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Abstract
We study the phenomenon of instruction repetition, where the inputs
and outputs of multiple dynamic instances of a static instruction are
repeated. We observe that over 80% of the dynamic instructions
executed in several programs are repeated and most of the repeti-
tion is due to a small number of static instructions. We attempt to
understand the source of this repetitive behavior by categorizing
dynamic program instructions into dynamic program slices at both
a global level and a local (within function) level. We observe that
repeatability is more an artifact of how computation is expressed,
and less of program inputs. Function-level analysis suggests that
many functions are called with repeated arguments, though almost
all of them have side effects. We provide commentary on exploiting
the observed phenomenon and its sources in both software and
hardware.

1.  Introduction
Recently several studies have observed that many static instructions
in programs generate only a small number of values when executed
dynamically implying that repeated executions of such instructions
generated repeated values [7, 9, 10, 13]. Several different ways of
exploiting this phenomenon have been proposed. Some have
suggested that this repetition be exploited to predict the results of
future instances of such instructions [7, 8, 9, 10, 14]. Others have
suggested that this phenomenon be exploited to cut down the
number of instructions that are executed dynamically by providing
microarchitectural support that transforms instruction execution
into a hardware table lookup [13]. Still others have suggested that
this phenomenon be exploited using dynamic software
optimizations, such as function memoization and code
specialization [1, 4, 6].

The purpose of this work is to get a better understanding of what
underlying program attributes give rise to this phenomenon of
instruction repetition. Our goal in this paper is not to propose novel
schemes to exploit a certain form of program behavior, but to
characterize this behavior. Only with a thorough understanding of
the underlying phenomenon and its causes can the research
community hope to do a systematic exploration of mechanisms to
exploit it.

In Section2 we provide a qualitative discussion of the phenomenon
and its potential causes. We also discuss issues in doing a
quantitative assessment. We spend the rest of the paper carrying out

a quantitative analysis and discussing the implications of the
analysis. We start out with a brief description of the experimental
setup (and its limitations) in Section3. We continue with a
characterization of instruction repetition in Section4, and with an
analysis of the sources of repetition in Section5. We provide some
commentary on the implications of our empirical observations for
exploiting the phenomenon in software and hardware in Section6
and 7, respectively, and we summarize and conclude in Section8.

2.  Instruction Repetition
We start out by formalizing the definition ofinstruction repetition
that we use in this paper. Repetition occurs when different dynamic
instances of the same static instruction have repeated outcomes. An
instruction can generate a repeated outcome if its operands are
repeated (the common case). However, the outcome of an
instruction can be repeated even if its operands are not repeated
(e.g., the outcome of a compare instruction can be the same with
vastly different inputs). In some cases, the result of an instruction
may not be repeated even if its operands are, due to side effect of
other instructions (e.g., a load instruction reading different values
from the same memory address). In this paper we say that (a
dynamic instance of) an instruction is repeated if both the inputs
and the outputs of the instruction are repeated,i.e., the instruction
produces the same outputs for the same set of inputs as a previous
instance of the instruction. We use the termrepeatability for the
phenomenon of instruction repetition.

What causes instruction repetition? To answer this qualitatively, we
consider what transpires during program execution. Program
execution involves carrying out a set of operations on input data.
However, a program typically does not consist of the entire
dynamic set of operations to be executed. Rather, it consists of a
static image of the dynamic computation due to: (i) the desire to
have a compact static representation of the dynamic operation
sequence, and (ii) the desire to have a “generic” representation, one
that can be used with a variety of input data sets. Creating the
dynamic operation sequence to operate on a given set of   input data
involves executing instructions that sequence through the static
representation. Likewise, the data to be operated upon are
organized into data structures, and instructions are executed to
address and access elements of data structures for processing by the
actual “computation” instructions.

From the above, one can glean three potential sources of
repeatability. First, instruction repetition can occur due to repetition
in the input data being processed. For example, programs that scan
through text files (like gcc, compress and grep) may encounter
repeated occurrences of same items like words, spaces, and
characters. Second, instruction repetition can occur in the process
of unraveling the dynamic computation: if a function to add 10
elements of an array is written as a loop that iterates 10 times,
instructions that are used to iterate through the loop and generate
the actual addition operations will be repeated for different calls to
the function even though the actual addition operations might not
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be repeated. Third, when non-scalar data structures are used in
programs (the common case), a fair amount of processing is
involved to access elements of these data structures. Repeated
access to elements of the same data structure can result in repeated
processing. As we shall see later, repeatability can also arise due to
other programming practices, such as a modular programming
style with lots of functions.

This then brings up the quantitative question: how much
repeatability is there in program execution, and what is causing it?

Given the extremely broad nature of the question, a simple answer
is not practical, and we make no attempt to get such an answer.
Instead, we divide the question into a series of questions in an
attempt to understand the phenomenon. The questions fall into two
broad categories: a category that attempts to characterize the
phenomenon, and a category that attempts to isolate the
contribution of different “parts” of a program to the phenomenon.

To characterize instruction repetition, we carry out analyses similar
to what others ([3, 10]) have carried out for related phenomenon:
we analyze the instructions of a program as a whole. For lack of a
better term, we call this atotal analysis. Here we ask questions of
the form: how much repeatability exists, how many static
instructions account for a certain fraction of the repeatability, etc.
We can also carry out a total analysis for different types of
instructions, e.g., loads, stores, ALU operations, etc. (but do not do
so in this paper).

