Streamlining I nter-operation

Memory Communication

via Data Dependence Prediction

Andreas Mosheos and Gurindar S. Sohi
Computer Sciences Department
University of Wsconsin-Madison
{moshovos, sohi}@cs.wisc.edu

Abstract

We revisit memory hiarchy design vieing memory as an
inter-opertion communication gent. This pespective leads to
the derelopment of neel methods of performing inteperation
memory communication:

(1) We use data dependenceegiction to identify and link
dependent loads and séw so that the can communicate
speculatively without incurring the verhead of addrss
calculation, disambiguation and data ¢ecaccess.

(2) We also use data dependencediction to comert, DEF-
store-loaduse chains within the instruction window intoeF-
usechains prior to addess calculation and disambiguation.

(3) We use true and output data dependence status
prediction to intoduce and marge a small stage structue
called the Tansient Hlue Cate (TVC). The TVC capes
memory values that arshort-lived. It also captes ecently
stored values that a&r likely to be accessed soon. Accesses that

storage structure are compared; speculation succeeds only if a
match occurs.

In this paper we rdsit memory communication by observ-
ing that the traditional, implicit form of memory communication
where the store does not directly lanthe identity of the con-
suming load(s) and viceevwsa, is not the only method for this
purpose. Explicit forms in which the stores and loads aredink
to one another are not only possiblg imay lead to ne forms of
speculation, to ne storage structures used tald memory hier-
arcty components, and hopefulp nev ways of thinking about
such hierarchies. B/xpect a &ir amount of on-chip resources in
future processors to be wiged to “non-traditional” storage
structures and air amount of brt devoted to “non-traditional”
methods as we attempt to selthe “memory problem”. &/
describe three such methods in this pafgeculative Memory
Cloaking (or simply cloaking, Speculative Memory Bypassing
and Transient dlue Cate (TVC). The first tvo methods are
aimed at reducing thefettive communication lategycwhereas
the third method is aimed in addition at increasing tfectfe

are serviced by the TVC do not have to be serviced by other parts memory bandwidth.

of the memory hiarchy, eg., the data caee

The fiist two tebniques ag aimed ateducing the ééctive
communication latency wheas the last témique is aimed at
reducing data cdwee bandwidth equirrments. Experimental
analysis of the mposed teltniques shows that: (i) thegposed
speculative communication methods eotly handle a lage
fraction of memory dependences, and (ii) @éanumber of the
loads and stas do not have tover reat the data caee when
the TVC is in place

1 Introduction

Programs xecute operations which producalwes for
other operations; thesalues must be stored while thare vait-
ing to be consumed by the later operations. This-iperation
communication is commonly implemented by\pding register

In speculatie memory cloaking we dynamically a@rt
implicitly specified memory communication into ampécit,
albeit speculatie, form. D do so, we usdata dependence @r
diction to eplicitly link loads and stores that are dily to be
dependent. These loads and stores can then communicate via a
dynamically created name space without incurring treshead
of address calculation, disambiguation and data cache access.
When the dependent load and store xistein the instruction
window, further reduction in the communication latgi& possi-
ble with speculatie memory bypassing. In this technique loads
and stores that are predicted as dependent are spegulati
removed from ay DEFstore-loadJse chains that contain them.
Values can then fio directly from the actual producepgF) to
the actual consumeugg). Since both cloaking and speculati
memory bypassing are speculatin nature, the communication
performed in this manner has to vertually \erified via the tra-

and memory name spaces coupled with an agreed upon commu-ditional memory name space.

nication comention: the producer binds itsalue to a name
within the name space, and the consumer(s) accessltre by
using the same nameaster processing requireaster (higher
bandwidth/laver lateng) interoperation communication.

In this paper we are concerned with ind@eration commu-
nication carried out through the memory name space, or simply
memory communication. Cachesvhabeen usedxéensvely to
implement more étient memory communication. Caches per-
form memory name psence speculatioa gven memory name
could reside in aariety of storage structures that are typically
either fast ut small or slav but laige. A processor implicitly
speculates that a desired name will be preserdasteif storage
(cache), and attempts to access it from there goingwe@skior-
age only if speculationafls. To verify the speculation, the
desired memory name and the memory names stored irvére gi

The transientaue cache is a nel memory hierarchcom-
ponent that attempts to capture that part of the memory space
through which recently storedales are accessed or where
short-lived \alues reside. In this technique, we use both true and
outputdata dependence statusediction(i.e., whether a load or
a store hee a dependence with a recent store) to se@dgtiedi-
rect memory accesses to the TVC. Such accesses maywadbha
go to the data cache, consequently reducing the data cache band-
width demand.

We start our discussion of the problem and approach by
looking at interoperation memory communication in more detail
in Section2. Here we describe the rationale for our proposed
approach. W continue with a brief quantiteé assessment of
inter-operation memory communication in Sect®ni\e use the
guantitatve data, along with our rationale, to describe the

Copyright 1997 IEEE. Published in the Proceedings of Micro-30, December 1-3, 1997 in Researgle Fark, North Carolina. Personal use of this material is permitted.
However, permission to reprint/republish this material for extiging or promotional purposes or for creating mellectve works for resale or redistmition to serers or lists,

or to reuse ancopyrighted component of thisark in other vorks, must be obtained from the IEEE. Contact: Mand@mpyrights and Permissions / IEEE Service Center / 445
Hoes Lane / ®. Box 1331 / Piscateay, NJ 08855-1331, USA.€lephone: + Intl. 908-562-3966.



requirements for cloaking in Sectidnln Sectiorb we describe We utilize data dependence prediction to establish and to
speculatre memory bypassing, and in Sectbmwe present the explicitly express dependences dynamically as fedlowe use

