to the same address. We have founcgchniqueS' Exploiting RAR dependences

that if at some point two loads are RAR dependent, then with
high probability these loads will be RAR dependent again Our contributions are: (1) we demonstrate that regularity
soon even though they may be accessidifferentaddress. exists in the RAR memory dependence stream of typical pro-
To exploit this regularity we present: (1) history-based RARIrams, (2) we introduce history-based RAR memory depen-
memory dependence prediction, and (2) two techniques th&tence prediction, (3) we propose applications of this
use this prediction to reduce memory latency. In RAR memc,r)prediction, and (4) we compare the accuracy of our techniques
dependence prediction an earlier detection of a RAR deperfind of load value prediction [12] and show that the two
dence is used to predict the dependence the next time the safigProaches are complementary.
loads are encountered. We use this prediction to create a new The rest of this paper is organized as follows: in Section 2
name space through which loads can get speculative values. ¢ demonstrate that programs exhibit regular RAR memory
our technique, a load can get a value by identifying a precedlependence streams. In Section 3 we discuss the rationale for
ing load that also reads it (i.e., a RAR dependence exists witAur RAR memory dependence prediction based methods and
that load). Using PC-based prediction this identification taked'0W they can be implemented as extensions to RAW-based
place early in the pipeline without actual knowledge of mem-cloaking (Section 3.1) and RAW-based bypassing (Section
ory addresses. We further reduce load latency by transforming-2)- In Section 4 we review related work. In Section 5 we

Cloaking

Bypassing

100% T T1100%
90% il I 1 90% | HilIH
ou Dallmn 1 | |
70% [T AN A et | 7%% | il
60% il INAHAH AT | 6 | liftl
50% I H 50% I il
40%00095'\\&&& S VP RIIL LS & 40%0 © O RIS VO IIRL 25

SESS SIS FFISEETHE SPSF VLY FFHISEFTFR ¢

Figure 2: Memory Dependence Locality of RAR dependences (range: 1 to 4). Address window size: (a) Infinite, (b) 4K entry.
evaluate the accuracy and performance of our techniquexecuted. Locality is high for all programs. More than 70% of

Finally, in Section 6 we summarize our findings. For clarity wall loads experience a dependence among the four most
use the termsdependenceand memory dependencimter- recently encountered RAR dependences.

changeably. We also measured how locality would change had we placed
2 Quantifying RAR Memory Dependence Stream a restriction on how far back we could search to find the earli-
Regularity est source load. Such a restriction is interesting from the per-

In this section, we demonstrate that the RAR dependenggective of history-based prediction as we need a mechanism to
stream of the SPEC95 programs is regular (our methodologftect RAR dependences. To be of practical use this mecha-
and benchmarks are described in Section 5.1). We show ti4¢m Wwill have to be of finite size. Accordingly, we include
most loads exhibit temporal locality in their RAR-dependencloc@lity measurements for an address window of 4K. We define
stream. That is, once a load experiences a RAR depender@@ddress windovof size s to be the maximum number of
chances are that it will experience the same RAR depended&@que addresses that can be accessed between a source and a
again soon. Moreover, we demonstrate that the working set ¢ipk load. The intuition behind this metric is a table tracking
RAR-dependences per load is relatively small. These propéP—e s most recent addresses accessed can be u;ed to detect
ties enable history-based prediction of RAR dependences. Memory dependences. As seen by the results of Figure 2, part

We represent RAR dependences ®,(PC,) pairs where (b), locality is high, in some cases higher than it was when all
Pc, andPc, are instruction addresses of RAR-dependent load§Ccesses were considered (shorter dependences seem to be
Generally, given a set of loads that access the same mem8p§re regular that distant ones).
address, RAR dependences exist betwagnpair of loads in 3 Reducing Memory Latency via RAR Memory
program order (provided of course that no intervening stol@ependence Prediction
writes to the same address). We restrict our attention to RARWe start by reviewing the RAW-based cloaking and bypass-
dependences between thearliest in program order load ing techniques. We then explain how our RAR-based tech-
(source) and any of the subsequent loads (sinks). For exampi&ues fit under the same framework.
given the sequena®q A, LD, A, LD3 A, we will account for the Memory can be viewed as an interface that programs use to
(LD A, LD, A) and (D4 A, LD3 A) dependences only and not forexpress desired actions. Viewing memory as an interface
the (D, A, LD3 A) dependence. This definition is convenientallows us to separate specification from implementation: just
for RAR dependence prediction and for its applications wbecause we have chosen to express an action via memory we
present in Section 3 as it allows us to keep track of a sing not have to implement it the exact same way. The recently
RAR dependence per executed load (ignoring data granularitgroposedloakingandbypassingnethods approached memory

To show that RAR-dependence streams are regular we mea- way of specifying inter-operation communication, that is of
sure thememory dependence localif loads with RAR passing values from stores to dependent loads [15]. This speci-
dependences. We defineemory-dependence-locality@s the fication isimplicit and it introduces overheads which are not
probability that the same RAR dependence has been encoimherent to communication: address calculation and disambig-
tered within the lash unigueRAR dependences experienceduation. Unfortunately, caching, the current method of choice to
by preceding executions of the same static Idddmory- speeding-up memory communication, cannot reduce these
dependence-locality(1is the probability that the same RAR overheads. Moreover, these overheads may increase as pipe-
dependence is experienced in two consecutive executions liofes grow deeper and as windows get wider. Fortunately, we
this load. A high value ahemory-dependence-locality(d))g- can eliminate these overheards if we express memory commu-
gests that a simple, “last RAR dependence encountered’-basadationexplicitly. In an explicit specification the load and the
predictor will be highly accurate. For valueshgjreater than 1, store are given knowledge of the communication that has to
memory-dependence-locality(is) a metric of the working set occur so that they can locate each other directly. Cloaking uses
of RAR memory dependences per static load. Of course, RAW memory dependence prediction to create this representa-
small working set does not imply regularity. tion on-the-fly in a program transparent way. Moreover, depen-

