
Abstract

Recentlytwo hardware techniques— ValuePrediction(VP) and
Instruction Reuse(IR) — have beenproposedfor exploiting the
redundancyin programs to collapse data dependences.In this
paper, weattemptto understandthedifferentwaysin which VPand
IR interact with othermicroarchitectural featuresandtheimpactof
such interactionson net performance. More specifically, we per-
form the following tasks: (i) we identify the various differences
betweenthetwo techniquesandqualitativelydiscusstheir microar-
chitectural interactions,(ii) weevaluatetheimpactonperformance
of theseinteractions,and(iii) sinceIR is more restrictiveof thetwo
techniques, we also estimate the amount of total redundancy,
present in programs, that can be captured by IR.

Our resultsshowthat theperformanceobtainedby VP is sensi-
tive to thewaybrancheswith value-speculativeoperandsare han-
dled. We also see that, although IR captures less amount of
redundancy, it mayperformequallywell becauseit validatesresults
early, it is non-speculative, and it reducesbranch misprediction
penalty. Finally, we showthat 84-97%of redundancyin programs
can be reused,implying that the approach of detectingredundant
instructionsnon-speculatively, basedon their operands,doesnot
significantlyrestrict IR’s ability to capture redundancypresentin
programs.

1. Introduction

Several recentstudies[2, 5, 8, 10] have shown that there
is significant result redundancy in programs, i.e., many
instructionsperformthe samecomputationand,hence,pro-
ducethesameresultover andover again.Thesestudieshave
found that for several benchmarksmore than 75% of the
dynamic instructions produce the same result as before.
Also, recently, two hardwaretechniqueshave beenproposed
to exploit this redundancy: (i) Value Prediction(VP) [3, 4,
5], and (ii) Instruction Reuse(IR) [9]. Both techniques
attemptto reducetheexecutiontimeof programsby alleviat-
ing thedataflow constraint.They usetheredundancy in pro-
gramsto determine— speculatively (Value Prediction)or
non-speculatively (Instruction Reuse) — the results of
instructionswithout actuallyexecutingthem.Theadvantage
of doing so is that instructionsdo not have to wait for their
sourceinstructionsto executefirst; they canexecutesooner
usingtheresultsobtainedby theabove two techniques,thus,
relaxing the dataflow constraint.

Although both VP andIR attemptto shortenthe critical
path through a computation, they follow very different

approaches.VP predictstheresultsof instructions(or, alter-
natively, the inputsof otherinstructions)basedon theprevi-
ouslyseenresults,performscomputationusingthepredicted
values,andconfirmsthespeculationata laterpoint.Thecrit-
ical path is shortenedsincethe instructionsthat would nor-
mally be executed sequentially could be executed
(speculatively) in parallel.On theotherhand,IR recognizes
that a certaincomputationchainhasbeenperformedbefore
and thereforeneednot be performedagain, i.e., it “splices
out” a chain of computation from the critical path.

The effectivenessof any microarchitecturaltechniquein
improving the net performanceof a processornot only
dependson how well it performsby itself, but alsoon how it
interactswith othermicroarchitecturalfeatures(e.g.,branch
prediction,availability of resources)whenit is integratedin
apipeline.SinceVP andIR aredifferenttechniques,they not
only performdifferently by themselves(i.e., capturediffer-
entamountsof theredundancy presentin programs)but also
interact with other microarchitecturalfeaturesin different
ways, thereby, impacting the net performancedifferently.
Thepurposeof this work is to identify andevaluatethedif-
ferent microarchitecturalinteractionsof thesetechniques.
Theintent is not to arguewhich techniqueis better, but is to
gain a better understandingof the working of each tech-
nique.We feel, that will help in designingother techniques
(possiblyhybrid of VP andIR) that exploit the redundancy
in programsmoreprofitably. More specifically, in this paper
we achieve thefollowing threetasks.(i) We identify thevar-
ious differencesbetweenthe two techniquesand qualita-
tively discusstheir microarchitecturalinteractions.(ii) We
evaluate the impact on performanceof theseinteractions.
And finally, (iii) sinceIR is morerestrictive of thetwo tech-
niques(we discussthis later),we alsoestimatehow muchof
thetotal redundancy presentin programscanbecapturedby
IR.

The layout for the rest of the paper is as follows. In
Section2, we describe VP and IR in more detail. In
Section3, we identify thevariousdifferencesbetweenthem,
and qualitatively discussvarious interactionsand their the
impacts on performance.In Section4, we evaluate these
interactionsquantitatively. Finally, in Section5, we summa-
rize and provide conclusions.
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2. Value Prediction and Instruction Reuse

As mentionedearlier, VP is a speculativetechniquethat
exploits redundancy in programsto predict valuesthat are
eitherproduced(results)or used(inputs)by instructions.In
Figure1(a), we show a pipeline with VP. The predictions
areobtainedfrom a hardwaretable,calledValuePrediction
Table (VPT). Thesepredictedvaluesareusedas inputsby
instructions,which canthenexecuteearlierthanthey could
have if they hadto wait for their inputsto becomeavailable
in the traditional way. When the correct values become
available(afterexecutinganinstruction)thespeculatedval-
uesareverified; if a speculationis found to be wrong, the
instructionswhich executedwith the wrong inputs are re-
executed(Figure1(a)).Theexecutionof suchinstructionsis
delayedby the latency of verifying theprediction(VP-veri-
fication latency). However, if thespeculationis found to be
correctthennothingspecialneedsto be done;instructions
get executedearlier than they would have otherwise.VP
collapsestrue dependencesby allowing dependentinstruc-
tions, that would have executedsequentially, to executein
parallel.