While a total analysis allows us to characterize the phenomenon, it
fails to give us insight into the causes of instruction repetition.
Answers to questions of the form: how much of the repeatability is
due to repeated inputs, how much can be attributed to instructions
that unwind the dynamic computation, etc., are not available. To do
this, we need to categorize both the instructions that were
executed, as well as the instructions that are repeated, into different
classes, e.g., instructions that operate upon external inputs, or those
that operate upon global variables.

Categorizing instructions into different classes requires us to
capture dynamic slices of instructions, e.g., a slice of instructions
executed in a function that depend upon its first argument. In
capturing slices of computation, we are faced with the question of
whether to consider only data or control dependences, or both.
Control dependences determinewhich static instructions are
entered into the dynamic instruction stream, and data dependences
determine the outcome of those instructions. Since our purpose in
this paper is to understand the repetitive behavior of instructions
that are present in the dynamic instruction stream, and not with
how static instructions are entered into the dynamic instruction
stream, we do not consider control dependences when dividing the
dynamic instruction stream into dynamic slices; we base our
decisions and analysis solely on data dependence relationships.1

3.  Experimental Setup
We used theSPEC ‘95 integer benchmarks programs for this study.
The programs were compiled withgcc (version 2.6.3) using
optimization flags “-O3 -funroll-loops -finline-functions”, for a
MIPS-1 like instruction set. The programs and their inputs are
shown in Table1. Execution of these programs was simulated on a
functional simulator developed using the simulators provided with
Simplescalar tool set [2]. To track instruction repetition, we buffer
each new instance of a static instruction that is generated during
the course of execution. An instance is consideredrepeated if it
uses the same operand values and produces the same result as one

1 In fact, the notion of a control dependence is somewhat meaningless in a
dynamic instruction stream.

of the previously buffered instances of the same instruction. We
buffer up to 2000 unique instances (i.e., instances that use different
input values or produce different output value) per static
instruction for each benchmark.

We also had to limit the number of instructions simulated so as to
complete the simulations in a reasonable amount of time. We
simulate the benchmarks as follows. Except forcompress andperl,
for every benchmark we skipped the first 500 million instructions
to avoid making most of the calculations in the initialization phase
of the program and then simulated the next 1 billion instructions
(or until completion). For compress, we skipped first 2.5 billion
instructions, since it had a long initialization phase. For perl, since
the complete execution consisted of 555.6 million instructions, we
did not skip any instruction and analyzed the whole benchmark. In
Table1, we show the number of dynamic instructions executed
(column 3), the number of static instructions present (column 5),
and the percentage of static instructions executed (column 6) for
each benchmark (other columns in this table are discussed in the
next section).

Since the analysis was performed only on a portion of a program, it
might appear that the results of the analysis may not be
representative of a typical program. To address this issue we
simulated the programs for 10 billion instructions2 (or until
completion) and collected the statistics onoverall local analysis
(we discuss what this analysis is and its purpose later in the paper).
The statistics from the long simulations tallied with those obtained
(and presented later) from the short simulations. Though this
verification does not necessarily imply that the results of the
analysis are representative of the complete run, it suggests that the
program execution pattern was in a steady state during the short
simulations and that we simulated a typical part of the
benchmarks.

Since the phenomenon we are analyzing is dependent on the
properties of data, it is reasonable to suspect that the results may be
sensitive to the program inputs chosen. We ran similar experiments
using other program inputs (9stone21.in for go, 1stmt.i for gcc,
specmun.ppm for ijpeg, primes.pl for perl, and test.in for
compress) and found similar trends with the second set of inputs.
In this paper we present results only for inputs shown in Table1.

4.  Characterizing Instruction Repetition
In this section, we attempt to get a feel for the characteristics of
repeatability in the program as a whole (total analysis). Before
proceeding, we reiterate a definition and define some more terms.
As indicated earlier, we say that a dynamic instruction isrepeated
if it operates on the same inputs and produces the same result as an
earlier instance of the same instruction. Correspondingly, a static
instruction is said to be repeated if it generates at least one repeated
dynamic instruction.

In our first set of data, we try to get a feel for how much instruction
repetition exists, and how many program instructions contribute to
repetition. Table1 shows the percentage of dynamic and static
instructions that were repeated.   The third column (Total) shows
the number of instructions that were executed dynamically, and the
fourth column (Repeat) shows the percentage of dynamic
instructions that were classified as repeated. The remaining
columns of the table deal with static instructions. We see that only
a small fraction (% of Total) of the total static instructions get
executed dynamically, but a large fraction of those executed (% of
Exec) are repeated. Thus repetition is not a phenomenon which is

2 We didn’t have to track repetition for these experiments and hence both
the time and memory requirements were small.



exhibited by only a small fraction of the static instructions that are
executed. However, a few static instructions might be accounting
for a large number of repeated instructions, and we study that next.

In Figure1, we show the percentage of the repeated static
instructions which account for a certain fraction of the total
dynamic repetition. We observe that for all the benchmarks, except
for m88ksim, less than 20% of the repeated static instructions
account for more than 90% of the dynamic repetition. Although
the corresponding percentage of the repeated static instructions is
higher form88ksim (56%), the absolute number of repeated static
instructions in that case is small to begin with.

Table1 and Figure1 suggest that many instructions are repeated,
but do not tell us how many different values generated by the
instructions contribute to the repeatability. We measure this next.
To facilitate this, we define aunique repeatable instance to be the
basic dynamic instance (of a static instruction) that gets repeated.
For example in Figure2 the static instruction (I) generates seven

instances. The instances I2 and I4 are the first (hence unique)
occurrence of the instance that gets repeated later on as I3, I5, I6,
I7. We call I2 and I4 unique repeatable instances. Note that I1 does
not fall in this category (although it is unique) because it does not
get repeated.