TVC technique. W provide a quantitatie assessment of the pro-  dynamically collected dependence history information to predict
posed techniques in Secti@n Finally we comment on related future dependences.aNhen use these speculatdependences
work in SectiorB before we dér concluding remarks in to create a dynamic name space through which the dependent
Section9. loads and stores can communicate without incurring Hee-o
head of address calculation, disambiguation and data cache

2 Memory as an Inter-operation Communication access. Hwever, since the dependences are speagdlie com-

Agent munication performedventually has to be erified via the tradi-
Memory communication can be wed as a tw step pro- tional memory name space. Furthermore, the amount of history
cess where first the dependences are established and then thinformation we can record places a bound on the fraction of the
actual \alues are communicated> Streamline memory commu-  memory communication we can cent.

nication we need: (i) to establish the dependences as quickly as Finally, we also tak a first step wward annotating this rep-
possible and then, (i) to prigle storage structures that best meet resentation with dynamically collected information that can be
the communication requirements (e.gw ltateng/high band- used to deelop and manage wel memory hierarchies. 8\o so
width). Attempts to meet thesedvgoals &ce obstacles that stem by usingdata dependence status prediction to annotate memory
from the way memory communication is specified and from accesses such that stores whasaes that are Iy to be killed
practical and economical restrictions on the amount and the type soon and loads that aredily to access a recently storedue are
of storage structures that we canyide. serviced from a small storage structure and without consuming
The traditional implicit specification of memory communi-  data cache resources.
cation imposes unnecessary delays on the communication since . .
to establish the dependence relationships we fiiest to carry 3 Memory Traffic Analysis
out an address calculation and then to perform disambiguation, To motvate the proposed methods we first present an
even though the desireciue may be\ailable long before these empirical study of the memory inteperation tréfc of the
tasks can be performed. Awpicit representation in which the  gpgCint93 benchmarks on a MIPS architecture (the bench-
identity of the producing store is kna to the consuming load  marks, architecture and methodology are detailed in SezYion
and vice ersa, does not impose unnecessary delays; the Commu-Tq get an estimate (i) of the fraction of the memory operations
nication can be initiated as soon as the identities of te W \ye can semw with a dependence based mechanism, (i) of ho
instructions become kmo. N o much the storage might we require for this speadagkplicit
Another concern with the implicit specification of memory  communication, and (iii) what attiites we might desire of it,
communication is that it results in name-centric memory hierar- \ve measure: (i) the percentage of loads that readua created
chy design approaches where the emphasis is placed upon theyy 5 preceding store (true dependence), and (ii) the percentage of
attributes of the memory namesorFexample, caches are  giores that are killed by a later store (output dependenae). W
designed to tak adantage of empirical obsetions about the  present both characteristics as a function ofsthee distance,

temporal and spatial locality of memory nameswel@r, as the  \yhich is defined as the number of stores that appear between the
demands placed on memory hierarchies increase, more sophisti-yependent instructions in the dynamic instruction streaenus
cated methods are sought (see Sed)orThese n& methods  giore distance as our metric since itvides an upper bound on
may be helped by information about the communication itself, in  {he number of dataalues that hae to be recorded in order to
addition to information about the names. o detect and capture the particular dependence.

An explicit representation of memory communication may Part (a) of Figurel reports the percentage of dynamic loads

open up n& possibilities since it encourages a communication- hat read a dateatue produced from a preceding store (store dis-
centric approach to memory hierayctlesign. There are cases  gnce range shan is 8 to 8K) whereas part (b) reports the per-
where vieving memory hierarghdesign in terms of the commu-  centage of dynamic stores that are killed by a later store. It can be
nication itself (i.e., the loads and the stores) rather than in terms geen that for almost all programs about 50% of all dynamic loads
of memory names is adutageous. ¢t example, consider a  get their value from a store that is at most at store distance 256

number of dependences which during run-time, and when (maried by a continuousevtical line) and that about 60% of all
viewed in isolation, ehibit predictable lifetimes. This lifetime stores are killed within a store distance of 256.

information may be used to decide where in the memory hierar- These results indicate that a mechanism which can record
chy to place the associatealues. If the correspondingalues and detect dependences across the last 256 stores can potentially
are mapped to the same name, the resultingvisetia terms of service around 50% of all loads and cutvdaabout 60% of the

the name may defy prediction. Anothexample is when a  giore trafic. Motivated by the lage fraction of loads that get their
dependence which during run-timehéits predictable lifetimes  y5ye through a dependence with a recent store, in Sections 4 and
uses diferent memory namesver time. In this case, the past g e propose techniques that attempt to reduce the yatdnc

behavior of the dependence can be used to predict thevivefud this communication byxlicitly linking the dependent instruc-

memory names that we may novaget encountered. tions. Later motivated in addition by the Ige fraction of store
Motivated by the aforementioned obsatfons, in this paper  yajyes that are quicklyverwritten, in Sectio®, we attempt to

we are primarily concerned with methods ofwenting the tradi- also the reduce the bandwidth requirements imposed on the data

tional implicit specification of memory communication into an  cache. § do so, we introduce a separatit émall storage struc-
explicit form. Dependence relationships could be determined and 1,ye and redirect to it those memory locations through which

expressed in anxplicit manner staticallyNevertheless, in this communication of true dependences occurs or recently stored
paper we do not consider a static approach sincedtdwrequire values are Killed.

static knevledge of the dependences, and @wd also irolve
changing the program representation completkigtead, we
investicate dynamic approaches.

