To appear in the 31st International Symposium on Microarchitecture, Dec. 1998

Task Selection for a Multiscalar Processor

T. N. Vijaykumar
vijay @ecn.purdue.edu

School of Electrical and Computer Engineering

Purdue University

Abstract

The Multiscalar architecture advocates a distributed
processor organization and task-level speculation to exploit
high degrees of instruction level parallelism (ILP) in
sequential programs without impeding improvements in
clock speeds. The main goal of this paper is to understand
the key implications of the architectural features of distrib-
uted processor organization and task-level speculation for
compiler task selection from the point of view of perfor-
mance. We identify the fundamental performance issues to
be: control flow speculation, data communication, data
dependence speculation, load imbalance, and task over-
head. We show that these issues are intimately related to a
few key characteristics of tasks: task size, inter-task control
flow, and inter-task data dependence. We describe compiler
heuristics to select tasks with favorable characteristics. We
report experimental results to show that the heuristics are
successful in boosting overall performance by establishing
larger ILP windows.

1. Introduction

Modern microprocessors achieve high performance by
exploiting instruction level parallelism (ILP) in sequential
programs. They establish a large dynamic window of
instructions and employ wide-issue organizations to extract
ILP and execute multiple instructions simultaneously.
Larger windows enable more dynamic instructions to be
examined, which leads to the identification of more inde-
pendent instructions that can be executed by wider proces-
sors. However, large centralized hardware structures for
larger windows and wider processors may be harder to
engineer at high clock speeds due to quadratic wire delays,
limiting overall performance (e.g., the DEC Alpha 21264
already implements a two-cluster pipeline because bypass-
ing across a single larger cluster would not fit within a
cycle). The Multiscalar architecture [5] [6] [14] advocates a
distributed processor organization to avail of the advantages
of large windows and wide-issue pipeline without impeding

Gurindar S. Sohi
sohi@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison

improvements in clock speeds. The key idea is to split one
large window into multiple smaller windows and one wide-
issue processing unit (PU) into multiple narrow-issue pro-
cessing units connected together.

Unless key performance issues are understood, smaller
distributed designs may not always perform better than
larger centralized designs, despite clock speed advantages.
The choice of tasks is pivotal to achieve high performance.
While a good task selection may result in the program parti-
tioned into completely independent tasks leading to high
performance improvements, a poor task selection may lead
to the program partitioned into dependent tasks resulting in
performance worse than that of a single processing unit,
due to overhead resulting from distributing hardware
resources.

The main goal of this paper is to understand the implica-
tions of the architectural features of distributed processor
organization and task-level speculation for compiler task
selection from the point of view of performance. We iden-
tify the fundamental performance issues to be: control flow
speculation, data communication, data dependence specula-
tion, load imbalance, and task overhead (Section 2). We
show that these issues are intimately related to a few key
characteristics of tasks: task size, inter-task control flow,
and inter-task data dependence (Section 2). Task size pri-
marily affects load imbalance and overhead, inter-task con-
trol flow influences control speculation, and inter-task data
dependence impacts data communication and data depen-
dence speculation. These issues, which do not exist for
centralized microarchitectures that do not perform task-
level speculation (e.g., superscalar) have not been studied
before in the context of sequential programs and microar-
chitectures, but are germane to several recent proposals for
distributed microarchitectures employing some form of task
level speculation, including the MIT RAW [19], Stanford
Hydra [12], CMU STAMPede [16], and Minnesota Super-
threaded architecture [17]. In Section 3, we describe our
compiler heuristics to select tasks with favorable character-

istics. In Section 4, we analyze the effects of the various
heuristics on overall performance and present measure-
ments of the key task characteristics. We draw some con-
clusions in Section 5.

2. Overview of a Multiscalar processor

We begin with a description of the execution model of a
Multiscalar processor in the abstract but in enough detail to
pinpoint problems. We define tasks and then follow the time
line of the execution of a task to identify different sources
of performance loss. We associate each such phase with a
specific task characteristic to motivate the heuristics to
select tasks with favorable characteristics.

2.1. Execution model

In a Multiscalar processor, sequential programs are parti-
tioned into sequential (not necessarily independent) tasks.
Figure 1 illustrates the Multiscalar execution model.
Figure 1 shows a static program partitioned into three tasks
and three points of search in the dynamic stream with three
corresponding windows. Execution proceeds by assigning
tasks to PUs. After assigning a task for execution, one of
the possible successors of the task is predicted to be the
next task, similar to branch prediction employed by super-
scalar machines, i.e., control flow speculation is used.
Since the tasks are derived from a sequential program and
are predicted in the original program order, the total order
among the tasks is unambiguous. The predicted task specu-
latively executes on a PU using its private resources unless
it needs values computed by another task executing on a
different PU. Intra-task dependences are handled by the
processing units, similar to superscalar processors. In the
case of inter-task register data dependences, a producer task
communicates the required value to the consumer task
when it has been computed [3]. In the case of inter-task
memory data dependences, memory dependence specula-
tion is employed; a task begins by speculating that it does
not depend on any previous task for memory values and
executes loads from the specified addresses. If the specula-
tion is incorrect (i.e., a previous task performs a store to the
same address as a load performed by this task), a memory
dependence violation is detected by the Address Resolution
Buffer (ARB) [7] and the offending task that performed the
load (and all its successor tasks) is squashed. In a real
implementation, it may be difficult to isolate tasks that are
dependent on the offending task and squash only those. If
control flow speculation is incorrect (i.e., one of the tasks
assigned for execution was incorrect), the incorrect task
(and all its successor tasks) is squashed similar to a branch
misprediction in superscalar machines. Since tasks execute
speculatively, the state (register and memory) produced by
it is buffered and cannot update architectural state. When a

Point 1

Window 1
g Point 2
L » g
7] Task B s
.9 Window 2 D
= £
£ Point3 3
- ' &

Window 3 t

-. 140} -l 140)

Memory Disambiguation Unit (ARB)

Figure 1: Abstraction of a Multiscalar processor.

task completes and all speculations (control flow and mem-
ory dependence) have been resolved to be correct, the task
is retired (i.e., its speculative state is promoted to architec-
tural state). Tasks are retired in the original program order
to maintain sequential program semantics; a task is retired
only after its predecessor task has been retired.