In Figure3, we show the contribution of instructions with a certain
number of unique repeatable instances to the overall dynamic
repeatability. For example, ingo, 25% of the dynamic repeatability
is due to instructions with 1 unique repeatable instance, and
another 12% is due to instructions that have 2-10 unique repeatable
instances. We observe that repetition is not limited to instructions
producing few unique repeatable instances only. Instructions
which produce many unique repeatable instances also account for
a sizeable amount of the dynamic repetition (e.g., instructions
producing between 101 to 1000 unique instances account for 47%
of the repetition inijpeg, 28% in li, and 28% invortex). This
suggests that we need to track multiple repeatable instances of
instructions in order to capture a large fraction of the repeatability
in a program.

To get a feel for the total number of instruction instances we need

Benchmarks Inputs

Dynamic Instructions Static Instructions

Total
(millions)

Repeat (%) Total
Executed Repeated

%of Total % of Exec

go null.in (ref) 1000 85.2 84,552 62.9 93.4

m88ksim ctl.in (ref) 1000 98.8 37,824 4.5 97.7

ijpeg vigo.ppm (train) 942.2 79.3 58,894 25.4 98.1

perl scrabble.in (train) 555.6 84.2 73,850 22.3 65.6

vortex vortex.in (train) 1000 93.2 125,018 28.3 93.5

li 22.lsp files (ref) 1000 77.8 23,026 23.6 92.0

gcc reload.i (ref) 666.3 75.5 299,988 39.5 87.7

compress bigtest.in (ref) 1000 56.9 13,798 13.1 66.3

Table 1: Table shows the benchmark programs with their inputs, total dynamic instructions executed and the
percentage of them repeated. It also shows the total static instructions in the program, percentage of them executed,
and repeated.
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Figure 1: Static instructions coverage of dynamic repetition.
This graph shows that very few (less than 20% for most cases)
of the static instructions which get repeated generate most
(more than 90%) of the repetition observed dynamically.
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to track in order to capture a certain fraction of the repeatability,
we turn to the data in Table2 and Figure4. In Table2, we show the
number of unique repeatable instances (columncount) in the
program (the sum of all the unique repeatable instances of all
instructions that are repeated). We also show the average number
of times that a repeatable instance is repeated (columnAvg.
Repeats). We observe that a unique repeatable instance gets
repeated several times on average. In Figure4, we show the
fraction of the unique repeatable instances that account for a
certain fraction of the dynamic repetition. We observe that in most
of the cases, less than 30% of all the repeatable instances account
for more than 75% of the dynamic repetition.

5.  Understanding the Causes of Repetition
In this section we try to understand the causes of repetition. Ideally
we would like to identify the repeatability due to a particular
program function, e.g., which instructions in the dynamic
execution of a program corresponds to addressing a particular data
structure, and how many of them are repeated? Such a precise
breakdown is very difficult, but possible once the exact question
has been posed. Unfortunately, posing the question is like shooting
in the dark. We need to get a better picture before precise questions
can be posed. To do so, we attempt to bin the dynamic instructions
into categories based upon their functionality. Again, we are faced
with the dilemma of defining the functionality. To overcome this

problem, we perform two levels of analysis, a global program
analysis, and a local (within a function) analysis, and define
instruction classes that correspond to well-understood program
functions at those levels. A third level of analysis, at a function
level, is also presented to facilitate answering questions that arise
when we analyze how some of the empirical observations might be
exploited (Section6).

5.1  Global Analysis
At the global level, we can classify program instructions into 3
broad categories: (i) instructions whose inputs are influenced by
external program input, orexternal input instructions, (ii)
instructions whose inputs are influenced by initialized global
variables, orglobal init data instructions, or (iii) instructions
whose inputs are influenced solely byprogram internals.
(Instructions classified as program internal either operate upon
immediate values, or (transitively) operate upon values generated
by instructions that operate upon immediate values). Sometimes
instructions use uninitialized registers; for example, when an
uninitialized callee-saved register is saved on a function entry. We
classify such instructions in a separate (fourth) category called
uninit.

To perform the analysis, we trace the flow of data through the
program during execution. We tag each data item with the category
name to which it belongs, and propagate these tags along with the
data to the dependent instructions. This propagation traces slices of
instructions for each source category. The category of an
instruction is determined based on the categories of its input
operands. We use a supersede rule,external input >s global init
data >s program internal >s uninit, to determine the category of an
instruction where two slices with different categories meet. In this
rule, A >s B (A supersedes B) implies that if slices of A and B
meet, the resultant slice will be that of A. We chose this rule to
assign higher priority to a source that is likely to be “less
repeatable”.

• Overall Results: In Table3 (overall), we show the percentage
of all dynamic instructions in each of the categories.For most of
the instructions (more than 50% in all benchmarks exceptperl) the
inputs come from slices which originate from program internals
(e.g., initialization statements). About 12% to 30% instructions
inputs come from slices which originate from global initialized
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Benchmarks
Unique Repeatable Instances

Count Avg. Repeats

go 3,947,406 216

m88ksim 74,628 13232

ijpeg 1,672,546 447

perl 330,120 1416

vortex 1,922,845 485

li 743,530 1046

gcc 8,947,200 36

compress 263,747 2155

Table 2: Number of unique repeatable instances and
average number of times each is repeated.
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data. For most benchmarks, less than 20% of the dynamic
instructions use values that come from slices which originate from
external input. This shows that most of the computation performed
in the program is on the data internal (or “hardwired”) to the
program. This should not come as a surprise: in addition to the
“computation” instructions themselves that operate on data values,
programs contain a lot of “overhead” instructions, such as
instructions that perform addressing and program control. This
observation also serves as a basis for decoupled architectures that
divide the instruction stream into an addressing stream and a
computation stream ([12]).