1. We hare performed a similar study for the SPECfp95 programs. The
results areailable via:ftp://ftp.cs.wisc.edu/sohi/micro30-memtraffic.ps



80%

60%

40%
20%
0% -
100% 099.g0 124.m88ksim 126.9cc 129.compress 134.perl 147 .vortex
(]
80% | |(D

60%

40%
20%
0%

099.go 124.m88ksim 126.gcc 129.compress

130.li 134.perl 147.vortex

132.ijpeg

Figure 1. (a) Distribution of dynamic load/store (true) dependence distances, (b) Distribution of dynamic store/store (output)
dependence distances. For both graphs the X axis represents distance in stores. Samples are taken at store distances that are powers of
two starting from 8 and ending at 8K. Y axis represents percentage over all loads or all stores accordingly.

4 Speculative Memory Cloaking

The purpose of cloaking is to streamline memory communi-
cation by dynamically carerting the implicit specification of
dependences into ammicit form. In cloaking, dependence pre-
diction is used to identify loads and stores that aedylidepen-
dent. The dependent load and store are thplicély linked via
a nev name, asynonym which uniquely identifies the depen-
dence (e.g., the syngm can be the (load PC, store PC) pair).
One may wnder hav using a diferent name may help in stream-
lining the actual communication. After all, data addresses and

speculatrely using this alue (action 7). When the load data
address becomewailable, the memory system is accessed to
read the actualalue (action 8). This is compared with treue
obtained earlier via the cloaking mechanism. If the talues
are the same, cloakingas successful and no further action is
required. Otherwise, datalie mis-speculation occurs, and/an
instructions that used wrong dataveato be re-gecuted. (In
Section6, we will shav that this erification can be hidden from
the data cache using the TVC.)

Speculatrte memory cloaking has the folng require-
ments: (1). predicting dependences, (2). creating synsn

synoryms are just names that the dependent instructions use 10 aggociating them with the dependent instructions and assigning

link to each otherThe answer lies in the nature of the association

storage for the communication, and (3grifying the specula-

between the name and the instructions that use it. In contrast to agyely communicatedalues. Vé next discuss each of the require-

data address, the synon uniquely identifies the dependent
instruction pair so that the load and the store can eacledbsd
synorym based solely on their identity (PC).eWse the term
speculative memory cloaking to signify that memory is hidden
since the communication tek place speculagly through a
dynamically created name space avithout knowledge of the
memory location used by the program; no association between
the storage used by the sygonand the memory address islb
(in contrast to what is done memory renaming (e.g., [5])).

The process of cloaking is illustrated in Fig@reAs shavn

in part (a), a detection of a load-store dependence results in an
association between the load, the store and a function that can be

used to devie preferably unique syngms for future instances

of the dependence. When a later instance of the store instruction

is brought into the instruction windoand the eistence of a
dependence is predicted, this association results in the generatio
of a synogm (part (b), action 1) and furthen the allocation of
physical storage for that syngm (action 2). Storage for the syn-
onym is preferably praided in theSynonym File (SF) which is a
small, lov lateng/high bandwidth storage structure. The storage
element is initially set to indicate that thelwe is not yet\ail-

able and is updated with the actualue as soon as the latter
becomes ilable (action 3). Finallywhen the store computes
its data address, thalue is also written to the traditional mem-
ory system (action 4). When the appropriate instance of the load
is brought into the instruction windoand the gistence of a
dependence is predicted, the association is usaid &y denve

the synogm (part (c), action 5) and consequentty locate the
appropriate element in the syryom file (part (c), action 6).
Instructions that use the loadlue may at this pointxecute

ments in detail.
4.1 Detection and Prediction of Dependences

If cloaking is to succeed, we Y& to be able to predict
dependences. In [15] we \eshaovn that relatrely few static
dependences are responsible for the majority of the true depen-
dences obseed dynamically and that this sethébits temporal
locality. (Stores with output dependencesibit similar beha-
jor. In Sectior6, we malk use of this obseation to also cut
down on the write trdfc.) This obseration suggests that we may
use dependence history to predict future dependences.

The most straightforard prediction scheme is to record and
predict dependences as (load PC, store PC) pairs similarly to
what was done in [15]. Heever, such a scheme mayJesto pre-

dict among may possible dependences since, as we will demon-

Nstrate in Sectiofd, different instances of the same static store

often obserg dependences with instances ofedént static loads
and vice ersa. Furthermore, with such a scheme we meg tta
predict multiple dependences per dynamic store whemalite Vs
used by may loads. Br these reasons, it is both conceptually
and practically corenient to treat dependence prediction as a
two step process. In the first step, a prediction is made on
whether the gien load or storbasa dependence (i.e., the depen-
dence statuef the instruction), and in the second step, a predic-
tion is made to decide with which load or store the dependence is
with.

In Section7, we will demonstrate thaven simple, counter
based predictors can predict the dependence status of instructions
with relatively high accurag Predicting the actual dependence



Traditional Memory Traditional Memory association Traditional Memory association
Hierarchy Hierarchy store] load Hierarchy ®) store] load
f:synonym f:synonym
association ®
address store load ad o load
= - fggnoym ates: =
L | L | b L ,
(@ (b) Synonym File (c) Synonym File

Figure 2.Sreamlining the communication through memory via specul ative memory cloaking: (a). a dependence detection results

in an association between the dependent load and store instruct

ions, (b). a later instance of the store creates a synonym, (c). a

later instance of the load locates the synonym and uses the data speculatively.

however requires more ffrt. Although it is conce@able and
desirable to design a predictor that attempts to predict directly
the actual dependence, we found iffisiént for the purposes of

value and an indication on whether traue is currently il-
able. Finally mapping synoyms to storage elements can be done
in a \ariety of ways (e.g., using a direct mapped or a fully asso-

this work to use a scheme which assigns a common tag to all ciative SF).
dependences thatyecommon producers (stores) or consumers P
(loads) and use that tag to identify all these dependences collec-4'3 \erification

tively“. The processor can then determine which of all the possi-
ble dependences is currently obsehby a mere inspection of
the incoming instruction stream (this is similar to what is done
for register dependences).