Unlike VP, IR is a non-speculativetechnique that
exploits redundancy in programsby obtaining results of
instructionsfrom their previousexecutions,andthereby, not
executingthem.In Figure1(b) we show a pipelinewith IR.

Whenaninstructionis first executed,its resultsarestoredin
a hardwarestructurecalleda ReuseBuffer (RB), indexedby
its PC.Whentheinstructionis encounteredagain, its previ-
ousresultsarereadfrom the RB (in parallelwith fetching
theinstruction)andtheir validity establishedby a reusetest
(in parallel with decodingthe instruction).The reusetest
validatesresultsby establishingthat the current operands
valuesare the sameas thoseusedto calculatethe results.
There are different ways of doing so, one of which is
describedlater in Section4.1.2of this paper. Sincethecor-
rect resultsareknown, a reusedinstructionis not executed,
and insteadit is queuedfor retirement.IR collapsestrue
dependencesby reusingin thesamecycleadependentchain
of instructions that would normally execute sequentially.

In Figure2, we illustratehow VP andIR improveperfor-
manceby collapsingdata dependences.In the figure, we
show a flow of a dependentchainof instructions(I, J, and
K) through three different pipelines: (i) a basepipeline
(without VP or IR); (ii) a pipelinewith VP; and(iii) a pipe-
line with IR. In all threecases,weassumetheinstructionsI,
J, andK, arefetched,decodedandrenamedtogether. In the
basepipeline, the instructionsexecutesequentially, since
they are datadependent,requiring threecycles to execute
them;thechainis committedby cycle6. In thepipelinewith
VP, the dependencebetweeninstructionsis broken by pre-
dicting theoutputsof I andJ (alternately, theinputsof J and
K). This enablesthe threeinstructionsto executesimulta-
neously(in cycle 3); the chain is committedin cycle 4. In
the pipeline with IR, the previous resultsof theseinstruc-
tionsarereusedin parallelwith decodingthem(in cycle 2).
The data dependenceis alleviated becausethe dependent
instructionsare reusedat the sametime. Sincethe results
areknown, the instructionsskip over the executestageand
arecommittedin cycle 3. Thus,we seethatbothVP andIR
enabledependentinstructionsto completesimultaneously,
which otherwise would have completed one at a time.

3. Impact of Differences: Qualitative

The pipelinesin Figure1 bring forth the key difference
betweenthe two techniques:IR verifies the resultsbefore
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Figure 1: (a) Pipeline with VP, (b) Pipeline with IR.
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Figure 2: Flow of a dependent chain of instruction, I, J, K, (where J is dependent on I, and K is dependent on J) on (i) a base
superscalar, (ii) a superscalar with VP, and (iii) a superscalar with IR. For both VP and IR, the true dependences are collapsed
because the instructions in the chain do not execute one at a time as in the base superscalar.



using them (early validation), while VP usesthe results
speculatively andverifies themlater (late validation). This
featureof early andlate validationleadsto two differences
in the way VP andIR function: (i) VP is speculative while
IR is non-speculative, and (ii) reusedinstructionsdo not
execute,while thevaluepredictedinstructionsneedto exe-
cute to verify the prediction.Due to thesedifferences,the
two techniquesvary in (i) the amountof redundancy they
can capture, and (ii) the way they interact with other
microarchitectural features. We elaborate on them next.

3.1  Amount of Redundancy Captured
SinceIR validatesresultsearlybasedon inputs,it maybe

conservative.For example,if theinputsof aninstructionare
not readyat thetime it is testedfor reusethenit will not get
reused;or, an instructionthat producesthe sameresultbut
with differentinputs(e.g.logical operations,loads)will not
get reused.However, VP canmake the correctpredictions
for each of the above casessince it neither dependson
inputsbeingavailablenoron thembeingthesame.Thus,IR
may not captureas much redundancy in programsas VP.
However, validatingresultsearlymakesIR non-speculative
and has other advantages that we discuss next.

3.2  Impact on Performance
In this section,we describetheinteractionsof VP andIR

with othermicroarchitecturalfeaturesandqualitatively rea-
son about their likely impact on performance.

• Effect of value misprediction: Whena valueis mispre-
dicted,instructionsdependenton thatvaluearere-executed.
Since mispredictionsare detectedduring the verification
stage,the executionof theseinstructionsis delayedby the
VP-verification latency. On the other hand, IR does not
incur any misprediction penalty.