• Repeated Results: Most of the repetition also comes from the
“hardwired” part of the program, that is most of the instructions
which get repeated operate on the data that is internal to the
program. This suggests that repeatability may be a phenomenon
inherent to the way programs are expressed and less sensitive to
the external input (as mentioned earlier, we have observed similar
results using different input files for the programs). Since much of
the repetition occurs due to the “hardwired” part of the program, it
would appear that an optimizing compiler should have eliminated
this “redundancy” in the first place. We defer the discussion on this
issue until Section6.

• Propensity Results: We see significant percentage of dynamic
instructions in each category get repeated. As expected both
internals andglobal init data show high propensity for repetition
(greater than 80% for most cases). A significant percentage of
instructions inexternal input category get repeated (e.g., 99% for
m88ksim, 86% for vortex). This propensity is small forgcc and
compress (30% and 0% respectively). Although go shows high
propensity for external input category, we point out that there are
very few instructions in this category in the first place. Although
percentages foruninit are high, we note that this category also has
very few instructions (compared to other categories) to begin with.

5.2  Function Level Analysis
Functions (or procedures) are a common way of expressing a

computation that gets invoked repeatedly. Often they are written to
be general purpose (parameterized by arguments), and a specific
task is performed by invoking them with arguments values
appropriate for that task. One of the reasons why repetition occurs
is because often functions get invoked repeatedly with the same
argument values (argument repetition). Accordingly, we measure
the repetition in function arguments and present the results in
Table4. The second column shows the number of static functions
called, and the third column the number of dynamic calls to these
functions. The fourth column shows the percentage of all dynamic
calls in which all the arguments were repeated and the fifth column
shows the percentage of dynamic calls in which no arguments were
repeated. A strikingly large number of times the functions show
all-argument repetition (e.g., 98% forijpeg, 83% m88ksim, and
78% for go), and very few timesno-argument repetition (highest
being 15% forli).

Categories go m88k ijpeg perl vortex li gcc comp

Overall % of all dynamic instructions

internals 86.2 54.6 63.2 46.6 53.6 51.4 59.4 68.5

global init data 13.7 26.3 20.3 19.0 28.5 12.0 25.2 29.5

external input 0.0 19.0 16.5 34.0 17.9 36.1 15.3 2.0

uninit 0.0 0.1 0.0 0.4 0.0 0.5 0.1 0.0

Repeated % of all repeated dynamic instructions

internals 85.9 54.4 62.2 52.1 54.7 55.5 64.6 77.1

global init data 14.1 26.2 20.7 22.6 28.7 14.5 29.2 22.9

external input 0.0 19.3 17.1 24.7 16.6 29.5 6.1 0.0

uninit 0.0 0.1 0.0 0.6 0.0 0.5 0.1 0.0

Propensity % of all dynamic instructions in each category

internals 84.9 98.5 78.0 94.2 95.2 89.2 82.0 64.0

global init data 87.3 98.4 81.0 99.7 93.9 99.7 87.8 44.1

external input 97.1 99.9 82.2 61.2 86.1 67.5 30.2 0.0

uninit 98.7 100.0 99.3 99.3 99.0 99.7 96.2 60.6

Table 3: Breakdown in terms of sources of input: constant, global init data, external input, and uninit. Overall
shows the breakdown of the complete program. Repeated sho ws the br eak do wn of the r epeated instructions.
Propensity shows the percentage of dynamic instruction in each category that got repeated.

Benchs No. of
funcs

No. of
dynamic

calls

Dyn calls
with ALL

args
repeated

Dyn calls
with NO

args
repeated

go 481 11M 78% 0.49%

m88ksim 390 17M 83% 0.03%

ijpeg 528 1.5M 98% 0.01%

perl 477 6.4M 76% 1.36%

vortex 1,077 21M 67% 0.07%

li 473 29M 69% 15.1%

gcc 2,027 5.6M 59% 9.00%

compress 131 14M 60% 1.77%

Table 4: Function Level Analysis. For each benchmark we
show the number of functions, number of function calls
encountered during execution, the percentage of function
calls with all-argument repetition, and the percentage of
function calls with no-argument repetition.



Do the above results suggest that large numbers of function calls
are redundant? Not necessarily, since not all of the computation in
a function depends solely on its arguments. We will revisit this
issue in Section6 when we consider how software might exploit
some of our quantitative observations, and the problems
encountered in doing so. Nonetheless, the repeatability of all or
some of the arguments of functions suggests an important source
of repetition in instruction execution. (The percentage of calls with
some arguments repeated can be calculated from the data in
Table4. Due to space reasons, we do not present data on how
many function arguments are partially repeated. We have also seen
that argument repetition is not limited to single argument functions
only).

5.3  Local Analysis
To further our understanding of instruction repetition, we continue
our analysis within each function — we call thislocal analysis. We
divide dynamic instructions into different categories using two
broad classification criteria: (i) the source of input data used by
instructions, and (ii) and the specific task performed by groups of
instructions.

In general, the data used within a function come from one of the
following sources: (i)arguments, (ii) global data, (iv) returned
values, and (v) function internals. Arguments are the values
explicitly passed to functions at the time of their invocation.
Global data are the values which are global to the program (they
either reside in the data segment or on the heap) and were not
passed as arguments.Returned values are the values explicitly
returned from other function calls.Function internals, like
program internals in our global analysis, operate on immediate
constants. Thus, using the first criterion for division, we will
classify a slice of computation, for example, asarguments if it
originates by operating on function arguments.