Since our dependence prediction schemes are based o
dependence histarywe also need a ay of detecting depen-
dences. As the results of Sect®rsuggest, to capture adar

Because the communication thatdakplace in cloaking is
based on dependence predicticalues so obtained are specula-
tive and hee to be werified. This can be done by letting the
dependent instructions also communicate via the memory space.

NThe support required for validating and reseecuting instruc-
tions that used incorrect data is ndefiént than that required for
dependence oralue speculation [12]. Since cloaking requires

fraction of the dynamic dependences we need to be able to detectverification through the memory space it can only reduce the

dependencesver s&eral stores (e.g., 256), that iseo regions
that most lilely exceed the instruction wingoused. This can
simply done by &eping a record of the recent stores (e.g., their

lateng of the communication and does notesan bandwidth.
As we will describe in Sectio®, havever, the \erification can be
done via the TVC, in which case the bandwidth required of the

PC) along with the memory address each touched. There arepre-&isting memory hierarghcan also be reduced.

numerous ays of implementing the dependence detection func-
tionality. A relatively inexpensve and straightforard implemen-
tation is via aDependence Detection Table (DDT) which is
nothing more than a gelar hut very small cache that records the
PC of the store that last touched each recorded address. Note th
since the information collected by the detection mechanism is
used only for prediction purposes, relaty long detection laten-
cies and detection errors may be acceptable.

4.2 Synonym Generation and Communication

In cloaking, stores initiate the communication by generating
a synoym in reaction to the prediction of a dependence. The
synorym has a dual role: it identifies the specific instance of the

4.4 Implementation Aspects

In this section we describe an implementation of the specu-

lative memory cloaking technique angp&in its operation by
afneans of anmample. Our goal is to demonstrate the feasibility

of the required mechanisms and tovide insight about their

complity. We partition the support structures in the fofiog:

(a) dependence detection table (DDT), (b) dependence predic-

tion and naming table (DPNT), and (csynonymfile (SF).

As we &plained earlier in this section, the DDT is used to
detect dependences. An entry of this table consists of thevfollo
ing fields: (1) Data Address (ADDR), (2) Store PC (STPC) and
(3) a walid bit. This information identifies the store that last

dependence (or dependences in the case of multiple consumers)updated the gen word data address. The DPNT is used to iden-

and it is also used as a handle by the dependent instructions t
locate the storage element through which the communication
will take place. Thexact encoding of the syngm is not impor-
tant. Havever, it is desirable for the naming scheme used to pro-
vide different synogms for unrelated communication atyan
given point of time. The syngm generated has to be associated
with all the instructions that will communicate so thatytikan

otify, through prediction, those loads and stores that dapen-
dences. It also pvides the tags that are used to create symsn
for the dependences. An entry of this table comprises thavfollo
ing fields: (1) instruction address (PC), (2) dependence status
predictor (PRED), (3) dependence tag AD)), and (4) a &lid
bit. The instruction address identifies the load or the store this
entry corresponds to. The purpose of the dependence predictor

locate the appropriate storage element using their PCs. This isfield is to pravide an indication on whether a dependendsts

straightforvard given that the dependence prediction mechanism
identifies the dependence eithewplicitly by the (store, load)
edge or implicitly via a tag which is associated with the store and
the load as described in the yimes section. @ perform the
communication, pysical storage has also to bed®d for syn-
onyms. The storage elements shouldviie space for the data

2. For example in the codéf (cond) then store,M; else store,M; load M the
dependencesstbrey, load) and étore,, load) will be both assigned a

common tag. The stores and the load will use this tag to link to each
other

Finally, the dependence tag field is used to identify the depen-
dences of this instruction. The SF is used twige storage for
synoryms. SF entries e the follaving fields: (1) name, (2)
value, (3) full/lempty bit, (4) alid bit. Based on thexact config-
uration used some of the fields may not be required (e.g., we may
not use a name field in a direct mapped SF) and some structures
can be combined (e.g., we can geethe DPNT and the SBr

the raister file and the SF).

4.5 Working Example

The exact function and use of the support structures is best



. DPNT valid DDT DPNT DDT
loop: SetToken(t): store 0| [ADDR[sTPC| | [STPC|PRED|DTAG 1| [ADDR[STPC
t=AllocateToken() | t>tjpg=.. 0 LDPC |PRED | DTAG |1
SetToken(t) 0 0
ActOnToken(t): 0 0
ActOnToken() switch (t->type) |load @ u ®
x| ®
@) (b) © [Toad |
DPNT SF e Memory | DPNT SF e Memory | DPNT SF e Memory
STPC| Pred| DTAG| 1] [DTAG[0 [empty| Hierarchy [STPC| Pred| DTAG] 1] [DTAG] 1] value | Hierarchy [STPC|Pred|DTAG|| [DTAG[1 [ value | Hierarchy
LDPC| Pred | DTAG| 1 LDPC| Pred | DTAG/ 1 i LDPC| Pred | DTAG |1 i
0 0 0
0 0 1 0 @0
® ' ® ~ \_@‘ @L,
@ = @~ 1
(d) (e) — () [Toad ] —
Figure 3. An implementation of Speculative Memory Cloaking.
understood by means of araeple. In the discussion that fol-  store. At this point the load may use this dataxaxete specula-

lows we use the orking example of Figure to demonstrate tively (action 10). Later on, when the data address becorais a
how an earlier detection of a dependence between a store and aable, the load accesses the traditional memory higrémabbtain
load results in the streamlining of the irtgreration communi- the actual dataalue (action 11). Thisalue is compared agqst
cation the net time the same dependence is encountered. In the the \alue read prgously from the SF and appropriate action is
discussion that follws we assume that the dynamic dependences taken if the tvo values difer. At this point we may also update
result from the xecution of the loop shn in part (a). Dynami- the predictors in the DPNT entries for both the load and the store
cally, a series of dependences will be obedetween instances  (to locate the DPNT entry for the store the SF entry wileha
of the marled load and store. Each of the dynamic dependences record the store’PC).
will map to a diferent memory address (we assume that ne
space is allocated for each &ol. 4.6 Other Issues