Figure 2, part (a) shows locality results for sink loads. Givedent stores and loads do not change the communicated value
a (source, sink)RAR dependence we define theurceto be (ignoring sign-extension and data-type issues). They are simply
the earliest in program order load. From our definition of RARIsed simply to pass a value that some other instruction (pro-
dependences it follows that sink loads will typically have a sinducer) creates to some other instruction(s) that consumes it.
gle source load. The locality range (valuenpShown is 1 to 4 Bypassing extends cloaking by linking actual producers and
(left to right). The Y axis reports fractions over all sink loadgheir consuming instructions directly.

Following a similar line of thinking, we observe that anotheas follows: the first time a RAR dependence is encountered, the
common use of memory @ata-sharing that is to hold data identities of the dependent loads are recorded and a new name
that is read repeatedly. Data-sharing is also expressed implis-assigned to them (i.e., with their PCs). The next time these
ity and similar overheads are introduced. This can be se@mstructions are encountered, the previously assigned name can
using the example of Figure 3. In part (a) two load instruction®e used to propagate a value from the first in program order
LOAD andLOAD’, are shown which at run-time access the samiad to the second. We illustrate the exact process with the
memory location. Part (b) shows a possible sequence of everggample of Figure 4 where we show how an earlier detection of
Initially LOAD is fetched, its address is calculated and a value & RAR dependence betweebAD andLOAD’ is used the sec-
read from memory. Later onp’ is encountered. At this point ond time these instructions are encountered to provide a specu-
both loads have been encountered and the value is availatidgive value forLoAD’. The first step is detecting the RAR
Yet, LD’ has to calculate its address and go to memory to reatbpendence. This is done via the use Ble@endence Detec-
the same value. Moreover, depending on whether memotipn Table (DDT)[15]. The DDT is an address indexed cache
dependence speculation is used, accessing the memory vatue records the PC of a load or a store that accessed the corre-
may be further delayed to establish that no intervening stosponding address. When the first instance@fd calculates
accesses the same memory location. It is important to note tlitataddress it also creates a new entry in the DDT (action (a)).
while LD andLD’ are accessing a common address every timeater, LOAD’ may access the DDT using the same address
they are encountered, this address maglifierentevery time. (action b) where it will locate the entry fooAD. At this point
For example, this is the case in the example of part (c) of Figre have detected a RAR dependence between the two instruc-
ure 3 where each of the elements of II5ti§ accessed twice tions. As a result, an association of the two loads with a prefer-
from within different functions. ably unique name, aynonym,s created in th®ependence
Prediction and Naming Table (DPNction 1) This is a PC-

LD indexed table and two entries are created onedfab and one
for LD'. When a later instance ab is encountered (part (b)),
its PC is used to access the DPNT predicting whether a RAR
dependence will be observed (action Byovided that the
] dependence is predicted, storage for the synonym is allocated
foo (listl) p~) ‘(a)_ in the Synonym File (SFjaction 3). The SF is a synonym-

t += |->data Execution Time line indexed structure. Initially, the SF entry is marked as empty as
o no value is yet available. Whep’s memory access completes,

LD ADDRESS . . - -
LD DATA the value read is also written into the SF marking the entry as

while (1)
foo (1)
bar (1)
| = ->next

ST

RAR

LD dependence

<

Program Order

L

bar (listl) 5~ explicit , full (action 4). WhenLD’ is encountered, its PC is used to
if (->data = KEY) ... L tg’ ADDRESS access the DPNT and predict the RAR dependence (action 5).
implicit LD’ DATA Using the DPNT provided synonymD’ can access the SF and
©) ST ADDRESS obtain a speculative value (action 6). This value can be propa-

b gated to dependent instructions (action 7). Eventually, when
®) LD’ calculates its address and completes its memory access, the
Figure 3: An example of data-sharing. (a) Trace with twovalue read from memory can be used to verify whether specu-

loads accessing the same memory location. (b) Time-line lgtive value was correct (action 8). If it was, speculation was
execution. (c) Code with RAR dependences. successful. If not, value misspeculation occurs. While we

] o o . assumed thatb’s memory access completes befar® is
As with memory communication, an explicit representationncountered, this technique is useful even when this is not so.