2.2. Definition

A Multiscalar task may comprise a basic block, multiple
basic blocks, loop bodies, entire loops, or entire function
invocations. Statically, a task is defined to be a connected,
single-entry subgraph of the static control flow graph
(CFG) of a sequential program. Dynamically, a task corre-
sponds to a contiguous fragment of the dynamic instruction
stream that may be entered only at the first instruction of the
fragment. Since the compiler does not have access to
dynamic control flow paths, it treats a set of static control
flow paths connected together in a subgraph of the CFG as a
task. Thus, a static task contains computation that is a
superset of the computation performed by each dynamic
invocation of the task. Although inexact, this definition
allows the compiler to conveniently perform task selection.

2.3. Time line of a task

We add timing information to the functional description
of execution of tasks to account for execution time of tasks.
When a task is assigned for execution, two possibilities
arise: (1) the task completes and is retired, or (2) an incor-

rect speculation (control flow or memory dependence)
occurs and the task is squashed.

2.3.1. Scenario 1: task is retired

When a task is assigned for execution, it begins by fetch-
ing instructions from the start PC and filling the pipeline of
the PU with instructions. The time associated with filling
the pipeline is classified as task start overhead. An
instruction executes after its input operands are available,
similar to a superscalar machine. If an input operand is not
available, then the instruction waits until the value is avail-
able. If the instruction waits for a value to be produced and
communicated by another task, then the associated wait
time is classified as inter-task data communication delay.
If the instruction waits for a value to be produced by a pre-
vious instruction in the same task, then the associated wait
time is classified as intra-task data dependence delay. As
soon as the required value is available, execution proceeds
and eventually the task ends. After completion, the task
waits until the previous task retires; the associated wait time
is classified as load imbalance. When the task is allowed to
retire, it commits its speculative state to architectural stor-
age; the associated time is classified as task end overhead.
Figure 2(a) illustrates the various phases of scenario 1.

2.3.2. Scenario 2: task is squashed

When a task is assigned for execution, it proceeds as
explained above until the control-flow speculation is
resolved. If either the task itself or one of its predecessor
task is detected to have misspeculated, the task is squashed
and a new task is assigned to the PU. The entire time since
the start of the task, irrespective of whether the task was
waiting for values or executing instructions, is classified as
control flow misspeculation penalty or memory depen-
dence misspeculation penalty, as the case may be. Since a
misspeculation may cause several tasks to be squashed (the
offending task and all its successors), the misspeculation is
associated with the sum of all the individual penalties of
each of the squashed tasks. Figure 2 (b) illustrates the vari-
ous phases of scenario 2.

2.4. Performance and tasks

From the discussion of the task execution time line, the
major categories of performance degradation are: control
flow misspeculation, inter-task data communication, mem-
ory dependence misspeculation, load imbalance and task
overhead. We now relate the performance issues to concrete
task characteristics: task size, inter-task control flow, and
inter-task data dependence.

Events Execution Phase
Time :
Task assigned Task start
Pipeline full overhead
ful cycl
Use value . Useful cycles
Inter-task data
communication
Value received delay
Use value . Useful cycles
(@) Intra-task data
dependence
Value ready delay
l Useful cycles

Task complete

Load imbalance

Task retire

Task end
PU free overhead
Task assigned Misspeculation
(b) Squash task Penalty

Task restarted

PU free
Figure 2: Time line of the execution of a task.

2.4.1. Task size

Small tasks do not expose adequate parallelism and incur
high overhead. If tasks contain a large number of dynamic
instructions, then several problems arise: (1) Large tasks
increase both the number of misspeculations and misspecu-
lation penalty. Speculating over a large number of memory
operations usually results in a large likelihood of misspecu-
lating a true data dependence and discarding a large amount
of work. (2) Large tasks may cause the ARB to overflow
causing the task to stall until speculation is resolved. (3)
Large tasks may result in a loss of opportunity because nar-
row PUs cannot put large amounts of intra-task parallelism
to use. Load imbalance causes performance loss similar to
large-scale, parallel machines [10]. Large variations in the
amount of computation of adjacent tasks causes load imbal-
ance resulting in successor tasks waiting for predecessor
task to complete and retire. There are two kinds of overhead
associated with tasks: (1) task start overhead, and (2) task
end overhead. Task start overhead is primarily caused by
pipeline filling at the start of every task, similar to the prob-
lem of short vectors in a vector machine. At the end of a
task, the speculative state of the task is committed to the
architectural storage; if this involves actual movement of

data (as opposed to just tagging of data as committed with-
out physical movement) extra cycles are spent.

2.4.2. Inter-task control flow

Control flow edges that are exposed during task selec-
tion, giving rise to inter-task control flow, affect control
flow speculation by the hardware. The resolution of control
flow from one task to the next can be done typically only at
the end of the task because the branch instructions that
change control flow from one task to next may be encoun-
tered only at the end of the task. The result of this “late”
resolution is that control flow misspeculation penalties are
of the order of the execution time of tasks, which may be
many cycles. Both the number of successors and the kind
(predictable or not) of successors are key factors. Since a
task is assigned for execution via control flow speculation,
it is important that tasks have at most as many successors as
can be tracked by the hardware prediction tables. These
hardware tables are built to track some fixed number (N) of
successors. If tasks are selected to have more than N suc-
cessors, dynamic control flow speculation accuracy
decreases, leading to loss of performance. Control flow
misspeculation depends on the predictability of the succes-
sors and the position of the control flow dependences that
are exposed by task selection (dynamically encountered/
executed early or late during the execution of the task).