In parts (b) and (c) we shothe actions that lead to the We naw discuss a f@ issues which relate to the method and
detection of the dependence. In part (b), the first instance of the the implementation we kia described.
store gecutes and records in the DDT its PC and the data address .
it updated (action 1). Later on, in part (c), the first instance of the 4.6.1 Dependences Through Different Data Types
load using its data address probes the DDT (action 2) and deter- So far we hae assumed that thelue obtained through a
mines that a dependenceists with the recorded the store. I dependence isxactly the one written by a single store. Loads
reaction to this detection, twentries are allocated in the DPNT  and stores, hwever, may operate onavious data types (e.g., a
one for the load and one for the store (action 3). In addition, a tag byte, half word or a full vord). So, it is possible to encounter
is created for the dependence, and it is recorded in both entries.dependences between a store and a load that operatéeoendif
(Since the operation of the DDT has been described in steps 1data types gito encounter loads that readadue that is a combi-
through 3, it is not shwn in the remaining parts of the figure.) nation of the @lues written by manstores. Gien a load, there

In parts (d) through (f) the actions that lead to the cloaking are four possible cases: (1) the dependence is with a single store
of a later instance of the dependence recorded in part (c) arethat operates on the same data type, (2) the loaalad is only
shavn. Cloaking is initiated when, as st in part (d), a later part of the wlue written by a single store, (3) the loadatiig is
instance of the store enters the instruction windhe PC of the a combination of thealues (or parts of them) written by more
store is used to probe the DPNT for a matching entry (action (4)), than one stores (e.g., the load readsoadwvhose bytes were
and since one is found, its predictor is used to determine whether each written by a diérent store), and (4) only part of thalwe
cloaking should occuAssuming that the predictor indicates so, read by the load comes from recent a store (or stores).
a synoym is generated based on the tag recorded in the DPNT The first case does not present a challenge for the mecha-
entry (for the purposes of this discussion the tag of the DPNT nisms we hee described. & the other three cases we dwéa
and the synogym are the same), and it is used to allocate space in the option of not pradding support. Hwvever, it is desirable to
the SF (action 5). The fulllempty bit of the SF entry is set to provide support for at least those cases that are welatire-
empty to indicate that thealue is not yetailable, whereas, the quent or that are critical in terms of performance: fhe pur-
store also records the location of the SF entry since the actual poses of this wrk we base the decision on which types to

data \alue, when it becomewailable, will hare to be written in support solely on frequencTo provide support for the second

the SF entry (part (e), action 6). éhtually the store also case we need to be able to determine what part of the siaee v

accesses the traditional memory hiergrgdart (e), action 7). the load reads. This information cannot beastifrom the iden-
When the net instance of the load enters the windgpart tity of load only the actual data address is neededvéder, we

(), as it vas done préously with the store, its PC is used to  may emply a simple prediction scheme in which we record
probe the DPNT (action 8). After a match is found and a depen- (using a 4 bit mask in the DPNT entry for the load) the location
dence status prediction is made, the tag recorded in the DPNT of the bytes that the load read last time the dependemse w
entry leads to the generation of the same symogenerated pre- obsered and use this information tateact the same part of the
viously for the store. This synpm is used to access the appro- store \alue the net time the dependence occurs (this alsonalo
priate SF entry (action 9) and to obtain the data left there by the us to preide support for signsgension). Havever, this method



DefRT | .-~ VC TVC

(1). Bypasg ™~-* store R1 Data Cache Data Cache

v _EN
() [UseR2] "\ [fgajmp] 7
@ ety @ ©

TvVC VG
store R1 Data Cache I Data Cache

@)

-

load R2

'R1| TAG1
synonym[TAGT| @ if miss

© [load | (d)

Figure 4. Speculative Memory Bypassing: (a). gRiar Figure5. Transient ¥lue Cate opeation.

communication path tbugh a memory dependencéb). Stoe: (a). output dependencedll, (b). output dependence
Communication path with Speculative Memory Bypassinp unlikely. Load: (c). true dependencedll, (d). true dependence
How are the load and the stetalen of the communication path.  unlikely.

will fail if over time the load reads tifent parts of the store chains wheneer the load-store dependence is predicted and the
value. Een though it is possible todend our mechanisms to DEF and USE instructions co-gst in the instruction winde. In

support dependences thatlfin the other tw categories, we do this case, the alue can speculagely flow directly from the
not consider thesextensions here since these cases rarely occur actual producemEF) to the actual consumewsE). This concept
in practice. we illustrate in Figurd, using thd1l-stoe—load—l4chain shan

in part (a). Een though speculag memory cloaking may aio

the \alue to be speculatly communicated between the store
It is possible for multiple instances of the same static depen- and the load, thealue will still have to trael through these tw

dence (i.e., (load PC, store PC) pair) to be simultaneousWeacti  instructions before it can reach 14.\mever, as shwn in part (b)

4.6.2 Multiple Instances of the Same Dependence

In this case, it is desirable to create &edént synogm for each with speculatie memory bypassing, thealue can be sent
dynamic dependence. Generating &dént synoym every time directly from 11 to 14. As s the case with speculaimemory

a nav instance of the store is encountered is straigh&odvand cloaking, this communication is specwatiand has to beevi-

can be done in numerousays (e.g., using a global counter). fied.