of data-sharing can eliminate the aforementioned overheads. Inye have deliberately used the same support structures as in
the precegling examp[ep’ could obtaip avalue by just rlanjing the original RAW-based cloaking. In fact, the two techniques
LD. Creating an explicit representation of data-sharing is thge yirtually identical provided that we treat the first load in a
goal of our RAR dependence prediction based methodgar dependence as the producer of the memory value. How-
Observing that data-sharing gives rise to RAR dependences Weer, while in RAW-based cloaking the value becomes avail-
propose PC, history-based RAR memory dependence predifsie as soon as the store receives it from the instruction that
tion and use it to explicitly represent data-sharing. We al§grqquces it, in RAR-based cloaking the value has to be fetched
observe that similarly to inter-operation communication, loadg memory by the first load. These observations suggest that
that access a common memory location do not change t§g; RAR-based cloaking technique can be implemented as a
value they read. Accordingly we propose a RAR extension 1q,gical extension to RAW-based cloaking. For this purpose we
bypassing in which consumers of loads with RAR dependencgge to record loads in the DDT. Moreover, we need to mark
are linked directly to the earliest possible load that is predictggyys as producers in the DPNT. For this we use two predictors
to access the common memory location. The effect of our RAfer entry, one for consumer prediction and one for producer
extensions is illustrated in Figure 1, part (b). prediction. In the DDT we chose to record loads only when no
3.1 RAR-Based Speculative Memory Cloaking preceding store has been recorded for the same address. More-
In this section we exp|ain how we use RAR memory deperﬁlvel’, we record a load in the DDT only when no other load has
dence prediction to streamline data-sharing. Our method workgen recorded for the same address. This is done to annotate

DDT reasons ranging from fundamental limitations (e.g., address-
ability) to practical considerations (e.g., register file size, pro-
gramming conventions and legacy codes). Cloaking and
MEMORY bypassing are architecturally invisible. As such, we may deploy
them only when justified by the underlying technological
tradeoffs. Moreover, they may capture dynamic dependence
address 2 behavior.

Numerous software and hardware address-prediction tech-
(I

DPNT

address 1| Lp

® L LD [synonym
synonym

address 1

niques have been used to reduce load access latency, e.g.,
[1,2,6,9,18,4,3]. Cloaking is orthogonal to address-prediction-
(a) based techniques as it does not require a predictable access pat-
LOAD Ry USER tern. A technique closely related to cloakindoad value pre-
D - LOAD R, diction[12], a special case of value prediction [11,7]. Cloaking
@ does not directly predict the loaded value, rather it predicts its
producer or another load that also accessed the same location.
This property may be invaluable for programs with large data
(b) sets.
Figure 4: RAR-based speculative memory cloaking (part (a)) Moshovos, Breach, Vijaykumar and Sohi introduced RAW
and bypassing (part (b)). memory dependence prediction for scheduling loads [14].
the earliest in program order load as the producer of a value fBrson and Austin [20] and Moshovos and Sohi [15,16] intro-
cloaking purposes. duced RAW-based cloaking. Theemory renamingroposal
At this point we can explain why our RAR-based metho®f Tyson and Austin combines cloaking with value prediction.
can be used to predict some of the loads that have RAW depéipasti's Alias prediction [10] is also similar to cloaking.
dences with distant stores. The size of the DDT limits how fdyloshovos and Sohi proposed RAW-based speculative memory
we can search to locate the source instruction for both RABYpassing [15]. Jourdan, Ronen, Bekerman, Shomar and Yoaz
and RAR dependences. When a load has a dependence wif@posed a similar method [8] where address information and
distant store it is likely that the latter will be evicted from theprediction is used to eliminate loads and to increase coverage.
DDT long before the load is encountered. Consequently, tféeinman, Calder, Tullsen, Tyson and Austin investigated a
RAW dependence will go undetected and RAW-based cloakirfg@ftware-guided cloaking approach [17].
will not be performed. However, if the load has RAR depen5 Evaluation
dences with not so distant loads, these dependences may b&his section is organized as follows: In Section 5.1 we
detected and subsequently used to predict the load’s valdescribe our methodology. The first step in using cloaking is
using RAR-based cloaking. building dependence history. Accordingly, in Section 5.2 we
3.2 RAR-Based Speculative Memory Bypassing measure the fraction of memory dependences observed as a
The process of RAW-based bypassing is shown in part (a)f(wction of DDT size. I.n Section 5.3 we investigate an aggres-
Figure 1. As shown, bypassing speculatively conversr sive cloaking mechanism and study |t§ accuracy. In Sections
STORELOAD-USE dependence chain into BEF-USE one, in 5.4 through 5..5 we presgnt a characterization of the speculated
effect bypassing the store and load instructions. Consequenigﬁds by conglderlng their address and value Iocallty character-
the value can flow directly from the produceEt R,) to the I tICS.. In Sectlor) 5.6, we measgre the perfgrmance impact of a
consumer YSE Ry). The goal of our RAR-based extension tocombmed cloaking and bypassing mechanism.
bypassing is shown in part (b) of Figure 1. We assume thattal Methodology
RAR dependence exists betweamAD R,” and “LOAD R,". We have used the SPEC’95 programs which we compiled for
While RAR cloaking will allow tOAD R,” to obtain a specula- the MIPS-I architecture using GNUgcc compiler version
tive value by namingLOAD R,”, its consumer, USE R,”, will 2.7.2 (flags: -O2 -funroll-loops -finline-functions). We con-
have to wait until LOAD R,” propagates this value. With our verted FORTRAN codes first to C using AT&T2c compiler.
method, USER,” is speculatively linked directly tolbAD R,”. To attain reasonable simulation times we modified the standard
As with cloaking, the proposed method can be implemented aain or testinputs, and we used sampling for some programs.
an extension to the RAW-based bypassing. This can be doneTable 5.1 reports the dynamic instruction count, the fraction of
treating the oldest in program order load of a RAR dependenimads and stores and the sampling ratio per program. We note
similarly to a store of a RAW dependence. The only differencthat when we simulated our cloaking/bypassing mechanisms
is that this “producing” load cannot be eliminated. Figure 4using unmodified input data sets from the SPEC95 suite the
part (b) illustrates how the cloaking provided synonym is use@sulting accuracy was close, often better than that observed
to propagate the target register tagql) of “LD R,” to “USE with the modified input data seté/e used sampling only for
R, the timing experiments of section 5/ did not use sampling
4 Related Work for 099.go, 126.gcc, 130.li, 132.ijpeg, 147.vortex, 107.mgrid
An obvious alternative to cloaking is register allocatiorand 141.apsiFor the rest of the benchmarks we chose sam-
which eliminates load and store instructions altogether. Howpling ratios that resulted in roughly 100M instructions being
ever, register allocation is not always possible for numerogmulated in timing mode. The observation size is 50,000