We identify the following categories for instructions based on the
task performed: (i)prologue, (ii) epilogue, (iii) global address
calculation, (iv) function returns, and (v) operations on stack
pointer (SP). Prologue and epilogue represent the overhead
incurred for calling a function. They perform, respectively, save
and restore of callee-saved registers on entry and exit to functions.
Just like addressing and loop control are “overhead” for a generic
and compact representation of a computation, function prologue
and epilogue are overheads associated with a modular
programming style. Global address calculation comprises of
sequences of instructions which calculate the address of a global
variable either using immediate values or using global pointer
register, gp (a special register provided in MIPS architecture that
points to the data segment). Since these instructions perform a very
specific task, we group then separately fromfunction internals
(even though they operate on immediate values).Returns comprise
of function returns. The category SP consists of operations on
stack pointer (e.g., adding an offset to stack pointer to form an
address of a variable on the stack). We keep returns and SP
separate from other categories because their repeatability depends
(partly) upon the present depth of the stack, and we wished to
analyze the repeatability due to this influence separately.

We realize that the two broad classification criteria that we have
chosen are not completely disjoint and also that the categories
within them may not be the best possible way of dividing a
function, but we believe that this division is a good first step in
understanding the causes of instruction repetition.

Like in global analysis, we categorize the instructions dynamically
while executing the program on our simulator. We tag the data
values with their appropriate source category, e.g., data loaded

from the data segment are tagged asglobal, and we use function
calling conventions to identify arguments and return values. The
category in which an instruction is binned depends upon the
categories of its input data. Like in global analysis, an instruction
whose inputs are from two different categories is categorized using
the supersede rule:argument >s return value >s (global, heap) >s
function internal. The reason is to give preference to categories
that may show more variability and less repeatability. Identifying
the task-based categories, such as global address calculation,
function returns, and operations on SP, is straightforward. The
prologue and epilogue are identified as follows. On entry into a
function, we mark all registers asunint (except those used for
passing the arguments). Store instructions that save unint registers
are categorized asprologue, whereas, load instructions that load
these saved values are categorized asepilogue. Instructions which
allocate or deallocate space on the stack are also categorized,
accordingly, asprologue or epilogue.

5.3.1  Overall Results
In Table5 we show the percentage of total dynamic instructions
within each category (overall analysis). Prologue and epilogue
constitute a significant fraction of the dynamic program. Together
they comprise as much as 24% of the dynamic instructions in
vortex, 19% forli, 17% ingcc, and 15% inperl.

Although global analysis shows that most of the instructions fall
on slices originating from immediate values (program internals),
in local analysis we see relatively fewer instructions derive their
input values from immediate values (function internals and global
address calculations). This is because, several program internal
slices span across functions and the information that they are
internal slices (and that they might possibly be operating upon a
compile time constant) gets hidden when they cross function
boundaries. These slices then show up as part of global, heap, or
argument slices.

Most of the dynamic instructions fall on global, heap or argument
slices. A significant portion of the dynamic program is devoted to
calculating the addresses of global variables, e.g., 16% forgo, 15%
for m88ksim, and 10% forcompress. CategoriesSP and returns
constitute few dynamic instructions (less than 2% in most cases).
Return value slices also comprise few dynamic instructions (less
than 5%) for all benchmarks, except compress where they
comprise 17% of dynamic instructions.

5.3.2  Repetition Breakdown
In Table6, we show the percentage of total repeated instructions
for each category. The amount of repetition that each category
accounts for varies with the benchmark. But, in general, most of
the repetition is accounted for byarguments, global (or heap), and
function internals. Prologue and epilogue also make significant
contribution to repetition.

In Table7, we show the propensity of each category to repetition,
i.e., the percentage of dynamic instructions in each category that
got repeated. We see that every category is amenable to repetition
(greater than 90% propensity for most cases). The propensity is
specially high (as would be expected) forfunction internals and
global address calculations. The percentages are high forreturn
and SP as well, but we note that these categories have very few
instructions (compared to other categories) in the first place.

Next we discuss the results and describe why each category may
be getting repeated (all percentage values presented below are
from Table6, unless specified otherwise).

• Global and Heap Values: For all benchmarks between 20%



to 50% of repeated instructions fall on slices originating from load
instructions that read global values. This repetition can occur due
to several reasons. The runtime switches (which are mostly set
using parameters that are input to a program) are often stored in
global variables. These get initialized when program begins
execution and remain constant for the rest of the execution. Often
other program parameters, which remain constant for a given
execution, are stored in global data structures. For example, a table

of frequencies for all letters used in Huffman encoding, or machine
descriptions like function unit latency in a processor simulator.
These data structures get initialized once per program execution
(either at compile time or runtime) and remain unchanged
thereafter. For some global variables, e.g., positions on a chess or a
go board, the values may change infrequently or the variables may
assume only a small set of values, causing the same values to flow
down to the dependent instructions and hence resulting in