2.4.3. Inter-task data dependence

Data dependence edges that are included within tasks do
not cause any data communication delay or dependence
misspeculation. Data dependence edges that are exposed
during task selection, giving rise to inter-task data depen-
dence, affect data communication and data dependence
speculation. Inter-task data dependence delay and data
dependence misspeculation cost is determined by the posi-
tion in the task (dynamically encountered/executed early or
late during the execution of the task) of the data depen-
dences that are exposed by task selection. The interval
between the instant when a task begins execution and the
instant when a producer or consumer instruction executes
depends on (1) whether the instruction depends on values
from predecessor tasks and if so, the time when the value is
produced and communicated and (2) the number of other
instructions of the task that are ahead of the instruction as
per program order, since instructions in a task are executed
on a PU in the usual uniprocessor style of execution. A pro-
ducer instruction, therefore, may execute much later after
the task begins execution if a required value is available
later or if many other instructions precede the instruction.
Thus, a data dependence may get aggravated to a long delay
if split across large tasks. If an inter-task data dependence is
misspeculated (instead of waiting) then similar perfor-

mance loss is incurred. If the producer is executed at the
end of its task and the consumer is executed at the begin-
ning of its task, then the squash penalty incurred is propor-
tional to the execution time of the producer task.

3. Selecting tasks

The guiding principle used to select tasks is that control
and data dependent computation is grouped into a task so
that communication or misspeculation are minimized. Data
dependences, control dependences, load imbalance, and
task overhead often impose conflicting requirements.
Sarkar showed that given the communication costs and
amount of work associated with each function invocation,
partitioning simple functional programs into non-specula-
tive tasks to optimize the execution-time on a multiproces-
sor is NP-Complete [13]. Due to the intractable nature of
obtaining optimal tasks, we rely on heuristics to approach
the problem. This section describes how our task selection
heuristics produce tasks with favorable characteristics.
However, before going into the description, it may be help-
ful to summarize the observations that led to our choice of
task selection strategies.

We started with a basic process of CFG traversal to per-
form task selection. To this basic process, we added the
heuristics, which are based on the characteristics described
earlier, to steer the traversal. The heuristics were imple-
mented in a progression starting with tasks containing a sin-
gle basic block. To alleviate the performance problems
caused by the small size of basic block tasks, multiple basic
blocks are included within tasks. But tasks containing mul-
tiple basic blocks often incurred excessive inter-task control
flow misspeculations. To mitigate control flow misspecula-
tions, the number of successors of a task were controlled
through the control flow heuristic. Even though control flow
speculation improved, inter-task data dependences were
aggravated, resulting in performance loss. To reduce this
loss, data dependences were included within tasks through
the data dependence heuristic. Profiling was used to inte-
grate all of the heuristics together.

3.1. Basic task selection process

Task selection proceeds by traversing the CFG of the
application starting at the root of the CFG. Basic blocks are
included in a task by progressively examining whether suc-
cessors of the basic blocks that have already been included
in the task may also be added to the task. The heuristics are
incorporated in the selection process via decision-making
functions that determine whether a particular basic block
should be included in a task or not. If the heuristics termi-
nate a control flow path by not including a basic block, then
another task is grown starting at that basic block. Figure 3

shows the heuristics in pseudo-code. fask_selection() is the
top level driver for the process.

3.2. Task size heuristic

Demarcating basic blocks as tasks is easy for the com-
piler because basic blocks are already identified. Tasks so
obtained are called basic block tasks. No special decision-
making functions are required to generate basic block tasks.
Since basic block tasks are too small to expose enough par-
allelism, multiple basic blocks are assembled into one task.
But, generating tasks comprising arbitrarily many basic
blocks may lead to the problem of large tasks. Apart from
including many basic blocks within tasks, including entire
loops and function invocations within tasks also may lead to
large tasks. Terminating tasks at function invocations as
well as entry and exit of loops naturally limits task size.
Most modular applications tend to have function calls,
which naturally prevent large tasks. But frequent function
invocations with little computation between them and loops
with small loop bodies may lead to small tasks. Loops can
be unrolled so that multiple iterations of short loops can be
included to increase the size of short loop-body tasks; short
function invocations can be inlined or included entirely
within tasks to avoid small tasks.

task_size_heuristics() in Figure 3 shows the pseudo-code
for our implementation. Calls to functions that contain
fewer than CALL_THRESH (set to 30) dynamic instruc-
tions are included entirely within a task. We chose to
include entire calls instead of inlining because inlining may
cause code-bloat. CALL_THRESH was set to 30 to keep
task overhead to around 6% of task execution time (assum-
ing task overhead of 2 cycles and each instruction takes one
cycle). Loop bodies containing fewer than
LOOP_THRESH (set to 30) static instructions are unrolled
to expand to LOOP_THRESH instructions. Entry into
loops, exit out of loops and function calls (with more than
30 instructions) always terminate tasks.

3.3. Control flow heuristic

If multiple basic blocks are included within a task, then
the number of successors of each task needs to be con-
trolled. Tasks so obtained are called control flow tasks. To
control the number of successors of tasks while employing
the task size heuristic, basic blocks and control flow edges
are categorized as terminal or non-terminal. If a basic
block is terminal, then none of its successors (in the CFG)
are included in the task containing the basic block. From
Section 3.2, loop back edges and edges that lead into a loop,
and basic blocks that end in a function call or a function
return are marked as terminal. is_a_terminal_node() and
is_a_terminal_edge() in Figure 3 show the pseudo-code.