instructions. We report sampling ratios under the “SR” colmance very close to that possible with ideal speculation [13].
umns as “timing:functional” ratios. For example, an 1:2 samtfhe base memory system comprises: (1) a 128-entry write
pling ratio amounts to simulating 50,000 instructions in timinduffer, (3) a non-blocking 32Kbyte/16 byte block/4-way inter-

mode and then switching to functional simulation for the nexeaved/2-way set associative L1 data cache with 2 cycle hit
100,000 instructions. During functional simulation the I-cachdatency, (4) a 64K/16 byte block/8-way interleaved/2-way set
D-cache, and branch predictors are simulafa@n when sam- associative L1 instruction cache with 2 cycle hit latency, (5) a
pling was used, the accuracy of all evaluated techniques wasified 4Mbyte/8-way set associative/128 byte block L2 cache
very close, often identical to that measured when the wholeith a 10 cycle hit latency, and (6) an infinite main memory

program was simulated using functional simulation. In ouwith 50 cycles miss latency. Miss latencies are for the first
evaluation we will use the abbreviations shown under the “Abword accessed. Write buffers of 32 blocks each are included

column of Table 5.1. between L1 and L2, and between L2 and main memory. Addi-
Program | Ab. | IC_ | Loads| Stores|] SR tional words incyr a latency of 1 cyclg (L2) or 2 .cycles (m.ain
SPECINT95 memory). All write buffers perform write combining and hits
099.go go 133.8] 20.9% 7.39 N/A on miss are simulated for loads and stores. For branch predic-
124.m88ksim | mas 1963 18.8% 9.69 7L tion we use a 64-entry call stack and a 64k-entry combined pre-
126.9cc gce 3169 2439 175% A dictor that uses a 2-bit counter selec.tor to choose among a 2-bit
129.compress | com 1538 21.7% 135% Tp counter-based and a GSHARE predictors.
13001 i 2065 2969 17.6% N/A In all experiments we used a level of indirection (i.e., syn-
132.jpeg ip 1296 17.7% 8.79 N/A onym) to trac!< multiple RAW and RAR dependenges per.load
134.perl per 17681 256% 16.6% Th and store. This is necessary, as some loads experience different
147 vortex vor 3769 2639 273% A dependences through different control paths. Instead of using
SPECI'95 the full merge algorithm assumed by Moshovos and Sohi [15],
101 tomcatv om 3591 31.99 889 Tp we used the incremental algorithm Chrysos and Emer proposed
102.swim swm 1888 27.0% .69 T.p in the context of memory dependence speculation/synchroniza-
103.su2cor U2 5790 33.8% 10.1% T tion [5]. These methods attack scenarios where a dependence is
104.hydro2d hyd 11289 29.79 8% 11 Jdetected betyveen loads or stores that ha\{e different synonyms
107.mgrid mgd 9501 46.6% 3.0 nA already assigned. For example, consider t.he following
110.applu apl 1689 31.4% vET) T SequencesT; A, LDj A, ST, B, LD, B, STy C, LD, C. Initially sT;
125 turbad o 1666.6 21.39 126 1o andLb;will be assigned a synonym, say X, because they both
141.apsi aps 1250 31.4% 134% N/A access addregs ThensT,andLD, will be assigned a different
145.Tpppp for 51421 48.8% 175% Tp Synonym, say Y, because they access addses¥hen the
146 waves wav 5908 302% 13.0% Tp (ST1,LDp) dependence is encountered the two instructions have

- — _different synonyms already assigned to them. We have found
Table 5.1: Benchmark Ex_ecutl_o_n Characteristics. Instructiony,at in such cases and if we are to use a common policy for all
counts (*IC” columns) are in millions. loads, it is best talwaysmerge all dependences into the same
The simulators we used are modified versions of the Multeommunication group rather thaeverdoing so. In the origi-
scalar timing simulator. Our base processor is capable of exgal cloaking proposal, one of the two synonyms is selected
cuting up to 8 instructions per cycle and is equipped with é.9., X) and all instances of the second one (e.g., Y) are
128-entry instruction window. It takes 5 cycles for an instrucreplaced in the DPNT. This action requires an associative
tion to be fetched, decoded and placed into the re-order bufieokup/update in the DPNT. Chrysos and Emer proposed just
for scheduling. It takes one cycle for an instruction to read iteplacing the synonym of largest value and only for the corre-
input operands from the register file once issued. Integer fungponding instruction (e.g., if X > Y, theaty’s synonym will be
tional unit latencies are 1 cycle except for multiplication (4eplaced with Y). Because of the bias in the synonym selection,
cycles) and division (12 cycles). Floating-point functional unigeventually all relevant instructions will be given the same syn-
latencies are as follows: 2 cycles for addition/subtraction arehym. No noticeable difference in accuracy was observed
comparison (single and double precision or SP/DP), 4 cycl&stween the two methods. Finally, we did not provide explicit
SP multiplication, 5 cycles DP multiplication, 12 cycles SFsupport for dependences between instructions that access dif-
division, 15 cycles DP division. An 128-entry load/store schederent data types as such dependences are rare in the SPEC95
uler (load/store queue) capable of scheduling up to 4 loads apenchmarks. This might not be the case for other programs.
stores per cycle is used to schedule load/store execution.The original RAW-based cloaking and bypassing proposal dis-
takes at least one cycle after a load has calculated its addresgusses potential support for such dependences [15].
go through the load/store scheduler which implemeaise 5.2 Memory Dependence Detection
memory dependence speculatida]. Thatis: (1) a load may | this section, we measure the fraction of memory depen-
access memory even preceang store addresses are ““"”,Oef\@hces that is visible with various DDT sizes. These measure-
(2) aload will wait for preceding stores that are known to write, o s provide a first indication of the fraction of loads that can
to the same address, (3) stores post their address even WhgRi, 5 speculative value via cloaking. Figure 5 reports the
their data is not yet available, and (4) stores may post their dgfg g, of dynamic (committed) loads with detectable RAW or