• Impact on branch prediction: Typically, when a
branchis mispredicted,all instructionsfollowing thebranch
arediscardedandinstructionfetchresumesfrom thecorrect
address.The branchmispredictionpenalty, which includes
cycles spentexecuting the discardedinstructions,can be
reducedif the mispredictionis detectedearlier in the pipe-
line; this way themachinecanstartexecutingon thecorrect
pathsooner, saving cycles that would have otherwisebeen
wasteddoing thewrongwork. Both VP andIR canresolve
branches(andtherebydetectmispredictions)earlierby col-
lapsing the dependentchainsof operationsleading to the
branches,andthereby, reducethebranchmispredictionpen-
alty.

VP andIR also interactwith branchpredictionin other
ways.IR further reducesbranchmispredictionpenaltydue
to two reasons.First,whena mispredictedbranchis reused,
the mispredictiongetsdetectedearlier (at decode)than it
would have if the branchhad to execute.Second,due to
convergentcodesometimesprocessorsperformusefulwork

onthewrongpath.SinceIR bufferswork doneonthewrong
path,it canrecoverusefulwork from thework squasheddue
to misprediction, resulting in faster recovery.

VP, on the otherhand,may increasethe branchmispre-
diction penaltyin two ways:(i) by causingmoremispredic-
tions, and(ii) by delayingbranchresolution.Which of the
two effectsoccurdependson how thebranchesthatexecute
with value-speculative operandsare handled.For the pur-
poseof explanationwe semanticallydivide a branchinto
two operations:(i) executing a branch — which means
determiningits outcome,and (ii) resolving the branch —
which meanstaking the action basedon its outcome(e.g.
squash).Brancheswith speculativeoperandscanbehandled
in two ways:(i) they areresolved while their operandsare
still speculative,or (ii) their resolutionis delayeduntil their
operandsbecomenon-speculative. The first option may
causespuriousbranch mispredictions,becausenow cor-
rectly predictedbranchesmay also get mispredictedwhen
they producethe wrong outcome(dueto wrong inputs).In
the secondoption, wherethe action is taken only after the
branchinputs are known to be non-speculative, branches
have to wait till their sourceinstructionshave beenverified.
This delaysthebranchresolutionby thelatency of VP-veri-
fication, delaying branch misprediction detection and,
thereby, increasing the misprediction penalty.

• Impact on resource contention: As an instruction
flows througha pipelineit contendsfor differentresources
(e.g.functionalunits,cacheports)at differentstagesin the
pipeline.VP and IR may influenceresourcecontentionby
changing both the pattern in which the resourcesare
requestedand the demandfor them. By collapsing true
dependencesbothVP andIR canmake instructionsreadyto
executesooner. This changesthescheduleof theinstruction
execution,whichmayresultin clusteringor spreadingof the
requestsfor resources,thereby, increasingor decreasing
resource contention.

Sincea reusedinstructiondoesnot execute,IR tendsto
reducethedemandfor resources.This freesupresourcesfor
useby othercontendinginstructions.VP, on theotherhand,
may increasethe demandfor resources,since instructions
which executewith wrong inputsneedto re-execute.These
instructionsmay executemultiple times if they seewrong
valuesrepeatedly(placingfurtherdemandontheresources).

• Impact on execution latency: IR decreasesexecution
latency of individual operations,sincereusingan operation
effectively reducesits executiontime (from possiblymulti-
ple cycles) to the 1 cycle (latency of performing reuse).
Unlike IR, VP doesnotbypassexecution— theinstructions
still have to executeto verify their prediction— hence,it
doesnot impact the execution latency of the operations.
Thus,in VP, thecompletiontime of an instructionwill still
be limited by its execution (and verification) latency.



4. Impact of Differences: Quantitative

In thissection,wefirst quantitatively evaluatethevarious
microarchitecturalinteractionsof VP andIR, anddetermine
their impact on net performance.In the latter part of this
section,we estimateamountof total redundancy presentin
programs that can be captured by IR.

4.1  Impact on Performance: Experimental Setup
Since we are more concernedwith the differences

betweenthe paradigmsof value predictionand instruction
reuse,we would, ideally, like to remove implementation
specific effects from the evaluation. But, using oracle
schemesor schemeswith unboundedbuffers (resulting in
very high predictionand reuserate) would maskthe “real
life” effectsof thesetechniquesthat we wish to highlight.
Thus,we choosetwo comparableand realistic schemesto
implement each of the technique. We describe these
schemes below.

4.1.1  Value Predictor
We implement VP using a scheme,which we call

VPMagic. This schemeis like the last value predictor [4],
except that insteadof saving only the last result of an
instruction we save its last ‘n’ unique results.With each
result we also store a 2-bit confidencecounter, which is
incrementedor decrementeddependingon whetherpredic-
tion is right or wrong. Only confidentresults(which have
thecountervalueabove certainthreshold)areusedfor pre-
diction.Weobtainthepredictionfor theresultof aninstruc-
tion as follows: if the correct result of the instruction is
presentamongthelast‘n’ results,thenthatresultis selected
as prediction; otherwise, the most confident result is
selectedastheprediction.Thereasonwe usesuchanoracle
selectionpolicy (which gives the schemeits name) is to
make the VP schemecomparableto the IR scheme(we
describeit next). TheIR schemeis capableof buffering dif-
ferent instancesof an instructionand selectingthe correct
instancefor reuse.1 Sincewe did not wantthis differenceto
biasour evaluation,we chooseto make VP schemeequally
powerful. However, this VP schemeis still quite realistic;

[11] describesa valuepredictionscheme,which buffers ‘n’
resultsper instructionandaccuratelyselectsthe prediction
value from these ‘n’ values.