Terminal edges are not included within a task. Non-terminal
edges may or may not be included within a task, depending
upon the heuristics.

dependence_task() in Figure 3 shows how the number of
successors of a task is controlled. dependence_task()
explores one basic block per invocation and queues the chil-
dren of the basic block under consideration for further
exploration. During the CFG traversal, if any terminal
edges or terminal basic blocks are encountered, then the
path is not explored any further, and the basic blocks that
terminate the path are marked as successors.
dependence_task() explores one basic block per invocation
and queues the children of the basic block under consider-
ation for further exploration. In order to ensure that tasks
have at most N successors, the number of successors is
tracked when basic blocks are included within tasks; the
largest collection of basic blocks that correspond to at most
N successors called the feasible task is also tracked. After a
basic block is added to the potential task, if the resulting
number of successors is at most N, then the basic block is
added to the feasible task. By taking advantage of recon-
verging control flow paths, tasks are made larger without
necessarily increasing the number of successors. But during
the traversal, it is not known a priori which paths recon-
verge and which do not. The control flow heuristic uses a
greedy approach; the traversal continues to explore control
flow paths even if the number of successors exceeds the
allowed limit. When all the control flow paths are termi-
nated, the feasible task so obtained demarcates the task.

There are a myriad of techniques to alleviate the prob-
lems caused by control flow for scheduling of superscalar
code, such as trace scheduling [4], predication [8], and if-
conversion [2]. The key point for Multiscalar is that as long
as control flow is included within tasks the primary problem
of mispredictions is alleviated. Techniques like predication
can be employed to improve the heuristics but are not
explored here because such techniques need either extra
hardware support (predication) or may introduce bookkeep-
ing overhead (trace scheduling). Intra-task control flow may
cause performance loss due to delay of register communica-
tion. This secondary problem can be alleviated by schedul-
ing using the previously mentioned techniques. For loops,
we move the induction variable increments to the top of the
loops so that later iterations get the values of the induction
variables from earlier iterations without any delay. Register
communication scheduling is not discussed in this paper;
details are available in [18].

3.4. Data dependence heuristic

The key problem with a data dependence is that if the
producer is encountered late and the consumer is encoun-

task_selection() {
task_size_heuristic();
identify_data_dependences();
dep_list = sort_datadep_by_freq();
for each (u,v) in dep_list
for each t = including_task of u
expand_task(u, t, (u,v));
if (not_in_any_task(u))
expand_task(u, new_task(u), (u,v));
}
task_size_heuristic() {
for each loop 1
if (loop_size(l) < LOOP_THRESH)
unroll_loop(l);
for each block blk ending in a call f
if (#instructions(f) < CALL_THRESH)
mark_for_inclusion(blk);
}
is_a_terminal_node(blk) {
return ((does_not_end_in_call(blk) | |
!marked_for_inclusion(blk))
&& not_a_loop_end(blk)
&& not_a_loop_head(blk));

expand_task(blk, task, dep_edge) {
explore_q = task->explore_q;
root = task->root;
while (not_empty(explore_q))
dependence_task(blk, root, dep_edge);
1
dependence_task(blk, root, dep_edge) {
if (! is_a_terminal_node(blk) {
for each child ch of blk
if (! is_a_terminal_edge(blk, ch) {
if (codependent(ch, dep_edge))
add_explore_g(ch);
t = adjust_targets(root, blk, ch);
if (t<N)
feasible_task(root, blk, ch);

} else
add_to_task_q(ch);
} else
for each child ch of blk

add_to_task_q(ch);
}
is_a_terminal_edge(blk, ch) {
return(dfs_num(blk) < dfs_num(ch));
}

Figure 3: Task selection heuristics.

tered early, then many cycles may be wasted waiting for the
value to be communicated. The main goal of data depen-
dence driven task selection is that for a given data depen-
dence extending across several basic blocks, either the
dependence is included within a task or it is exposed such
that the resulting communication does not cause stalls.
Tasks so obtained are called data dependence tasks.

During the selection of a task, the data dependence heu-
ristic steers the exploration of control flow paths to those
basic blocks that are dependent on the basic blocks that
have been included in the task. The Control flow heuristic
includes basic blocks in tasks regardless of whether they are
dependent on other basic blocks contained in the task. The
Data dependence heuristic, instead, includes a basic block
only if it is dependent on other basic blocks included in the
task. Thus, the data dependence heuristic explores only
those control flow paths that lead to dependent basic blocks
and terminate the other paths. There are several impedi-
ments to including a data dependence within a task: (1)
many memory dependences are unknown or ambiguous at
compile-time and (2) including a data dependence within a
task may result in a task with more successors than desired.

There are many data dependence detection techniques
for memory dependences through memory disambiguation

schemes [3] [20]. These techniques work well for programs
that do not employ intricate pointers. Due to the prevalence
of pointers in most of our benchmarks, we rely on the mem-
ory dependence synchronization mechanism [11] to avoid
excessive squashing and the ARB to ensure correctness.
But register dependences are identified and specified
entirely by the compiler using traditional def-use dataflow
equations [1]. Space constraints do not permit us to list the
equations here.

dependence_task() in Figure 3 integrates the data depen-
dence heuristic with the control flow heuristic. For each
data def-use dependence, we try to include the dependence
within a task, without exceeding the limit on the number of
successors. If the producer is already included in a task,
then that task is expanded in an attempt to include the
dependence; otherwise, a new task is started at the pro-
ducer. In general, if the producer and the consumer are not
in adjacent basic blocks in the control flow graph, then the
basic blocks in all the control flow paths from the producer
to the consumer also have to be included. The set of basic
blocks in all the control flow paths from the producer to the
consumer is called the codependent set of the dependence.
Codependent sets are identified by the dataflow equations
that determine the def-use chains. codependent() deter-
mines whether a basic block is in the codependence set of a

data dependence edge or not. The heuristic attempts to
include a register dependence within a task by steering the
basic traversal to include the codependent set. For the cases
where a dependence cannot be included due to exceeding
the limit on the number of successors, the heuristic avoids
poor scheduling of the resultant communication. If the pro-
ducer is not dependent on any other computation, then the
heuristic starts a task at the producer enabling early execu-
tion of the producer. If more than one dependence is taken
into consideration, then including one dependence may
exclude another because inclusion of a certain dependence
may result in some control flow paths to be terminated and
inclusion of another dependence may require some of the
previously terminated paths to be not terminated. A simple
solution to this difficulty is to prioritize the dependences
using the execution frequency of the dependences, obtained
by profiling. More details on the heuristics are in [18].