or address out-of-order. We have found that for our centralizgg p dependences as a function of DDT size (range is 32 to 2K
window processor model this speculation policy offers perfor-

100% 100%
80% I - 80%|
60% wonlmmE e T ; | 60%
20% - Em HHH ey e i | HHEEHEEHHH 40%
20% r 20%]
0% 0%
go m88 gcc com li ijp per vor SpecINT SpecFP Overall
100%
80% M rer
60%
40% i A i Clraw
20% | THHE 1 1iH i HH il]—
0% : o 1 E rar+rRAW
tom swm su2 hyd mgd apl trb aps fp* wav

Figure 5: Fraction of loads with RAW or RAR dependences as a function of DDT size. Range is 32 to 2K in power of 2 steps.

entries and we use LRU replacement policy). Shown is the totalechanism enables cloaking as soon as a dependence is
number of loads with dependences (grey shaded area) andeiected. However, once a misprediction is encountered it
breakdown in terms of the dependence type (RAW or RAR). requires two correct predictions before allowing a predicted
The averaged results (upper right) show that a large fractimalue to be used again. We include results for the non-adaptive
of loads get their value via a dependence that is visible evemnedictor as it provides a rough upper bound on coverage.
with the smaller DDTs. Overall, dependences are more fre- Figure 6 reports cloaking coverage (part (a)) and mispredic-
quent for the integer codes. The relative fractions of RAR artibn rates (part (b)). Two bars are shown, one for each confi-
RAW dependences are dissimilar for the two classes of prdence mechanism: the left one is for the 1-bit non-adaptive,
grams. In integer codes and for the smaller DDT sizes, RAWhile the right one is for the aforementioned 2-bit automaton.
dependences are almost twice as frequent as RAR dependenkdseakdown in RAW (grey) and RAR (white) dependences is
are. In the floating point codes the roles are almost reversedalso shown. We observe that on the average RAR dependences
seems that Fortran codes are dominated by a large numbeméér roughly an additional 20% (integer) and 30% (floating-
variables with long lifetimes that are not register allocated. Agoint) of correctly speculated loads. We also observe that only
we move toward larger DDT sizes, more RAW dependence ageminor loss in coverage is incurred when the adaptive predic-
detected. While RAR dependence frequency also increases for is in place. As the results on misspeculation rates (part (b))
up to DDTs of 512 entries, virtually no increase is observed fahow, this loss comes at the benefit of a drastic reduction in
larger DDTs. We even observe a decrease in RAR dependemesisspeculations. We can observe that for the integer codes
frequency between 1K and 2K DDTs for some floating-poinRAR misspeculations are frequent and in some cases even
codes. The increased frequency of RAW dependences is there frequent than RAW dependences. For the floating point
cause: some of the RAR dependences are among loads thatgrams, RAR dependences are either the sole source of mis-
also have a RAW dependence with a distant store. Whepeculations or they cause as many misspeculations as RAW
smaller DDTs are used the store is evicted from the DDT dukependences do. However, it should be noted that for most
to limited space. floating point programs RAR dependences are also responsible
The results of this section suggest that a DDT of moderater most of the loads that are correctly predictor. On average
size (e.g., 128 entries) can capture dependences for a latbe adaptive predictor reduces misspeculations by almost an
fraction of loads (roughly 70% and 60% for the integer andrder of magnitude compared to the non-adaptive predictor.
floating-point programs respectively). Moreover, a significanfhe misspeculation rates are 2%, 0.35% and 1.01% for the
fraction of loads have a visible RAR dependence but no visiblateger, floating and all program respectively. From that 1.1%,
RAW dependence (e.g., 25% (integer) and 40% (floatindd.17% and 0.54% (percentage of loads) comes from RAW
point) of all loads for the 128-entry DDT). For the rest of thalependences. In the rest of the evaluation we restrict our atten-
evaluation we focus on configurations that use a 128-enttion to the adaptive predictor.
DDT. We have found that this table yields accuracy close of 4 Address Locality Measurements

often better to that achieved with larger DDTs. We next measure the address locality of the loads that get a
5.3 Cloaking Coverage And Misspeculation Rates correct value via cloaking. We defirsgldress localityas the