We also simulatethe last value predictor, VLVP, which
usesthe last result of an instructionasa predictionfor its
future result.This predictorincurshighervaluemispredic-
tions than VPMagic. We simulatethis predictorbecauseit
permitsus to observe how thevariousinteractionswe wish
to studywill shapeup for programswherethevaluepredic-
tion performance is not high.

4.1.2  Reuse Scheme
TheIR schemewe simulateis Sn+d,

2 describedin [9]. In
this scheme,resultsof instructionsare stored in the RB
alongwith two piecesof informationneededfor establish-
ing the reusability of the result: (i) the operandregister
namesand(ii) pointersto theRB entriesof the instructions
which producedvaluesfor the operands.The pointerslink
theRB entriesto form a dependentchain.A reusableentry
is detectedasfollows.Thestart-entriesof dependentchains
areinvalidatedwhentheir operandregistersareoverwritten;
only valid start-entriesarereused.Otherentriesin a depen-
dentchainarereusedif theentriesonwhich they aredepen-
dent have beenreused.We handleloadsin a specialway.
Load entriesare invalidatedwhen a store writes to their
memoryaddress.In this paper, we augmentthis schemein
two ways.First, we alsosave operandvalueswith the RB
entries.A start-entryis invalidatedonly if the new operand
value is different from the old one.Second,if the operand
valuesfor an invalidatedentry becomecurrentagain then
the entry is reverted to the valid state.

4.1.3  Microarchitecture
Our microarchitecturalsimulator is built on top of the

SimpleScalartoolset [1], an execution-driven simulator

1 Oneway to selectthecorrectinstancefrom amongseveralinstancesis to
readall instancesout of theRB, andthenperformthereuseteston eachof
them in parallel. The instance that succeeds the reuse test is selected.
2 Letters ‘n’ and ‘d’ in Sn+d standfor nameand dependencesbetween

instructions.Thesearethe two piecesof informationusedfor establishing
the reusability of the results.

Instruction fetch 4 instspercycle.Only onetakenbranchpercycle.Cannotfetchacrosscacheline boundariesin thesamecycle.

Instruction cache 64K bytes, 2-way set assoc., 32 byte line, 6 cycles miss latency.

Branch predictor Gshare [6]. 10-bit history register, 16K entry counter table.

Speculative execution
mechanism

O-o-O issueof 4 operations/cycle, 32 entry reorderbuffer, 32 entry load/storequeue.Max of 8 unresolved
branches.Loadsexecutedonly after all precedingstoreaddressesareknown. Valuesbypassedto loadsfrom
matching stores ahead in the load/store queue.

Architected Registers 32 integer, hi, lo, 32 floating point, fcc.

Functional Units (FU) 8-integer ALUs, 2 load/store units, 4-FP adders, 1-Integer MULT/DIV, 1-FP MULT/DIV.

FU latency (total/issue) int alu-1/1, load/store 1/1, int mult 3/1, int div 20/19, fp adder 2/1, fp mult 4/1, fp div 12/12, fp sqrt 24/24.

Data Cache 64K bytes, 2-way set assoc., 32 byte line, 6 cycles miss latency. Dual ported, non-blocking.

Table 1: Details of the base simulator



baseduponMIPS-I ISA. Thesimulatormodelsin detaila4-
way dynamically-scheduledprocessorwith its first level of
instructionanddatacachememory. The parametersfor the
out-of-order simulator are listed in Table1.

A VPT and an RB are incorporatedin this pipeline as
shown in Figure1. We usea 16k-entryVPT anda 4k-entry
RB. Both structuresare4-way setassociative (i.e., they can
storea maximumof 4 instancesper instruction),with LRU
replacementpolicy. SinceanRB entryis effectively 4 times
thesizeof a VPT entry(anRB entrystorestheoperandval-
uesand dependency information with the result), we pro-
vide theVPT with 4-timesasmany entriesastheRB soas
to assignsameamountof hardware storageto both tech-
niques.Both structuressupportfour readsand four writes
per cycle, which allows four instructionsto be value pre-
dicted or reusedper cycle. In addition, the RB supports
invalidationsbasedon four different register names.Both
VP and IR can collapse dependencechains up to four
instructions long in a cycle.

We employ an aggressive value mispredictionrecovery
policy. In case of mispredictions, only the dependent
instructionsarere-executed.Only thefirst instructionin the
dependentchain pays the misprediction penalty; other
instructionsissueasthey seenew values.This ensuresthat
themispredictionpenaltyis chargedonly oncefor theentire
dependentchain(asopposedto charging it for every instruc-
tion in the chain).

4.1.4  Configurations Studied
As we describedin Section3.2, VP can interact with

branchprediction differently dependingon how branches
with value-speculative operandsare handled.To evaluate
the impactof theseinteractions,in our simulationswe han-
dle branchesin two ways:(i) speculative branch resolution
(SB)— wherebranchesareresolvedassoonasthey execute
(even if their operandsarevalue-speculative); and(ii) non-
speculative branch resolution (NSB) — wherebranchesare
resolvedonly aftertheir operandsbecomenon-value-specu-
lative.