Categories go m88k ijpeg perl vort li gcc comp

prologue 3.12 4.93 1.17 7.42 12.40 9.48 8.71 1.90

epilogue 3.12 4.93 1.17 7.40 12.40 9.47 8.71 1.90

function internals 9.77 17.22 9.33 9.08 18.02 7.96 15.50 5.41

glb_addr_calc 15.78 14.79 0.44 4.51 3.35 1.26 3.07 10.27

return 1.12 1.75 0.16 1.14 2.11 2.72 1.33 2.79

SP 1.34 0.17 0.65 1.05 4.14 1.71 2.41 0.00

return values 1.57 4.45 1.81 2.67 1.52 3.90 2.32 16.72

arguments 9.94 15.40 26.63 21.85 24.27 6.76 16.15 5.02

global 54.23 26.97 3.06 9.74 7.63 10.95 17.03 56.00

heap 0.00 9.45 55.61 35.27 14.16 45.78 24.75 0.00

Table 5: Overall local analysis. The numbers are % of all dynamic instructions

Categories go m88k ijpeg perl vort li gcc comp

prologue 3.59 4.99 1.38 8.15 12.42 9.41 6.76 2.83

epilogue 3.59 4.99 1.38 8.13 12.42 9.40 6.75 2.83

function internals 11.34 17.44 11.76 10.76 19.29 9.62 19.34 9.51

glb_addr_calc 18.49 14.97 0.56 5.36 3.59 1.53 4.06 18.06

return 1.31 1.77 0.20 1.35 2.26 3.29 1.76 4.91

SP 1.57 0.17 0.82 1.25 4.44 2.07 2.99 0.00

return values 1.82 4.50 2.27 1.12 1.60 4.50 2.23 9.28

arguments 10.13 15.36 26.07 21.40 22.41 7.32 12.07 3.79

global 48.18 26.26 3.19 8.38 7.95 13.14 20.81 48.78

heap 0.00 9.56 52.38 34.09 13.62 39.71 23.22 0.00

Table 6: Contribution of each category to total repetition. The numbers are % of all repeated dynamic instructions.

Categories go m88k ijpeg perl vort li gcc comp

prologue 97.95 99.99 93.76 92.53 93.35 82.06 58.57 84.72

epilogue 97.95 99.99 93.76 92.51 93.35 82.05 58.54 84.72

function internals 98.89 100.00 99.97 99.77 99.75 99.98 94.23 100.00

glb_addr_calc 99.85 100.00 99.98 99.99 99.99 100.00 99.78 100.00

return 99.99 100.00 99.97 99.99 99.99 100.00 99.90 100.00

SP 99.90 100.00 99.89 99.99 99.86 99.79 93.85 77.16

return values 98.85 99.99 99.67 35.37 97.83 95.46 72.67 31.55

arguments 86.82 98.56 77.64 82.45 86.05 89.68 56.44 42.93

global 75.69 96.21 82.65 72.48 97.07 99.26 92.27 49.54

heap n.a. 99.96 74.69 81.38 89.63 71.73 70.84 n.a.

Table 7: Propensity of each category for repetition. The numbers are % of all dynamic instructions in that category.



repetition.

• Function Prologue and Epilogue: These two categories
comprise a significant percentage of total repetition (e.g., 7% for
go, 10% for m88ksim, 24% for vortex, and 13% forgcc). This
repetition occurs because often functions save and restore the same
values of callee-saved registers from the same stack locations. For
example, such a situation may happen when functions get called
from the same call site repeatedly (hence the save and restore code
accesses same locations in the stack) and the values of callee-saved
registers are the same as before (because, for example, if they are
not used in the caller function at all).

• Function Arguments: For ijpeg 26%, forvortex 22%, and for
m88ksim 15% of the repeated instructions fall on argument slices.
As shown in Table4, many times functions are called repeatedly
with some or all of their arguments having the same values as
before. In such cases, the instructions which operate on these
arguments may perform the same computation repeatedly. We see
an exception forijpeg, in which case only 77% of the instructions
from this category (Table7) are repeated even though 98% of
functions are called with all-argument repetition. This suggests
that values coming from other slices (e.g., global slices3) that
merge with argument slices may change and hence prevent
repetition.

• Function Return Value: Often, the value returned by function
calls belongs to a small set of possible values (e.g., true or false).
In such cases, the computation in the caller function which uses
this return value may perform the same task repeatedly. Although
repetition due to this category is not high, it is measurable for
compress (9.3%),li (4.5%), andm88ksim (4.5%).

• Function Internals: Since these slices originate from
instructions operating on immediate values, the different execution
of these slices generate the same results (provided the governing
control flow resolves in the same way for each execution). The
percentage contribution to repetition for some of the benchmarks
are, 11% forgo, 17% form88ksim, 12% forijpeg, 19% forvortex,
and 19% forgcc.

• Global Address Calculation: Instructions in this category
either operate on immediate values or on register gp (which is a
runtime constant). Hence they perform the same task every time
they are executed. The percentage contribution of this category to
repetition for some of the benchmarks are, 18% forgo, 15% for
m88ksim, and 5% forperl.

• SP and Returns: The computation involving SP, like adding
an immediate to form an address of a variable, generates the same
result if the value in SP is the same, which is the case when the
same function is called from the same call depth repeatedly (e.g.,
function called from the same call site repeatedly). The percentage
contribution of SP to repetition for some of the benchmarks are,
4.4% forvortex, 3% forgcc, and 1.5% forgo. Returns get repeated
when a function returns to the same call site repeatedly. The
percentage contribution of returns to repetition for some of the
benchmarks are 4.9% forcompress, 3.3% for li, and 2.3% for
vortex.

We observe that, although the results from global analysis show
that most of the repeated instructions are part ofprogram internal
slices, comparatively fewer repetitions fall on function internal
slices. This indicates that much of the invariance flows into a

3 In ijpeg, several functions are called with pointers to global arrays as ar-
guments. Although the pointers values remain same the contents of the ar-
ray change.

function via arguments and global values, and that this invariance
may not be obvious (statically) inside the function.

6.  Comments on Software Exploitation of
Instruction Repetition

In the last few sections several characteristics of sources of
instruction repetition have surfaced. We now provide some
commentary on how this phenomenon might be exploited in
software and the possible hurdles in doing so.