In this section, we measure the accuracy of two cloakingrobability that a load instruction accesses the same address in
predictors. We use two metricsoverageand misspeculation two consecutive executions. We present these measurements to
rate both measured asfraction over all executed load®over- offer additional insight on the type of loads that are correctly
ageis the fraction of loads that get a correatue via cloaking. handled by cloaking. The results are shown in Figure 7, part
The complement of coverage, the fraction of loads that get &a). The left bar represents the fraction of all loads that exhibit
incorrectvalue, is themisspeculation rateFor the purposes of locality while the right bar represents the fraction of loads that
this study we assume infinite DPNTs and evaluate predictoget a correct value via cloaking. We breakdown the left bar into
with the following two confidence mechanisms: (1) non-adapthree categories depending on whether a RAW, a RAR or no
tive 1-bit, and (2) a 2-bit automaton. The second confidenaependence is detected by our 128-entry DDT. We can observe

100% 100%
S0 . @ 509 —)
d 5% S 0AE - _
60% i 10% 1 I (1 [
970 ' I 1. M|
40% o I I
IR AL]
20% H H =1 B I T -
0.25% Sl L
O e 6 LS & & NS on o or 010% !
>SS TSI &I FZREF LR & S8 e~Rg$ SSVDVIR 9L A
g8s < ST LT &% § 28y RS 9SSV RTE
ERAW [RAR B RAWL RARE RAW+RAR

Figure 6: Breakdown of cloaking accuracy per dependence type: (a) coverage, and (b) misprediction rates (logarithmic Y axis).
Two predictors are shown per program (see text). Percentages are over all loads.

1009 100%
(@) . ’ (b)

80%

80%

60% 60%

40% 40%

20% 20%

0%

&8s T4
Address Locality/ Left Bar Cloakirig Coverage/

Value Locality/ Left Bar Cloaking Coverage/ Right Bar
HRAW CIRAW
[1No Dependence BRAW — o Dependence [JRAW
ERAR Il RAR mRAR [L1No Dependence B RAR

Figure 7: (a) Address Locality breakdown. (b) Value Locality breakdown.
that many loads covered by cloaking do not exhibit addresiicted only via cloaking/bypassing is higher than the fraction
locality. We can also observe that with the exception obf loads correctly predicted only via the value predictor. While
145 .fpppp, there are very few loads that exhibit address localitpntext-based value predictors could be used to increase load
but have no dependence (145.fpppp exhibits similar behavioniélue prediction coverage, cloaking offers a concise way of

a larger DDT is used). representing information for prediction purposes for a large
5.5 Value Locality/Prediction Measurements fraction of loads. These observations suggest a potential syn-
In this section, we measure the value locality of loads and 9y of the two techniques.
correlation to cloaking coverage. We do so as value predictipn Cloaking/Bypassing VP
can also be used to predict a load value, possibly earlier than RAW RAR Total
cloaking would allow. Figure 7, part (b) reports the fraction of go 23.43% 5.759 29.18% 5.299
loads that exhibit value locality alongside with a breakdown ¢f m88 14.23% 10.629 24.85% 1.889
loads that get a correct value via cloaking. As in the previofls gcc 18.15% 5.899 24.04% 8.019
section we provide a breakdown of the loads that exhibit vallje com 41.18% 0.999 42.18% 0.229
locality based on whether they have a dependence detected. [For i 31.08% 1.089 32.17% 6.149
most programs, cloaking coverage is higher than value localify. iip 8.67% 5.25% 13.93% 11.249
Value locality is higher only for 132.ijpeg, 104.hydro2d,| per 21.72% 1.579 23.29% 7.829
110.applu and 125.turb3d. Moreover, cloaking predicts more pf _vor 29.52% 3.339 32.85% 5.039
the loads with dependences. tom 10.22% 15.359 25.58% 0.249
To better understand how value prediction and cloaking/ swm 6.43% 19.989 26.41% 0.379
bypassing relate, we measured the fraction of loads that ggt a su2 7.18% 25.899 33.08% 2.679
correct value from cloaking/bypassing but not from value pre- hyd 3.02% 1.29% 4.31% 49.949
diction and vice versa. For this experiment we simulated |a_mgd 2.34% 0.43% 2.77% 2.609
fully-associative last-value predictor with 16K entries. The apl 3.18% 8.29% 11.46% 12.609
cloaking mechanism we use has a 16K DPNT, a 128-entry trb 2.21% 0.55% 2.82% 41.949
DDT and a 2K set associative synonym file. All structures afe _aps 8.85% 4.47% 13.34% 9.679
assumed to be fully-associative. The results are shown in Table fp* 22.46% 17.879 40.34% 18.179
5.1. We also present a breakdown of the values obtained yia wav 10.08% 12.849 22.92% 5.949

cloaking/bypassing in terms of the dependence type. We cgfpje 5.1: Fraction of loads that get a correct value from

observe that for most programs, value prediction captures SOBaking/bypassing and not from a value predictor (“Cloaking/
loads that cloaking/bypassing does not and vice versa. Morgypassing” columns) and vice versa (“VP” columns).
over, for most programs the fraction of loads correctly pre-