Also, as describedSection3.2, VP may causeinstruc-
tions to re-executeseveral times.To evaluateits impact,we
handle re-executionsin two ways in our simulations:(i)
multiple executions allowed (ME) — where we allow an
instruction to executeas many times as it seesnew input
values;and (ii) no multiple executions allowed (NME) —
where we re-execute instructionsonce after their correct
operands are known.

A combinationof theabove variationsresultsin four dif-
ferentconfigurationsbeensimulatedfor VP: ME-SB,NME-
SB, ME-NSB, and NME-NSB.

To seethe effect of VP-verification latency, we run the
VP experiments with both 0- and 1-cycle verification
latency. For IR experiments,we assumethat the reusetest

canbeperformedin parallelwith instructiondecode,hence
it does not incur any extra latency.

4.1.5  Benchmarks
We used seven programs from the SPEC95 integer

benchmarkssuite for our study. The benchmarkprograms
arelisted in Table2 alongwith their inputs,the numberof
dynamicinstructionsexecutedon the timing simulator, and
branchand returnpredictionrates.We simulateall bench-
marks for 200 million cycles or until completion,which
ever occursearlier. For go, m88ksim, ijpeg, vortex, andgcc
we skip the initial 1 billion instructions,andfor compress,
weskip thefirst 2.5billion instructions,executingthemona
functionalsimulator(sothatwedon’t makeall ourmeasure-
ments in the initialization phase).The exact number of
instructionssimulatedin a fixednumberof cyclesis depen-
denton the microarchitecturalenhancementapplied.Thus,
the numberof instructionsshown in tableareapproximate
numbers.All benchmarkprogramswere compiled using
GNU gcc (version2.6.3),gas(version2.5.2)andgld (ver-
sion2.5)with maximumoptimizations(-O3 -funroll-loops-
finline-functions).

4.1.6  Value Prediction and Reuse Rates
In Table3, we show the percentageof reuseand value

predictionratesobtainedfor variousbenchmarksusingthe
schemesdescribedearlier. As expected,more resultsand
addressesget value predicted correctly (VPMagic) than
reused,except for compress, where more addressesget
reused.This is becausefor many loads in compress IR
reusesonly addresses(not results),but VP is ableto predict
their resultsandhencedoesnot needto predictaddresses.
We alsoshow the predictionaccuracy obtainedfor VPLVP.
Again, as expected,VPLVP makes lesscorrectpredictions
than VPMagic (except ijpeg, wheremispredictionratesare
alsohigher),sinceit buffers only one instanceper instruc-
tion.

Bench Input
Inst.Count

(mil.)
Br. Pred
Rate (%)

Ret.Pred
Rate (%)

go null.in (ref) 354.7 75.8 99.9

m88ksim ctl.in (ref) 491.4 94.6 100

ijpeg vigo.ppm(train) 439.8 88.8 99.9

perl scrabble.in (train) 479.1 95.6 100

vortex vortex.in (train) 507.6 97.8 99.9

gcc reload.i (ref) 420.8 92.0 100

compress bigtest.in (ref) 421.2 89.3 100

Table 2: Benchmark programs,their inputs, inst. committed
(after skipping), branch and return prediction rates.



4.2  Results
4.2.1  Early Validation

As pointedout in Section2, a key featureof IR is that it
validatesresultsbeforeusingthem.Thisearlyvalidationhas
several benefits: it makes results available soonerin the
pipeline, resolves branchesearly, and reducesthe demand
for execution resources(since reusedinstructionsdo not
execute).In this section,we isolatethe importanceof early
validation to performance.In Figure3, we show the per-
centagespeedupsobtainedwith IR over the basecasefor
thetwo experiments:early — whereresultsarevalidatedat
decodestage(asin IR); and late — whereresultsarevali-
datedat executestage(this is as if the reusedinstructions
wherepredictedcorrectly).Weseethatmorethanhalf of the
performance improvement is lost if the validation is
deferred to the execution stage.

4.2.2  Interaction with Branch Prediction
In this sectionwe quantify the interactionsof VP andIR

with branch prediction.

• Spurious branch mispredictions: In Table4, we show
the increasein thenumberof branchsquashesdueto spuri-
ousbranchmispredictions.Thenumbersshown arefor con-
figurationsSB; for configurationsNSB (wherethebranches

arenot resolved value-speculatively) the numberof branch
squashesis notaffected.Fromthetableweseethatspurious
mispredictionscanincreasethenumberof branchsquashes
significantly for somebenchmarks(e.g., go, perl, vortex).
Although,theincreasein mispredictionsis large,theimpact
of theseextramispredictionsonoverall performancewill be
determinedby how muchmispredictionpenaltythey incur.
Since,thesespuriouslymispredictedbranchesusespecula-
tive values,they get executed(and squashed)early in the
pipeline, therebyincurring lessmispredictionpenaltythan
branches which resolve late in pipeline.