However, for communication to occur as planned, the same syn- Speculatrte memory bypassing can be implemented as a
onym has to be assigned to the appropriate instance of the load.simple etension to speculatt memory cloaking. & eplain
Doing so is straightforard if, in the original program ordethe the act process using theovking example of Figuret, part
lifetimes of the dynamic dependences are distinct; all we tma (c). At step (1), instructiofil is decoded and géster renaming

do is remember the most recemirsion per actie dependence creates a ve nameTAGL1 for the taget r@isterR1 At step (2),
(similarly to what is done for gister dependences). Wever, the store instruction is decoded and determines the current name
since data addresses are calculated dynamitiadéiylifetimes of of its source rgisterR1 In parallel, via the use of cloaking, a
the dynamic dependences magdap (as forxxample in the fol- synorym is created for the memory communication. At this
lowing loop that has a recurrence that spans 3 iteratwrns: 1 point, we also record in the synan the current name&AG1 of
toNdo afi + 3] = a[i] + 1). In this case, remembering the most recent stores source mgister RL At step (3), the load instruction is
synorym for the static dependence is noftfisignt. Instead, the decoded and gister renaming creates amaameTAG2 for the

load has to determine which of all sypars is the appropriate destination rgister R2 In parallel, via the use of cloaking, the
one. Een though support for galar communication patterns load locates the syngm and hence determines the naf&1
can be preided, further inestication of this issue is lyend the of the stores source mgisterR1 In doing so, the load has deter-
scope of this paper mined the storage (e.g., y®ical raister or resemtion station)

5 lative M B . where the actual produckr will place or has placed thalue.
Speculative Memory Bypassing This name is speculaély associated with the get of the load

With cloaking, alues can fi quickly from stores to loads. ~ R2 This way, when at step (44 is decoded, it can determine
However, in load/store architectures, stores and loads do not that its source gisterR2 has tvo names: one actudAG2 and
compute @lues rather thg are simply used to pass thalues one speculate TAGL By using the speculag nameTAGL, 14

that some other instructions produce to some other instructions ¢an link directly toll and eecute speculately as soon a

that consume them. This occurs when either the compisr w  Produces itsalue. Later on, after the load has accessed the mem-
unable to establish the dependence statically or when storage inory the intgyrity of the communication can benfied. Note that

the rejister name spaceas not wmailable. Speculative memory ~ speculatre memory bypassing naturallxtends for dependence

bypassing cornverts DEFstore-loadyse chains into DEF-USE chains that include more than one memory dependence; when-
ever a store detects that its sourcgister has a specubedi

name, it can optimistically pass it via the syyion

3. We ignore sign-eension and type comrsion issues. The support .
required is similar to that required for cloaking wwer we disallov 6 Transient Value Cache

bypassing wer multiple dependences thatvaive different data . . .
w);pes_ g P P As we hae seen in SectioB, a lage fraction of loads get



their values from a recent store, and most of thieies stored to
memory are quickly killed. Motated by these obsetions we

extend the memory hierarghby introducing a small storage
structure, th@ransient Value Cache (TVC) and use both true and

separately (similarly to ta@ns in datafle processors). Based on
this result we continue to consider cloaking schemes in which
stores create a single syiyom In this case it is up to the loads to
determine the syngm, i.e., to predict thexact dependenceoF

output dependence status prediction to capture in the TVC that this reason, we continue by measuring the dependence prediction

part of the memory space through which recently stoedues
are communicated or killed. As a result, tlegification accesses
required by cloaking as well as storalues that are quickly
killed may not hae to reach the rest of the memory hiergrch
One may wnder what are the adntages of doing so since the
data cache being muchdar in size will most likly capture this
part of the memory space. Wever, as ILP processors attempt to
execute an er increasing number of instructions pgcle, as

accurag that is possible as a function of the number of the
dependences that can be remembered per load, i.e., as a function
of thedependence history depth. We obsere that a lage fraction

of loads e&perience may different dependences duringeeu-

tion that hae to be trackd simultaneouslyBased on this obser-
vation we continue tovaluate a simple cloaking mechanism in
which all dependences thateaa common store or load are
assigned a common tag aspkained in Sectiod.1. We then

data cache sizes increase, and as wire lengths become a concershov that this cloaking scheme can communicate correctly a

read and write ports to the data cache becometaeneely pre-
cious and gpensve resource [19, 21]. Using a separate, small

large fraction of the dynamic dependences. In SedtiBnwe
first evaluate an output dependence status predictor and then we

structure (with separate read/write ports) to service a significant report a lever bound on the reduction in the number of data
percentage of the loads and stores, not only may lead to reducedcache accesses that can kgeeted by a 256-entrfully associa-

data cache read/write port and bandwidth requiremeutsnay
also facilitate shorter access latencies.

In Figure5 we shav hov dependence status prediction is
used to steer loads and stores. Stores that a&ig tix be killed
soon are initially sent only to the TVC in hope thatythéll be
killed in it before thg are forced to go the data cache (part (a)).
Other stores are sent to both cacheseepkthem coherent (part
(b)). Loads that are ldy to hae true dependences with recent
stores are initially sent only to the TVC. Such a load is directed
to the data cache only if we miss in the TVC (part (c)). In the lat-
ter case welo not bring the data in the TVC since moseli\ the
dependence status predictiomsvwrong. Other loads V& to

tive TVC. We conclude thevaluation by measuring the potential
performance impact of the proposed techniquesa®éume per-
fect dependence and dependence status predicté@ntite 256
most recent stores and we ghihat a cloaking mechanism cou-
pled with a 256 entry fully associati TVC not only imprees
performance bt may also outperform a traditional memory sys-
tem that has twice as much data cache.