5.6 Performance Impact [19]. We assumed the ability to resolve all speculation in a reg-
In this section, we evaluate the performance impact of igter dependence chain as soon as its input values are resolved.
combined cloaking and bypassing mechanism. The rest of tffénether such a mechanism is practical is still an open ques-
section is organized as follows: In Section 5.6.1 we descriin- Finally, we disallow control resolution on branches with
the cloaking/bypassing mechanism we simulated. In Sectiofflué speculative inputs.
5.6.2 we measure how performance varies when cloaking/6.2 Performance with a Cloaking/Bypassing Mechanism
bypassing is used for two misspeculation handling models. WeFigure 9 we measure how performance varies when cloak-
also measure the improvements obtained by augmenting clogkg/bypassing is used. Reported is the speedup or slowdown
ing/bypassing with our RAR dependence based techniques.ith respect to the base processor that uses no cloaking/bypass-
Section 5.6.2, we measure the performance impact of our teGhg. Four bars are shown. The two on the left are with selective
niques. invalidation. The dark bar is for the original RAW-based tech-
5.6.1 Configuration niques while the grey bar is for our extended mechanism. The
The cloaking/bypassing mechanism we used comprises: @§er two bars report performance with squash invalidation
a 128-entry fully-associative DDT with word granularity, (2)(@rey for RAW-based and white for RAW+RAR-based cloak-
an 8K, 2-way set-associative DPNT, and finally, (3) an 1K, 2!_ng). Using squash invalidation rarely results in performance
way set associative synonym file. Figure 8 illustrates how tri8Provements. In contrast, speedups are observed for all pro-
various components of the cloaking/bypassing mechanism ##2ms when selective invalidation is used. Comparing RAW-
integrated in the processor's pipeline. Detection of depef@sed cloaking/bypassing with our proposed RAW+RAR-
dences occurs when loads or stores commit via the DDT. Syp@sed mechanism we observe that for most programs further
onym file updates and DPNT updates also occur at comniffiProvements are attained. In some cases the improvements
time. Dependence predictions are initiated as soon as instr@® significant in absolute terms. In relative terms the addi-
tions enter the decode stage. For bypassing, loads and stdfg8al improvements are considerable especially when we take
that are predicted as producers associate the actual producefift account that they come at a small cost over the original
the desired value with their synonym signonym rename table RAW-based cloaking/bypassing. On the average performance
(SRT) entry. That is, SRT entries associate synonyms wilflProvements are up to 6.44% (integer) and 4.66% (floating-
physical registers. Loads that are predicted as consum&@nt) from 4.28% and 3.20% respectively. An anomaly is
inspect the SRT and the SF in parallel to determine the curréiftServed for two cases where our extended mechanism results
location of the their synonym. If an SRT entry is found, thd? somewhat lower performance. This is because we use a com-
synonym resides in the physical register file as the corresporf#n DDT for both RAW and RAR dependences. As a result
ing load or store has yet to commit. Otherwise, the synonym $¢me RAW dependences are not detected because stores get
in the SF. At most 8 predictions can be made per cycle and&ficted by loads to different addresses. Using separate DDTs
most 8 instructions can be scheduled for cloaking or bypassifg® for stores and one for loads eliminates this anomaly.

per cycle. 5%
\ 2 Update | 10% .
DPNT || SF [« Updae | DT 5%1 T i =l i
| LT 1 T
PC A predict A 0 \‘
v L Y o 8 IS8 [i=|S
SRT * Veri -9 I N H 0T
Decode . -1094 B H
Fetch Pl & P{ Schedule —P» Execute [~ Commit
Rename 159 —
5% : S IR 25 ~
: : : — — S RS ESLS S FESIS 38T LR ¢
Figure 8: Integrating cloaking/bypassing into a pipeline. & éb S & RS NGNS TS
_ , _ , , M selective [Selective [Squash [] Squash
Misspeculations are signalled only when an instruction has RAW RAW+RAR RAW RAW+RAR
actually read an incorrectly speculated value. We have experi- HM Selective =~ RAW: INT: 4.28%, FP: 3.20%, ALL: 3.68%
mented with two misspeculation recovery mechanisms. The RAW + RAR: INT 6.44%, FP: 4.66%, ALL. 5.44%

first is selective invalidationThis mechanism re-executes onlyFigure 9: Performance of RAW and RAW+RAR cloaking/
those instructions that used incorrect data. The second g§passing with two misspeculation handling mechanisms.

squash invalidatiorand works by invalidating all instructions InEi 10 ¢ d ; that d ;
starting from the one that was mispeculated. These instructiong | " '9ure Y We report speedups for a processor that does no

have to be re-fetched from scratch. We also experimented wﬁﬁe.cmatf on rr:emolry clietpetrlhdgnc%sd(l.e., Io\?vdsc;/valt fofr all pre-
an oracle mechanism that does not speculate when this woﬁI tlng S oresa o ca cutate d.elr.a rless). el ct). sot OL com-
result in misspeculation. We found that selective invalidatioff'© cNesS and as most studies in value speculative techniques
offers performance similar to such a mechanism. assume such a configuration. It can be seen that in most cases

A challenge shared by most value speculative techniquesﬁeeedugs are stlgnlfé)cantly higher (often double) co(rjnparegl to
data speculation resolutignhat is how quickly we can estab- igure = were the base processor uses memory dependence

lish that speculative values are correct. Moreover, care must E%ecula'uon (ﬁee _IS_E,Ct',ontE] -1). Thlfref a;}re 9as¢|es v(\j/here .tthfe S?ﬁed'
taken to avoid destructive interference with branch predictioHps are smafler. This 1S the result of having loads wait for the

addresses of all preceding stores. This results in a longer cr{i#] B.-C. Cheng, D. A. Connors, and W.-M. Hwu. Compiler-directed

; ; ; ; early load-address generation Hroc. Annual International Sym-
cal path comprised mostly of loads which cloaking/bypassing posium on Microarchitecture-3Dec. 1998,

cannot attack. [5] G. Z. Chrysos and J. S. Emer. Memory dependence prediction using
store sets. IfProc. International Symposium on Computer Archi-
25% _ tecture-25 June 1998.
[6] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit for
20% pipelined processors. IBBM journal on research and develop-
ment, 37(4)July 1993.
15% [7] F. Gabbay and A. Medelson. Speculative Execution Based on Value
Prediction. Technical report, TR-1080, EE Dept., Technion-Israel
10% Institute of Technology, Nov. 1996.