In Table4, we alsoshow the increasein branchmispre-
dictions for VPLVP. Sincethe value mispredictionrate for
this schemeis higher than VPMagic, the increaseis more
pronounced in this case (e.g.,m88ksim andvortex).

• Recovering useful work from squashes: One way IR
reducesbranchmispredictionpenaltyis by recovering use-
ful work from thecontrol-squashedinstructions.In Table5,
we show the percentageof executedinstructionsthat are
squasheddue to branchmisprediction,and percentageof

Benchmarks

IR VPMAGIC VPLVP

result
(%)

address
(%)

result address result address

pred
(%)

mispred
(%)

pred
(%)

mispred
(%)

pred
(%)

mispred
(%)

pred
(%)

mispred
(%)

go 24.3 19.9 38.4 3.3 26.8 4.7 30.4 4.5 25.6 4.0

m88ksim 48.5 33.9 54.8 0.6 42.0 4.6 42.0 2.7 31.2 1.3

ijpeg 11.2 24.0 16.7 0.9 19.4 2.2 17.4 4.4 18.1 2.2

perl 19.8 28.1 35.4 1.2 35.6 2.0 26.8 1.7 32.0 1.2

vortex 20.9 16.2 36.7 1.1 26.9 4.4 33.8 3.3 24.7 3.3

gcc 18.6 19.4 36.5 1.9 23.9 5.2 29.2 3.9 18.9 2.9

compress 16.5 65.1 20.5 0.2 43.4 0.03 17.3 0.6 41.7 0.1

Table 3: Percentage IR and VP rates for various benchmarks. The result percentages are over the total number of
dynamic instructions simulated, while the address percentages are over the total number of memory operations.
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Figure 3: Performance benefits of early validation. Bars HM
show the harmonic mean over all benchmarks.

Benchs

Increase in Branch Squashes due to Value
Misprediction (%)

VPMagic VPLVP

ME-SB NME-SB ME-SB NME-SB

go 20.0 17.1 37.8 37.2

m88ksim 3.4 2.9 102.9 99.8

ijpeg 3.3 3.1 31.9 31.8

perl 30.3 22.0 39.4 37.9

vortex 54.4 51.8 164.5 160.4

gcc 16.4 14.1 50.9 49.5

compress 1.5 1.5 30.6 30.6

Table 4: Percent increase in the number of control squashes
due to spurious branch mispredictions.



suchinstructionsthatarerecoveredusingIR. We seethata
significant amountof squashedwork is recovered for all
benchmarks(for most benchmarksmore than 30% of the
squashedexecutedinstructionsarerecovered).This contrib-
utes towards reducing the branch misprediction penalty.

• Branch resolution latency: In Figure4, we show how
VP and IR affect branch resolution latency. We define
branch resolution latency as the time betweenwhen a
branchis decodedandwhenit is finally resolved(i.e., action
on its outcome taken). Smaller this latency, the better,
becausethenmispredictedbranchescanbedetectedsooner,
reducing the mispredictionpenalty. In IR, if a branch is
reused,it getsresolved immediately, resultingin a resolu-
tion latency of zero cycle. On the other hand,in VP with
NSB configuration,a branchis not resolvedtill its operands
becomenon-value-speculative, thusdelayingbranchresolu-
tion by the latency of verifying the value prediction. In
Figure4, we show thebranchresolutionlatency normalized
to thebasecase.Weshow resultsfor 0- and1-cycleVP-ver-
ification latency in figures(a) and (b); the barsfor IR are
same in both graphs.

As seenfrom the figure,both VP andIR reducebranch
resolutionlatency; but IR doesso to a greaterextent. As

would be expected, the SB configuration reduces this
latency morethantheNSB configuration.We alsonotethat
with 1-cycle VP-verification latency (Figure4(b)), for sev-
eral benchmarks(ijpeg, perl and vortex) the reductionin
branch resolution latency is negligible.

4.2.3  Impact on Resource Contention
In this section,we quantify impactof VP andIR on the

contentionfor resources(e.g. functional units, datacache
ports,writebackbus etc.).We estimateresourcecontention
by countingthenumberof timesresourcesarenot available
for executingthereadyinstructions,anddividing thisby the
total number of requestsmade for resources.The bars
shown in Figure5 are normalizedto the basecase.The
resultsshown are for 0-cycle VP-verification latency; the
resultsfor 1-cycle VP-verification latency are similar. As
pointedout in Section3.2,VP andIR mayaffect contention
in both ways— they may increaseor decreasecontention.
We seethatin mostcasesIR reducesresourcecontention.It
increasescontentionslightly for go andperl. On the other
hand,VP increasescontentionin all thecases.Theincrease
is specially significant incompress, go, perl andvortex.