From Figure1, we see that few static instructions account for most
of the instruction repetition. Thus, if required, most of the
repetition can be covered by tracking a few static instructions
(either by using program profiling or in hardware).

Global analysis (Table3) shows that most of the dynamic
instructions and the repetition fall on theprogram internal slices
andglobal initialized slices. These slices originate from immediate
values and statically initialized data respectively, both of which are
known at compile time. Although, this information suggests that a
compiler might be able to optimize code to eliminate this repetition
statically, we make several comments about the challenges in
doing so:

• The dynamic path through the program may not be known stat-
ically. Although the same definition of a value may reach a use
repeatedly, this invariance may not be obvious at compile time.

• To ensure correctness a compiler needs to assume dependences
conservatively. On several occasions global variables cannot be
register allocated in the presence of pointers or function calls.
Dynamically loads of global variables may load the same value
repeatedly.

• The fact that a value is statically known may not be obvious
within the body of a function if the value was passed to the
function as an argument, without sophisticated inter-proce-
dural analysis.

• Much instruction repetition is a result of code executed to
dynamically recreate a computation from its static image. To
exploit such repetition statically may involve “unrolling” the
dynamic computation statically, perhaps affecting the general-
ity of the computation as well as the code size.

• Some instruction repetition is due to features of the instruction
set, and cannot be eliminated by optimizations like constant
propagation. For example, the number of bits in the immediate
field of an instruction format limits the size of the immediate
value that can be handled by an instruction. In such cases, big-
ger constants are manipulated using a sequence of instructions,
all of which would perform the same computation when exe-
cuted repeatedly.

• In some situations a loop invariant computation may not be
register allocated, because of the resultant increase in register
pressure which might cause spills inside the loop.

Function analysis (Table4) shows that most of the functions are
called with repeated arguments (all-argument repetition). From
this result it would appear that such functions could be memoized.
Memoization can be hindered if a function has side effects, like
external input/output or stores to a global address, or if it has
implicit inputs through global variables. In Table8, we show the
percent of functions called with all-argument repetition that do not
have any side effects or implicit inputs (hence may be candidates
for memoization). As we can see, most of the functions have side
effects or implicit inputs and may defy memoization (unless the
side effects and other inputs themselves have a repeated pattern
that can be detected statically).



Another way to exploit the repeatability of function arguments
might be to specialize functions for commonly occurring argument
values [4, 5, 6]. This optimization can be successfully employed if
a small set of argument values occurs frequently. In Figure5, we
show the percentage of function calls with all-argument repetition
for the 5 most frequent combinations of arguments. Thus, if we
specialize every function with all-argument repetition based on its
most frequently occurring argument values we would capture 5%
of the function calls forgo, 42% forperl, 17% forvortex and 7%
for gcc. However, in all but one case, even specializing every
function for the 5 most frequent sets of arguments values does not
allow us to cover more than 50% of the dynamically-executed
functions.

Local analysis (Table6) shows that function prologue and epilogue
are a significant contributor to both the number of instructions
executed dynamically, as well as to instruction repetition. This

overhead and repetition can potentially be optimized if the
compiler had global information and could inline the function at
the call site. One of the issues that a compiler has to deal with in
function inlining is the resulting increase in code size (along with
others that we do not discuss here such as, recursion, availability of
the function definition at the time its call site is complied etc.). In
Table9 we show the sizes (in number of static instructions) of the
functions that are the top 5 contributors to the prologue/epilogue,
as well as the fraction of all prologue and epilogue instructions
accounted for by these 5 functions (coverage column) for the
benchmarks. We observe that most functions are greater than 50
instructions in size and may be considered large for inlining
purposes.4 Also, from the percent coverage we can deduce that
significant prologue and epilogue repetition remains (greater than
40% for many cases) even after considering top 5 functions (except
for compress). Thus, just capturing the few big contributors may
not eliminate all the prologue and epilogue repetition.

Local analysis also identifies other sources of instruction

4 Because the dynamic path length through a function can be smaller than
the static instruction count, the prologue/epilogue can still be a significant
contributor to the dynamic instruction count even for large functions.

Benchmarks

Dynamic Functions w/o side effects or
implicit inputs

% of all funcs
% of funcs with all-

arg repetition

go 0.0% 0.0%

m88ksim 7.8% 9.3%

ijpeg 0.3% 0.2%

perl 0.0% 0.0%

vortex 0.0% 0.0%

li 0.3% 0.2%

gcc 0.6% 0.9%

compress 0.0% 0.0%

Table 8: Functions which do not have any side effects or
any implicit input. The numbers are percentages of all
dynamic functions (column 2) and percentages of functions
with all-argument repetition (column 3).

Bench. 1 2 3 4 5 coverage

go
addlist getefflibs lupdate ldndate livesordies

40%
113 558 683 683 799

m88ksim
Data_path execute display_trace Pc test_issue

66%
143 883 150 149 56

ijpeg
emit_bits encode_one_block fill_bit_buffer jpeg_idct_islow memcpy

81%
97 103 93 643 55

perl
eval memmove malloc str_nset str_sset

59%
6639 97 304 76 142

vortex
Mem_GetWord TmFetchCoreDb Chunk_ChkGetChunk Mem_GetAddr TmGetObject

49%
53 125 50 49 49

li
livecar livecdr xlobgetvalue xlsave xlevlist

60%
61 29 88 40 90

gcc
reg_scan_mark_refs mark_set_resources canon_reg mark_jump_label copy_rtx_if_shared