0 [8] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A
5% novel renaming scheme to exploit value temporal locality through
0% L physilcal register reuse and unrification.ﬁmc. Annual Interna-

. e ~ 5 A tional Symposium on Microarchitectures3ec. 1998.
o? ngoc)? 05\\;3 QQJAO 05§5 5"@? o?&&g’”@g [9] J. Gonzalez and A. Gonzalez. Speculative execution via address
§90 o 2 & prediction and data prefetching.mPnoc. International Conference

- . on Supercomputing-13uly 1997.
Figure 10: Speedup when no memory dependence speculatipio] M. H. Lipasti. Value Locality and Speculativex&ution Ph.D.

is used. Left bar: RAW-based. Right bar: RAW+RAR-based. thesis, Carnegie Mellon University, Pitsburgh, PA 15213, Apr.
1997.
6 Conclusion [11] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via val-

We have identified that typical programs exhibit highly regu- gfogrzﬁi'ggﬂ'rgzgo&ghfég%lljal International Symposium on Mi-

lar RAR memory dependence streams and exploited this prdp2] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
; ; ; _ load value prediction. IRroc. International Conference on Archi-

erty .by. introducing history-based RAR memory dependenpe tectural Support for Programming Languages and Operating Sys-

prediction. For most programs more than 80% of all loads with tems-vI| Oct. 1996.

a RAR dependence experienced the same RAR dependencélé]sA Moshovos Memory Dependence Predictidph.D. thesis, Uni-

. . r versity of Wisconsin-Madison, Madison, W1 53706, Dec. 1998.
the last time they were executed. We used this prediction &')4] A MoyshOVOS’ S. Breach, T. Vijaykumar, and G. Sohi. Dynamic

develop two memory latency reduction techniques: RAR-based ~ speculation and synchronization of data dependencésotn In-
cloaking and bypassing. We showed how these techniques ia IAEf&aUOhnal Sym%oélur; ﬁ,ﬂ gtompult,er Afd}ltecture-l%_me 1997.
. . . . Moshovos an . 20N, streamlining Inter-operation communi-
be implemented as surgical extensions to the recently proposed cation via data dependence predictionPhoc. Annual Interna-
RAW-based cloaking and bypassing. tional Symposium on Microarchitecture;3Dec. 1997. _
On the average, our RAR extensions provide correct spedd®l A- Moshovos and G. S. Sohi. Speculative memory cloaking and
) ’ . . bypassingInternational Journal of Parallel Programmingct.
lative values for an additional 20% (integer codes) and 30% 1999.

(floating-point codes) of all loads. This increase is significantl7] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin. Pro-

. . . file guided load marking for memory renaming. Technical Report
compared to the 45% (integer codes) and 15% (floating-point 0538-593, University e California, e Diegg July 1998, P

codes) of loads that get a correct speculative value via the orjgs] Y. Sazeides and J. E. Smith. The Predictability of Data Values. In

inal RAW_dependence_based C|0aking and bypassing. We Proc. Annual International Symposium on Microarchitecture-30
. Dec. 1997.

studied the performance of the resulting mechanism and ifg) A, Sodani and G. S. Sohi. Understanding the Differences Between
interaction with two misspeculation handling techniques and Value Prediction and Instruction Reuse Pioc. Annual Interna-

found that selective invalidation is necessary for the given pr%-g] g?”sé'Tsyysrgrﬁ’%sn'gr?_.ol\’ﬂ‘.“}ﬂ\ﬁsrgﬁf‘fm;ergt\z:g?ﬁ:%clc%?gcy and Perfor.
dictor. We observed average speedups of 6.44% (integer) and’ mance of Memory Communication Through RenamingPioc.
4.66% (floating point). For the same configuration the speed- Annual International Symposium on Microarchitecture-Bec.
ups of the original RAW-based cloaking/bypassing are 4.28%
and 3.20% respectively. These improvements come at virtually
no cost. When we used a base configuration that does not use
memory dependence speculation our techniques yield speedups
of 9.8% (integer) and 6.1% (floating-point). We also found that
the combined RAW- and RAR-dependence-based cloaking/
bypassing mechanism offers in most cases superior accuracy
compared to last-value load value prediction.
Acknowledgments
This work was supported in part by NSF Grant MIP-
9505853 and by an equipment donation from Intel Corpora-
tion.
References

[1] T. M. Austin, D. N. Pnevmatikatos, and G. S. Sohi. Fast address cal-
culation. InProc. International Symposium on Computer Architec-
ture-22 June 1995.

[2] T. M. Austin and G. S. Sohi. Zero-cycle loads: Microarchitecture
support for reducing load latency. Rroc. Annual International
Symposium on Microarchitecture-28ov. 1995.

[3] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim,
L. Rappoport, A. Yoaz, and U. Weiser. Correlated load-address
predictors. InProc. International Symposium on Computer Archi-
tecture-26 May 1999.