Wealsoobserve thatresourcecontentionis unaffectedby
multiple re-executions (resourcecontention for ME and
NME are same).This result would be expectedfrom the
percentageof dynamic instructionsthat execute multiple

Benchs
Inst

Executed
(millions)

Exec Inst
Squashed

(% of Inst Exec)

Squashed Inst
recovered

(% of Inst squashed)

go 450.4 15.0 36.6

m88ksim 543.5 4.9 53.9

ijpeg 454.8 2.5 49.4

perl 530.7 4.7 33.8

vortex 560.9 1.2 29.8

gcc 466.8 5.7 35.3

compress 490.8 9.8 27.7

Table 5: Percent of executed instructions squashed due to
branch misprediction, and percent of such squashed
instructions recovered by IR.
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times,shown in Table6. We seethat very few instructions
(< 0.5% in most cases)executemore than twice (similar
resultsare also presentedin section5 of [7]), and hence,
restrictingthenumberof executionsper instructionto 2 (as
done by NME configuration) does not benefit much.

4.2.4  Net Performance

VPMagic and IR

In Figure6, we show the impacton performanceof the
two techniques.In thefigure,weshow thespeedupsover the
basecase(IPC/IPCbase) for theVP andIR schemes.Figures
(a)and(b) show speedupsfor 0- and1-cycleVP-verification
latency respectively; IR speedupsshown in both thefigures
are the same.

We make someobservationsfrom theresultsin Figure6.
First, theVP performanceis sensitive to whenbranchesare
resolved.TheconfigurationsSB performbetterthanconfig-
urationsNSB for all benchmarks,exceptperl, becauseSB
resolvesbranchesearlier thanNSB (Figure4). Also, since
thevaluepredictionratesfor VPMagic arehigh (andmispre-
diction rates are low), the negative effects of spuriously
mispredictedbranchesin SB (which are small for most

benchmarks)aremorethanoffsetby thebenefitsof resolv-
ing branchessooner(except in perl, where the spurious
mispredictionsare high, and configurationNSB performs
slightly better).

Second,as expectedfrom Table6, we observe that the
impact of the multiple executionsdue to value mispredic-
tions is negligible. Theslight benefitseenin thecaseof go
is becausethe NME-SB configurationsreducethe number
of spuriousmispredictions(Table4) by restrictingthenum-
ber of re-executions per instruction.

Third, aswould beexpected,increasingtheVP-verifica-
tion latency from 0-cycle to 1-cycle decreasesthe perfor-
mancebenefitfor VP. But, interestingly, theincreaseaffects
the NSB configurationsmore than the SB configurations.
This happens becausein the NSB configurations the
brancheshave to wait longer(dueto 1-cycleVP-verification
latency) for their operandsto become non-speculative
(Figure4 (b)).

Fourth,weobserve thatfor somebenchmarks(e.g.,ijpeg,
perl, vortex), eventhoughthereuserateis lessthanthepre-
diction rate,IR performsbetterthanVP. This is dueto the
combinedeffect of early validation (Figure3), recovering
work from control squashes(Table5), and reducing the
branchresolutionlatency (Figure4). Anotheradvantageof
IR is that it does not incur any misprediction penalty.

VPLVP

To furtherstudythesensitivity of VP to thewaybranches
arehandled,we show the performancenumbersfor VPLVP
in Figure7. Weshow resultsfor both0- and1-cyclemispre-
diction penaltyin figures(a) and(b) respectively. We note
that,sincein VPLVP we only storeoneinstanceper instruc-
tion, its results should not be comparedagainst the IR
results presentedearlier in this section (where up to 4
instancesperinstructionarestored).FromFigure7, first, we
seethatwith predictionaccuraciesof VPLVP, VP mayactu-
ally performworsethanthe basecase.For all benchmarks,

Benchmarks
% inst # times executed

1 2 3

go 94.4 4.9 0.7

m88ksim 97.6 2.3 0.1

ijpeg 98.9 1.0 0.1

perl 98.3 1.6 0.2

vortex 98.5 1.5 0.0

gcc 96.3 3.3 0.4

compress 99.6 0.4 0.0

Table 6: Percent of dynamic instructions that executeonce,
twice, and thrice. The numbers are for VPMagic
configuration ME-SB with 1-cycle VP-verification latency.
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with configurationsSB we see a degradation in perfor-
mance.This is becausethe negative effects of spurious
branchmispredictions(Table4) arenotoffsetbecauseof the
low value predictionaccuraciesof VPLVP. The benefitsof
VP arefurther reducedwhenthe VP-verificationlatency is
increased to 1-cycle (Figure7(b)).

Second,unlike for VPMagic, in thiscasetheconfiguration
NSB works betterthanthe configurationSB, implying that
for caseswherevaluemispredictionsarehigher it is more
beneficial to delay branch resolution until the operands
becomenon-value-speculative than to resolve them value-
speculatively. Resultsin Figure6 and7 alsoindicatethat a
particularwayof handlingbranchesmaynotbethebestpol-
icy for all cases;high andlow valuemispredictionaccura-
cies may warrant different treatment for branches.

4.3  Amount of Redundancy Captured
In this section,we try to get a feel for how restrictive is

IR. To do so,we first estimatethe total redundancy in pro-
gramsandthendeterminewhat fractionof that redundancy
can be captured by IR.