3.5. Tasks selected by the heuristics

Figure 4 illustrates task partitions that may result when a
data dependence edge is considered. Figure 4(al) shows a
part of the CFG of a program including a data dependence
edge from the top basic block to the bottom basic block.
> indicates a control flow edge and —> indicates a
data dependence edge. For this example, let us assume that
the number of hardware targets is 4. Since the control flow
heuristic does not take data dependences into consideration,
the dependence is split between Taskl and Task2.
Figure 4(a2) shows a task that includes the data dependence
edge by including all the basic blocks in the control flow
path from the producer basic block to the consumer basic
block. Figure 4(b1) shows a task partition obtained by the
control flow heuristic. Since the control flow heuristic does
not take data dependences into consideration, the producer
of the data dependence is included at the end of Taskl and
the consumer is included at the beginning of Task3, aggra-
vating data dependence delay. Figure 4(b2) shows a task
partition obtained by the data dependence heuristic consist-
ing of two tasks in which the resultant inter-task communi-
cation is scheduled favorably; the producer instruction is
placed early in its task at the first basic block of the task and
the consumer instruction is placed late in its task at the last
basic block of the task.

4. Experimental evaluation

The heuristics described in the preceding sections have
been implemented in the Gnu C Compiler, gcc. SPEC95
benchmark [15] source files are input to the compiler which
produces executables. The binary generated by the compiler
is executed by a simulator which faithfully captures the

(al)

(a2)

(b2)

Task1 Task2 Task3

Figure 4: Tasks and data dependence edges.

behavior of a Multiscalar processor on a cycle per cycle
basis by simulating all instructions except for system calls.

4.1. Overview of experiments

In this section, we describe the quantities measured in
the experiments to analyze performance issues and demon-
strate the impact of the compiler heuristics. In order to
determine the effectiveness of the compiler heuristics, we
measure performance of basic block tasks, control flow
tasks, and data dependence tasks.

For each of the task characteristics: task size, inter-task
control flow, and inter-task data dependence, we measure a
metric that closely correlates to performance. We measure
the average number of dynamic instructions per task. For
inter-task control flow, we measure prediction accuracies to
estimate the magnitude of control flow misspeculation. By
studying the nature of the dynamic window established by
Multiscalar organizations, we can estimate the amount of
parallelism that the machine can exploit. For superscalar
processors, the average window size is a good metric of
quality of the dynamic window. Since a Multiscalar proces-
sor does not establish a single continuous window, we
extend window size to another metric. For a Multiscalar
processor, the total number of dynamic instructions that
belong to all the tasks in execution simultaneously called
the window span is the equivalent of the superscalar win-
dow as far as potential exploitable parallelism is concerned.
We present the average window span for the benchmarks.

4.2. Simulation parameters

The simulator models details of the processing units, the
sequencer, the control flow prediction hardware, the register
communication ring, and the memory hierarchy consisting
of the ARB, L1 data and instruction cache, L2 cache, main
memory, and interconnection between the PUs and the
ARB and the L1 caches, the L1 caches and the L2 cache, as
well as the system bus connecting the L2 caches and the
main memory. Both access latencies and bandwidths are
modeled at each of these components and the interconnects.
The PUs are configured to use 2-way issue, 16-entry reor-
der buffer, and 8-entry issue list with two integer, one
floating point, one branch, and one memory functional
units. The intra-task prediction uses gshare with 16-bit his-
tory, and 64K-entry table of 2-bit counters. The inter-task
prediction uses a path-based scheme [9] with 16-bit history,
64K-entry table of 2-bit counters and 2-bit target numbers.
The register communication ring can carry 2 values per
cycle and bypass values in the same cycle between adjacent
PUs. The L1 I-cache characteristics are: 64KB (4PU)/
128KB (8PU), 2-way associative, 32 byte blocks, 1 cycle
hit, interleaved as many banks as the number of PUs, lock-
up free, fully pipelined, and augmented with a 32KB, 2-
way associative task cache. The L1 D-cache characteristics
are: 64KB (4PU)/128KB (8PU), 2-way associative, 32 byte
blocks, 1 cycle hit, interleaved as many banks as the num-
ber of PUs, lock-up free, fully pipelined, and augmented
with a 32KB, 2-way associative task cache. The ARB char-
acteristics are: 32 entries/PU, 32 x #PU bytes/entry, 4KB
(4PU)/8KB (8PU), fully associative, 2 cycle hit, interleaved
as many banks as the number of PUs, lock-up free, pipe-
lined, and augmented with a 256-entry memory synchroni-
zation table [11]. The L2 cache is 4MB, and 2-way
associative with 12 cycle hit latency and 16 bytes per cycle
transfer. Finally, the main memory is infinite capacity with
58 cycle latency, and 8 bytes per cycle transfer.

All of the binaries for the experiments are generated with
the highest level of gcc 2.7.2 optimizations. For Fortran
programs, we use f2c and then compile the C code with our
compiler. Multiscalar-specific optimizations including task
selection, loop restructuring, dead register analysis for reg-
ister communication, and register communication schedul-
ing and generation are also used [18]. The compiler uses
basic block frequency, obtained via dynamic profiling, for
register communication scheduling and task selection. Pro-
filing was done using the inputs specified by the SPEC95
suite.