17%
262 309 162 259 271

compress
getcode output readbytes

100%
86 142 85

Table 9: We show names of five functions which are 5-top contributors to prologue+epilogue repetition. For each function we
show its size in number of instructions. This information is useful in deciding whether these functions should be inlined. We also
show the amount of prologue+epilogue repetition covered by these five functions.
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repetition, such as global slices, function internal slices, and
instructions that compute global addresses. One way to exploit the
repetition on a global slice (a slice which originates with a load
from the data segment or the heap) may be to specialize the slice
for the commonly seen values for the originating global load [1, 4,
6]. Just as for function specialization, such a scheme can be
successfully employed when few values are seen frequently. In
Figure6, we show the percentage of global load repetition
accounted by considering 1-5 most frequently seen values for each
load. The figure suggests that if we specialize every repeated
global slice (assuming other criteria for triggering the code
specialization hold) based on the most frequently seen load value
then we may capture 18% of global slice repetition forgo, 71% for
m88ksim, 39% forvortex and 22% forgcc. To capture more of the
global repetition, global slices may need to be specialized for
several possible values.

The issues in exploiting repetition that fall on function internal
slices and global address calculations are similar to those discussed
for global analysis earlier in this section.

7.  Comments on Hardware Exploitation of
Instruction Repetition

Recently two hardware approaches have been proposed to exploit
the phenomenon of instruction repetition:value prediction [8, 9,
10, 14] anddynamic instruction reuse [13]. In value prediction, a
prediction table is used to predict the outcome of an instruction,
and in instruction reuse, results instructions are buffered in a reuse
buffer which is used to streamline the “execution” of some
repeated instructions by transforming the “execution” into a table
lookup.

In Table10 we show the amount of repetition that can be captured
by an 8k entry, 4-way set associative reuse buffer [13].
Comparing the entries in Table10 to the entries in Table1, we see
that there is still room for improvement in performance. Likewise,
we believe there is room for improvement in structures used to do
value prediction. These improvements are likely to result from our
observations that: (i) a few static instructions account for most of
the repetition, and (ii) different “parts” of program execution have
different repetition behavior (similar observations are also made in
[11]). We expect that these, and other observations will be used to
better manage prediction and reuse structures. For example, by
using information about the likelihood of repetition for a certain
instruction (or instruction class) we might be able to prevent the
insertion of unprofitable instructions into the prediction/reuse
structures, resulting in smaller structures or more efficient
structures. Methods to use information about the characteristics

and sources of instruction repetition to improve hardware
structures is beyond the scope of this paper; we expect many such
papers to appear in the coming years.

8.  Summary and Conclusions
In this paper, we empirically analyzed instruction repetition, which
is the phenomenon that instructions operate on same operand
values and produce the same result repeatedly. We analyzed the
SPEC ‘95 integer benchmarks to understand the underlying
characteristics of programs that give rise to this phenomenon.

We first characterized instruction repetition. We found that most of
the dynamic instructions in programs are repeated (e.g., 99% for
m88ksim, 93% forvortex, and 84% forperl). We also found that
although almost all of the executed static instructions contribute to
repetition, less than 20% of the repeated static instructions account
for more than 90% of the dynamic repetition. However, instruction
repetition is not limited to instructions producing few instances
dynamically; as much as 42% of the repetition inijpeg, and 28% in
li is due to instructions that produce between 101 to 1000 distinct
values.

To better understand this phenomenon, we further analyzed the
dynamic execution of these programs at three levels: (i) global, (ii)
function, and (iii) local (inside functions). In global analysis, we
tracked the data usage pattern of the program as a whole and
determined the sources of repeated instructions (external input,
global initialized data, or program internals). We saw that most of
the instruction repetition fall on instruction slices originating from
program internals values (like immediate values) and global
initialized data. We saw similar results when running the
benchmarks with other inputs though we did not report these
results in this paper. This suggests that repetition as a phenomenon
is more a property of the way computation is expressed in a
program and less a property of input data.

In the function analysis, we saw that very often functions get
invoked repeatedly with exactly the same set of arguments values
(e.g., 98% of function call inijpeg, 83% inm88ksim, 78% ingo).
On the other side of the spectrum, very few function calls have no
repeated arguments values (less than 1% for several benchmarks).

In the local analysis, we tracked the source of repetition. We
classified the instructions of a function into different categories
based on the source of data values used (e.g., function arguments)
and the specific task performed (e.g., save and restore registers).
We found that most of the repeated instructions fall either on
global value or argument value slices. Instructions on function
internals slices also get repeated frequently. Significant repetition
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Benchmarks

Repetition

%of all inst
% of repeated

inst

go 46.5 65.4

m88ksim 73.7 74.9

ijpeg 28.0 45.8

perl 49.0 61.2

vortex 55.6 67.0

li 45.8 66.6

gcc 47.5 69.9

compress 30.2 53.3

Table 10: Repetition captured by 8k 4-way set assoc. buffer



is also seen due to function prologue and epilogue. For some
benchmarks the sequences of instructions that calculate the
addresses of global variables also get repeated significantly.

Next, we discussed the various issues in exploiting this
phenomenon in software. We argued that detecting repetition
requires a lot of dynamic information. This requirement may limit
the amount of repetition that can be optimized statically. Although
dynamic information can be collected by profiling, we show that in
many instructions are repeated with several different values and to
capture most of the observed repetition static optimizations would
need to optimize the code for several different values.

Finally, we made a few observations on exploiting instruction
repetition in hardware. The characteristics and sources of
instruction repetition presented in this paper could be exploited to
significantly improve the performance and efficiency of hardware
schemes such as value prediction and dynamic instruction reuse
that exploit the repetitive nature of instruction execution.
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