To estimatetheredundancy, webuffer dynamicinstances
of every static instructiongeneratedduring a programexe-

cution (limited to 10K instancesper staticinstruction),and
classifyeachresult-producingdynamicinstructioninto one
of thefollowing threecategories:(i) unique — if it produces
a resultfor the first time, (ii) repeated — if it producesthe
sameresult again, and (iii) derivable — if it producesa
result that can be determinedfrom the resultsit had pro-
duced earlier (e.g., instructions whose results fall on a
stride.Oncethestridesizeis known their subsequentresults
can be derived). We define redundancy, or redundant
instructions, as the sum of the repeatedand the derivable
instructions.This measureof redundancy also provides a
roughupperboundonthenumberof instructionsthatcanbe
value predicted.3

In Figure8, we show theabove instructioncategoriesfor
the benchmarkprograms.4 We seethat few (< 5%) instruc-
tions produceuniqueresults,most (80% to 90%) produce
repeated results, and few (< 5%) produce derivable results.
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3 This upperbounddoesnot include the caseswhereVP may correctly
predictsomeuniqueinstructionsby chance.Anyhow, the numberof such
cases will be small because number of unique instructions is small.
4 In the figure, we have a category Unaccounted, which representsthe
instructionsthat could not be buffered(andhencecould not be accounted
for) because we only cached 10K instances per static instruction.
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Next, we estimatehow many of the redundantinstruc-
tions are reusable.We note that, IR can reuserepeated
instructions,but not derivableinstructions.However, not all
repeatedinstructions are reusable;as mentionedearlier,
instructionsarenot reusedif (i) their input operandsarenot
readyat thetimereusetestis done,or (ii) inputoperandsare
different.To estimatethe numberof reusableinstructions,
we subtractthenumberof timestheabove two casesoccur
from the total repeated instructions.

We assumethattheinputsof aninstructionarenot ready
if their producerinstructionsare less than 50 instructions
ahead, unless the producer instructions themselves are
reused.In Figure9, we categorizerepeatedinstructionsinto
threecategories:(i) instructionswhoseproducersarereused
(inputsareready),(ii) instructionswith unreusedproducers
greaterthan 50 instructionsahead(inputs are ready),and
(iii) instructions with unreusedproducers less than 50
instructionsahead(inputs arenot ready).As shown in the
figure, for most repeatedinstructionsthe inputs become
readybecausetheir producerinstructionsare reused.Only
for lessthan10%of repeatedinstructionstheinputsarenot
ready(Prod-dist< 50). This is contraryto the expectation
that most of the times inputs may not be readyearly in a
pipeline (where the reuse test is done).

Due to lack of spacewe do not presentseparatelythe
numberof repeatedinstructionsthatarenot reusedbecause
of different inputs. In Figure10, we show the net of the
redundantinstructionsthat canbe reused.The bar labelled
“redundant”is thesumof thebarsrepeated andderivable in
Figure8. As seenfrom the figure, most (84-97%) of the
redundantinstructionsin programsare amenableto reuse.
Thus,theapproachthatIR usesfor detectingreusedoesnot
significantly restrict its ability to capture redundancy
present in programs.

5. Summary and Conclusions

In this paper, we attemptedto understandthedifferences
betweenthe two recentlyproposedhardwaretechniques—
Value Prediction(VP) and InstructionReuse(IR) — that
exploit the redundancy presentin programsto collapsethe
critical pathof the computation.The purposeof this work

wasto gain insightinto theworking of thesetechniquesand
to understandtheir interactionswith other microarchitec-
tural features.We believe thata betterunderstandingwould
help in designingothermechanisms(which may be hybrid
of VP and IR) that exploit redundancy in programsmore
effectively.

We identifiedthekey differencebetweenthetechniques:
IR validatesresultsbeforeuse(early validation), while VP
validatesresultsafter use(late validation). We highlighted
how thesetechniquesdiffer in their interactionwith other
microarchitecturalfeaturesandattemptedto understandthe
differences in performance based on these interactions.

Our resultsshowed that the performanceobtainedusing
VP is sensitive to theway branchesthatexecutewith value-
speculative operandsare resolved (i.e., action taken based
on their outcome).We evaluatedtwo ways of resolving
branches:(i) resolvingthemimmediatelyafterthey execute,
and (ii) resolving them only after their operandsbecome
non-value-speculative. In the first case,the branchesget
resolved sooner, but they alsoget mispredictedspuriously.
In the secondcase,the branchresolutionis delayed,which
reducesthebenefitsgainedby VP. Our resultsshowedthata
particularway of resolvingbranchmaynot be thebestpol-
icy for all cases;for lower valuemispredictionratesthefirst
policy works better, while for higher value misprediction
rates the second policy works better.

AlthoughIR captureslessamountof redundancy (for the
sameamountof hardwarestorage),it performedbetterthan
the VP schemesstudiedfor somebenchmarks.The perfor-
mance advantageof IR stems from, early validation of
results,recovering usefulwork from branchmisprediction,
andreducingthebranchresolutionlatency. Anotheradvan-
tageof IR is that it is non-speculative,andhenceit doesnot
incur any misprediction penalty.

Finally, we estimateda limit on how much redundancy
presentin programscanbe capturedby IR. We found that
most(84-97%)of the redundancy canbe reused.Thus,the
approachof detectingredundantinstructionsbasedon their
operands,non-speculatively, doesnot significantly restrict
IR’s ability to capture redundancy present in programs.
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