4.3. Experiments and Results

4.3.1. Effectiveness of the heuristics

Figure 5 shows the improvements in IPC using the con-
trol flow heuristic, the data dependence heuristic, and the
task size heuristic for out-of-order and in-order PUs execut-
ing the integer benchmarks and floating point benchmarks
over the base case of basic block tasks.

The compiler heuristics (control flow, data dependence
and task size together) are effective in capturing parallelism
beyond basic block tasks. Using out-of-order PUs, the inte-
ger benchmarks improved by 19-38% and 25-39% on 4 and
8 PUs, respectively, over basic block tasks, while the float-
ing point benchmarks were boosted by 21-52% and 25-53%
on 4 and 8 PUs, respectively, over basic block tasks. The
floating point benchmarks have more regular, loop parallel-
ism than the integer benchmarks, as a result of which the
heuristics succeed in extracting more parallelism from the
floating point benchmarks.

For the integer benchmarks, the control flow heuristic
improves performance 23%-54% and 23%-53% using 4
and 8 out-of-order PUs, respectively, over basic block tasks.
It is important to note that the measurements shown here for
the data dependence heuristic are over and above the con-
trol flow heuristic (i.e., the data dependence heuristic is
applied in conjunction with the control flow heuristic). The
data dependence heuristic adds modest performance
improvements (<1-6% and <1-15% for 4 and 8 PUs,
respectively) over the control flow heuristic.

There are many reasons for the improvements being
modest: (1) Out-of-order PUs can tolerate latencies due to
register communication delays significantly and (2) by
including adjacent basic blocks within a task, the control
flow heuristic already includes data dependence chains
within tasks; the data dependence heuristic has fewer
opportunities to further capture data dependences. The
trends for in-order PUs are similar to those for out-of-order
PUs. These improvements are better than those for out-of-
order PUs because in-order PUs do not have as much
latency tolerance as out-of-order PUs; the heuristics are
effective in avoiding inter-task dependences, which stifle in-
order PUs more than out-of-order PUs.

4.3.2. Task size

In Table 1, the columns titled Basic Block, Control Flow,
and Data Dependence show the task sizes in number of
dynamic instructions for the corresponding heuristic. Since
only 129.compress and 145.fpppp respond to the task
size heuristic, both control flow tasks and data depen-
dence tasks are augmented with the task size heuristic

by basic block [1 control flow

data dependence Bl task size

out-of-order 60T ut-of-order B
4.0 -
5.0
N
3.0 - 4.0 f | Ky
™ B N] 3.0 [T — 1l allil I
~ 20] L IHNT = 1 m
U LI
s 200l [I il |
() — a _
= 1.0
2 10NN | B I
o
2 00 - 0.0
e 6.0
2 in-order in-order _
»
-
GE) 3.0 ~ 40 —
= B |
3 - 3.0 [
£ 20
L
f 207 | -
LN
1.0 H 10 |
0.0 §
ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab ab
a: 4 PUs /(go gcc li perl tomcatv su2cor mgrid turb3d fpppp
b: 8 PUs m88ksim compress ijpeg vortex swim hydro2d applu apsi waveb

Figure 5: Impact of the compiler heuristics on SPEC95 benchmarks.

for these benchmarks. The columns titled ‘“#dyn inst”
show the number of dynamic instructions and the columns
titled “#ct inst” show the number of dynamic control trans-
fer instructions per task. We discuss the entries in the col-
umns “task pred”, “br pred”, and “win span” in the next two
sections. The basic block tasks contain fewer than 10
instructions for the integer benchmarks and more than 20
instructions for the floating point benchmarks (except for
104.hydro2d). In general, the control flow tasks and the data
dependence tasks are larger than the basic block tasks. The
data dependence tasks are smaller than other control flow
tasks because the control flow heuristic greedily includes
basic blocks past data dependence chains, whereas the data
dependence heuristic terminates tasks as soon as a data
dependence is included. 129.compress, 107.mgrid,
145 fpppp do not follow this trend because the data depen-
dence heuristic steers task selection to paths different from
the control flow heuristic, resulting in entirely different
tasks. Note that due to assembly-level macro instructions,

some basic block tasks may include control transfer instruc-
tions which are hidden from the compiler. For this reason,
there may seem to be a discrepancy between the ratio of the
size of the basic block tasks and that of the heuristic tasks
and the number of control transfer instructions in the heu-
ristic tasks.

4.3.3. Control flow speculation accuracy

Since control flow tasks and data dependence tasks usu-
ally contain multiple branches per task, comparing predic-
tion accuracies of these tasks with those of basic block tasks
requires normalizing the accuracies with respect to the
average number of dynamic branches per task. The columns
titled “task pred” show the task misprediction percentages
and the columns titled “br pred” show the effective mispre-
diction percentage normalized to the average number of
branches per task. The prediction accuracy of the basic
block tasks is higher than that of superscalar branch predic-
tion accuracy because it includes branches, jumps, function

Benchmarks Basic Block Tasks

Control Flow Tasks

Data Dependence Tasks

#dyn task win #ct | #dyn

task br #ct | #dyn task br win

inst pred | span | inst | inst pred | pred | inst | inst pred | pred span
g0 6.4 14 22 25 | 182 15 5.8 20 | 127 15 7.2 53
m88ksim 4.3 3.1 25 3.0 | 148 4.0 1.4 24 1103 4.9 2.0 67
gcc 5.8 44 39 25 | 124 5.8 23 23 11.6 7.4 32 68
compress* 5.7 5.0 38 1.8 | 10.2 5.7 32 2.8 15.0 7.8 2.8 86
li 39 33 23 19 | &1 4.0 2.1 1.6 | 7.1 52 32 43
ijpeg 10.6 6.0 63 24 | 233 3.7 1.5 24 | 238 5.1 2.1 146
perl 6.5 2.1 144 23 | 149 39 1.7 22 | 106 4.1 1.9 89
vortex 6.9 0.8 47 24 | 172 0.7 0.3 22 | 140 0.7 0.3 104
tomcatv 44.1 1.6 240 50 | 115 0.4 0.1 32 | 848 0.4 0.1 681
swim 42.0 0.1 244 4.1 | 87.7 0.2 0.0 4.1 | 87.7 0.2 0.0 703
su2cor 49.8 34 249 8.0 | 108 0.5 0.1 8.0 | 108 0.5 0.1 997