7.1 Methodology

All experiments were performed using the ggeprograms
of the SPEC’95 benchmark suite which were compiled for the
MIPS-I architecture [11] by the 2.7.2rsion of the GNU GCC

access both the TVC and the data cache in parallel (part (d)) compiler (-O3 plus loop unrolling and function inlining). In order

since the most recenalue may be only in the TVC. Finallf a
dirty block in the TVC needs to be replaced, its contents will
have to be written to the data cache.

Similar to true dependence status prediction, output depen-

dence status prediction can be based on the history vibpse
dependences. Mever, to do so it is necessary to detect output

to keep the simulation time within reasonable limits we used
either thetrain or thetest input data sets. @used the train data
set for 099.go, 132.ijpeg, 134.perl (jumble), and 147.vortex,
whereas we used the test data seflfdrm88ksim, 126.gcc, and
130.li. Finally, to obtain a reasonablexezution sample for
129.compress we increased the train input set from 10K charac-

dependences. The dependence detection table we described iners to 50K. @blel reports the resulting dynamic instruction

Sectiond.1 can preide this functionality by simply reporting the
PC of the store recorded in an entry whemehe latter is wer-
written.

Finally, note that in a shared memory multiprocessei-en
ronment and subject to the consistemeodel in use, we may
have to epose all memory operations to the coherence mecha-
nism. This can be done fokample by allaing the TVC to be
turned of at the discretion of the operating system or of the pro-
gram.

7 Experimental Evaluation

In this section, we presentperimental gidence in support
of the utility of the techniques we propose. The rest of this sec-
tion is oganized as follavs: in Sectior?.1 we describe our meth-
odology In Section7.2, (1) we attempt toagn some insight on
the nature of the dependences that aperenced and (2) we
demonstrate that speculai memory cloaking can capture a
large fraction of the dynamic memory dependencesiarso, we
first demonstrate that simple predictors can identify the true
dependence status of loads and stores with high agciitaen,
we look at hav compl the actual dependence determination
and communication mechanism has to be. filst measure the
distribution of the dgree of use of storealues (i.e., the number
of loads that use thelue) to determine the number of synms
a store wuld hare to generate if each dependendas wreated

counts and the percentage of loads and stores for the programs
used. D simplify the graphs that are subsequently presented we
identify the benchmarks using only the first three digits of their
name.

Benchmark Total Loads Stores
099.go 553M 213 % 7.9 %
124.m88ksim 458 M 18.9 % 9.5%
126.gcc 149G 234 % 19.4 %
129.compress 150 M 21.7% 135 %
130.li 977 M 29.6 % 17.5%
132.ijpeg 148G 17.6 % 8.4 %
134.perl 221G 255 % 16.4 %
147.vortex 282G 28.7 % 24.7 %

Table 1. Dynamic instruction count and percentage of load
and store instructions per benchmark

To evaluate cloaking and to primle an estimate on the pro-
cessor/data cache reduction we capeet with a TVC, we first
employ trace based simulation. The memory access traces are
generated via the use of a functional simulator and includetall b



100% 100% 100%
850/ (D)
75% 65% 75%
45%
0, 0,
50% o506 50%
099 124 126 129 130 132 134 147
25% 2504
2%/ (c)
0% 6% 0%
SISO DT 4% PNRABNIS
Y/Y NN
CIN/YLIYN 099 124 126 129 130 132 134 147 [CIN/Y[JYIN

Figure 6. Predicting the true dependence status of loads aneéstwithin a stae window of 256. &ts (a) though (c) ae for loads
whereas part (d) is for stes.Loads: Infinite prediction esouces: (a) pediction beakdown (“P/A” stands for “Pedicted/Actual”).
Finite prediction esouces: (b) Accuacy of pediction for loads with true dependences, (ejcEntage of loads that a incorrectly
identified as having true dependences. Results of parts (b) an& @3 arfunction of table sizamples a talen at powes of two and
the range is 64 to 2K entries (last bar is with infinitespuces).Stores: (d) Prediction beakdown with infiniteasouces.

system code data references. (System calls are handled by trapstores, (ii) a significant fraction of storeswld have to generate
ping to the OS of the simulation hostg ifvesticate the poten- multiple synoyms if each dynamic dependencasnreated sep-
tial impact of the proposed techniques, we model a realistic, 8- arately (iii) predicting and tracking more that one dependence
way superscalar processor with a traditional 5 stage (fetch/ per static load is important, and (vi) a simple cloaking scheme
decode/recute/access/writeback) pipeline with out-of-order-e can capture and communicate ag&aifraction of the dynamic
cution characteristics. Up to 64 instructions can be in-flight at dependences for most programs.
ﬁry given point of time. Functional units are fully plpellpgd and 7.2.1 True Dependence Status Prediction

ave a lateng of 1 g/cle except for multiplication and dision
which tale 4 and 12 ycles respectely. For control prediction We evaluate predictors that associate a saturating counter
purposes we use a GSHARE predictor [13] witk @4bit satu- with each releant static load or store instruction via the instruc-
rating counters. The base memory system comprises four read/tion address. & experimented with arious counter based pre-
write ports, a store queue with 16 entries, a non-blocking 32 kilo- dictors, and here we report the results for the those that

byte/16 byte block/8-ay interleged/2-way set associat data performed best: 2-bit counter with threshold of 1 for loads and 1-
cache with an access latgnof 2 g/cles and a miss latepof bit counter for stores (i.e., last status seen)isblate problems
either 16 or 24ycles (depending on the configuration simulated) with finite storage we firstvaluate infinite structures. Mever,

for the first vord plus 1 gcle for each additional evd, and to demonstrate the feasibility of the mechanisms we atoate

finally an instruction cache with the same characteristics (conten- finite prediction structures ofavious sizes with LR replace-
tion in the memory bis shared by the twcaches is also mod- ment polig. In the discussion that folles we are first concerned
eled). W also assume perfect memory disambiguation for all with predicting the dependence status of loads. Later we consider

configurations in order not tow@ an undir adantage to the con- stores also.