hydro2d 11.9 0.1 96 6.0 | 44.0

0.3 0.1 52 | 395 0.2 0.0 306

mgrid 514 1.1 394 20 | 106 22 1.1 2.0 107 22 1.1 665
applu 21.7 39 152 1.7 | 39.0 3.9 23 1.7 | 385 4.2 2.5 252
turb3d 21.2 34 151 25 | 417 5.8 24 24 | 408 6.7 2.7 246
apsi 24.8 29 178 2.8 | 51.0 43 1.5 26 | 4638 4.1 1.6 311
fpppp* 958 5.6 6319 | 1.5 | 59.0 1.8 1.2 25 | 665 2.8 1.1 462
waveS 244 0.8 196 42 | 59.1 0.8 0.2 4.1 56.1 1.1 0.3 423

Table 1: Dynamic task siz e, contr ol flo w misspeculation rate and windo w span.

calls and returns. In general, the prediction hardware is able
to maintain high task prediction accuracies for the control
flow tasks and the data dependence tasks despite predicting
one of four targets, whereas basic block tasks expose only
two targets.

Comparing the basic block tasks with the control flow
tasks in terms of task prediction accuracies (column “task
pred”), there are two kinds of behavior: Task prediction
accuracies are higher for the control flow tasks than the
basic block tasks for those benchmarks which capture loop-
level tasks, namely, 132.ijjpeg, 10l.tomcatv, 102.swim,
103.su2cor, 104.hydro2d, 107.mgrid, and 146.wave5. In
these benchmarks, the most frequent tasks are loop bodies
which do not expose any of the branches internal to the loop
bodies and are easy to predict. The data dependence tasks
have worse task prediction accuracies than the control flow
task because including data dependence chains within tasks
is preferred over reconverging control flow paths or loop
bodies. If task prediction accuracy is normalized over the
number of dynamic branches the effective prediction accu-
racies (column “br pred”) are significantly better for the
control flow tasks and data dependence tasks, demonstrat-

ing the synergy between the heuristics and the control flow
speculation hardware.

4.3.4. Window span

The window span is the range of all dynamic tasks in
flight in the entire processor. The average size of tasks, the
number of PUs, and the control flow prediction accuracy of
a program determine its window span. The window span of
a program is computed using the following equation, where
Tasksize is the average task size, Pred is the average inter-
task control flow prediction accuracy, and N is the number
of PUs: Although Pred may change slightly with increasing
number of PUs, the overall effect on the window span is
minimal.. In Table 1, the columns “win span” under the col-

windowspan = E Tasksize X Pred'
i=0,N-1

umns “Basic Block™ and “Data Dependence” show the win-
dow span of the basic block tasks and the data dependence
tasks for each of the benchmarks executing on 8 PUs. Due
to the significantly smaller sizes and lower prediction accu-
racies, the window spans for the basic block tasks are con-

siderably smaller than those for the data dependence tasks.
The window spans of most integer benchmarks are in the
modest range of 45-140 instructions. The window spans of
most floating point benchmarks is considerably larger (250-
800) than those of their integer counterparts due to the
larger size of tasks and higher prediction accuracy. These
measurements indicate that the amount of parallelism that is
exposed through branch prediction (which is used by most
modern superscalar processors) is significantly less than
that exposed by task-level speculation.

5. Conclusions

In this paper, we studied the fundamental interactions
between sequential programs and the novel features of dis-
tributed processor organization and task-level speculation
of a Multiscalar processor from the standpoint of perfor-
mance. We identified important performance issues to
include control speculation, data communication, data
dependence speculation, load imbalance, and task over-
head. We correlated these issues with a few key characteris-
tics of tasks: task size, inter-task control flow, and inter-task
data dependence. Task size affects load imbalance and over-
head, inter-task control flow influences control speculation,
and inter-task data dependence impacts data communica-
tion and data dependence speculation.

Task selection crucially affects overall performance
achieved by a Multiscalar processor. The important heuris-
tics to select tasks with favorable characteristics are: (1)
Tasks should be neither small nor large; a small task may
not expose enough parallelism and may incur overhead that
may not be amortized over the execution of the task, where
as a large task may incur memory dependence misspecula-
tions and ARB overflows. (2) The number of successors of
a task should be as many as can be tracked by the control
flow speculation hardware; reconverging control flow paths
can be exploited to generate tasks which include multiple
basic blocks without taxing the prediction hardware. (3)
Data dependences should be included within tasks to avoid
communication and synchronization delays or misspecula-
tion and roll back penalties. If a data dependence cannot be
included within a task, then the dependence should be
exposed such that the producer and consumer instructions
involved in the dependence are scheduled favorably (i.e.,
the producer is executed early and the consumer is executed
late in their respective tasks).

The task selection heuristics are effective in partitioning
sequential programs into suitable tasks. The heuristics
extract modest to high amount of parallelism from the inte-
ger benchmarks. The heuristics are uniformly more suc-
cessful in exploiting loop-level parallelism in the floating

point benchmarks. Increasing the number of PUs increases
the improvements for the heuristic tasks, indicating that the
heuristics better utilize extra hardware. The synergy
between the heuristics and the prediction hardware is effec-
tive in improving the accuracy of control flow speculation.
The window spans of data dependence tasks are signifi-
cantly larger than those of basic block tasks due to their
larger size and higher prediction accuracy.

Acknowledgments

We thank Scott Breach, Sridhar Gopal, and the anony-
mous referees for their comments and valuable suggestions
on earlier drafts of this paper. We also thank the employees
of Compucrafters India Private Limited, Chennai, India, V.
Srinivasan, and Babak Falsafi for their help with an earlier
draft of this paper.

This work was supported in part by MIP-9505853, ONR
Grant N00014-93-1-0465, and by U.S. Army Intelligence
Center and Fort Huachuca under Contract DABT63-95-C-
0127 and ARPA order no. D346, an anonymous donation to
Purdue ECE, and a donation from Intel Corp. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the U. S. Army Intelligence Center and Fort
Huachuca, or the U.S. Government.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA,
1986.

[2] J. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conver-
sion of control dependence to data dependence. In Proceed-
ingsof the 19th ACM Symposium on Principles of
Programming Languages, pages 177-189, Austin, TX, Jan.
1983. Association for Computing Machinery.

[3] S. Breach, T. Vijaykumar, and G. Sohi. The anatomy of the
register file in a multiscalar processor. In Proceedingsof the
25th Annual International Symposium on Microarchitecture,
pages 181-190, San Jose, CA, Nov. 1994. Association for
Computing Machinery.

[4] J. Fisher. Trace scheduling: A technique for global micro-
code compaction. /[EEE Transactions on Computers,
30:478-490, 1981.

[5] M. Franklin. The Multiscalar Architecture. Ph.D. thesis,
University of Wisconsin-Madison, Madison, WI 53706,
Nov. 1993.

[6] M. Franklin and G. S. Sohi. The expandable split window
paradigm for exploiting fine-grain parallelism. In Proceed-
ings of the 19th Annual International Symposium on Com-

(9]

(10]

(11]

(12]

(13]

puter Architecture, pages 58—67. Association for Computing
Machinery, May 1992.

M. Franklin and G. S. Sohi. ARB: A hardware mechanism
for dynamic reordering of memory references. IEEE Trans-
actions on Computers, 45(5):552-571, May 1996.

P.-T. Hsu and E. Davidson. Highly concurrent scalar pro-
cessing. In Proceedings of the 13th Annual International
Symposium on Computer Architecture, pages 386—395.
Association for Computing Machinery, June 1986.

Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Con-
trol flow speculation in multiscalar processors. In Proceed-
ings of the Third IEEE Symposium on High-Performance
Computer Architecture, pages 218-229, Feb. 1997.

E. P. Markatos and T. J. LeBlanc. Load balancing vs. local-
ity management in shared-memory multiprocessors. Techni-
cal Report URCSD-TR 399, University of Rochester, Oct.
1991.

A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S.
Sohi. Dynamic speculation and synchronization of data
dependences. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture, pages 181—
193, June 1997.

K. Olukotun, B. A. Nayfeh, L. Hammond, K. W. n, and K.-
Y. Chang. The case for a single-chip multiprocessor. In Pro-
ceedings of the Seventh International Symposium on Archi-
tectural Support for Programming Languages and
Operating Systems, pages 2—11, Oct. 1996.

V. Sarkar and J. Hennessy. Partitioning parallel programs for
macro-dataflow. In Conference Proceeedings of the 1986

[14]

[15]
[16]

[17]

(18]

[19]

[20]

ACM Conference on Lisp and Functional Programming,
pages 192-201. Association for Computing Machinery,
1986.

G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar proces-
sors. In Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 414-425.
Association for Computing Machinery, June 1995.

SPEC newsletter, Aug. 1995.

J. G. Steffan and T. C. Mowry. The potential for thread-level
data speculation in tightly-coupled multiprocessors. In Pro-
ceedings of the Fourth International Symposium on High-
Performance Computer Architecture, pages 2—13, Feb.
1998.

J.-Y. Tsai and P.-C. Yew. The superthreaded architecture:
Thread pipelining with run-time data dependence checking
and control speculation. In Proceedings of the 1996 Confer-
ence on Parallel Architectures and Compilation Techniques,
pages 3546, Oct. 1996.

T. N. Vijaykumar. Compiling for the Multiscalar Architec-
ture. Ph.D. thesis, University of Wisconsin-Madison, Madi-
son, WI 53706, Jan. 1998.

E. Waingold et al. Baring it all to software: Raw machines.
Computer, 30(9):86-93, Sept. 1997.

R. P. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for ¢ programs. In Proceedings of the 1995 ACM
SIGPLAN Conference on Programming Language Design
and Implementation, pages 1-12, 1995.

	1. Introduction
	2. Overview of a Multiscalar processor
	2.1. Execution model
	Figure 1: Abstraction of a Multiscalar processor.

	2.2. Definition
	2.3. Time line of a task
	2.3.1. Scenario 1: task is retired
	2.3.2. Scenario 2: task is squashed
	Figure 2: Time line of the execution of a task.

	2.4. Performance and tasks
	2.4.1. Task size
	2.4.2. Inter-task control flow
	2.4.3. Inter-task data dependence

	3. Selecting tasks
	3.1. Basic task selection process
	3.2. Task size heuristic
	3.3. Control flow heuristic
	Figure 3: Task selection heuristics.

	3.4. Data dependence heuristic
	3.5. Tasks selected by the heuristics
	Figure 4: Tasks and data dependence edges.

	4. Experimental evaluation
	4.1. Overview of experiments
	4.2. Simulation parameters
	4.3. Experiments and Results
	4.3.1. Effectiveness of the heuristics
	Figure 5: Impact of the compiler heuristics on SPEC95 benchmarks.

	4.3.2. Task size
	Table 1: Dynamic task size, control flow misspeculation rate and window span.

	4.3.3. Control flow speculation accuracy
	4.3.4. Window span

	5. Conclusions