figuration which uses cloaking (cloaking may also be used to In Figure6, part (a) we report the breakdo of the
schedule unresodd dependences similarly to whaasvdone in dynamic predictions for a true dependence predictor with infinite
[15]). prediction entries. Since dependence prediction is a binary deci-

For the configurations that use cloaking and a TVC we sion there are four possible outcomes: (a) we may correctly pre-
assume perfect dependence and dependence status predictiodict that a load has a true dependence dcayeY/Y), (b) we may
within the 256 most recent stofesiowever, a dependence is not  fail to predict that a load has a dependencedoagd/Y), (c) we
predicted unless it has been seen at least ore@ld3d assume a may incorrectly predict that a load has a true dependence
256 entry fully-associate TVC. Furthermore, for each bench-  whereas it does not (catary Y/N) and finally (d) we may cor-
mark we simulate 100 million instructions after weéakipped rectly predict that a load has no dependencedoa@/N). The
the first 100 million instructions. loads of catgory Y/Y are candidates for cloaking and specwuéati

: : memory bypassing. Loads in the second gmate (N/Y) could
7.2 Accuracy of Speculative Memory Cloaking potentially benefit from either of the proposed techniques; ho

In this section we demonstrate that: (i) refetly simple pre- ever in practice will &il to do so. Loads itY/N may be incor-
dictors can be used to identify the dependence status of loads andectly used to perform cloaking and bypassing if a matching
synorym is found. Finallythe loads of cag®ry N/N will neither
4. Note that these predictors are pessimistic models of perfect predictors Penefit nor get penalized byyaof the proposed techniques.

which use dependence information that is collected via a 256 fully- In parts (b) and (c) of Figu@ we shwr the efects of finite
associatie DDT since, for ample, some of the 256 most recent  prediction storage. ¥report results for prediction tables of entry
stores may be writing to the same memory location. In this case the counts that are peers of 2 in the range of 64 to 2K. In part (b),
described DDT may capture dependences whose store distance iswe report thetrue dependence ediction accuacy, which is
more than 256. defined as the percentage of the correctly predicted dynamic




100%
90%
80%
70%

(@)

1234567 1234567 1234567 1234567

1234567

1234567 1234567

1234567

100%
90%
80%
70%

(b)

1234567 1234567 1234567 1234567

1234567

1234567 1234567 1234567

1009
80%
60%
40%

(©)

099 124 126 129

130 132 134 147

Figure 7. (a). Cumulative distribtion of the dgree of use of stervalues. (b). &centaye of true dependences that can bedicted as
a function of the dependence history degtpt per static load. (c).dfcentaye of true dependences communicatedemily via cloaking
Dark bar is for infinite DPNTgray bass are for 512, 1K, 2K and 4K entries.

loads with true dependenceweo the total number of the
dynamic loads that ka true dependences (i.¥/Yover Y/Y + N/

Y). It can be seen that for all benchmarks, there is virtually no
difference between a 2K prediction table and an infinite one (the
dark bar shas the results with infinite entries). Furthermore,
there is little or no dference between the predictors with 512
and 2K entries. In part (c), we report the percentage of the
dynamic loads that are incorrectly identified awifg true
dependences (caery Y/N). It can be seen that onlywdoads

are incorrectly identified.

Part (d) of Figureb reports the prediction breakeo for an
infinite true dependence status predictor for storesowit the
results for finite prediction tables by noting that no significant
degradation in accurgcor no diference at all is obsesd for a
512 entry prediction table.

7.2.2 A Speculative Memory Cloaking M echanism

The cumulatie distritution of the dgree of use of storeai
ues is shan in part (a) of Figur@ up to a dgree of use of 7
(percentage isver all stores whosealue is used). It can be seen
that a significant fraction of storalues are used at least twice.
Consequentlyif we were to preide a diferent synogm per
dependence we oftenowld hare to generate twor more syn-
onyms. Based on this result and for the purposes of aisi&
tion we restrict our attention to cloaking schemes in which a
store instance uses a common symorno communicate with all
loads that may be dependent on it. In part (b) or Figuree

nicated through speculeéi memory cloaking (note that the num-
ber of true dependences and the number of the loads with a true
dependence is considered to be the same for the purpose of this
evaluation) when an infinite DPNT is used (dark bar) and when
the number of entries is restricted to 512, 1K, 2K and 4K (gray
bars). It can be seen that the majority of all dynamic dependences
is correctly communicated. An vstigation of the relatie
importance of each potential source afldfres is bgond the
scope of the papefThe percentage of all loads that get their
value from cloaking can be deed by multiplying the Y/Y pre-
diction accuracies from part (a) of Figieand the cloaking
accuracies reported).

7.3 Reduction of Data Cache Accesses

In Figure8, part (a) we report the breakdo of the
dynamic predictions of an output dependence predictor with infi-
nite entries. Agin there are four possible outcomes based on the
predicted and the actual dependence status of a staralOthe
dependence status of the majority of the dynamic stores is cor-
rectly predicted. W do not present the results for finite predic-
tion tables since the trends are similar to those obdérvtrue
dependence status prediction.vidmer we note that virtually no
difference vas obsered when the number of entriesasv
restricted to 512. Finallyin part (b) of Figurd, we report a
lower bound on the reduction of data cache accesses that can be
expected by a 256-entry fully associatiTVC given the true and
output dependence status predictors we simulated of 512 entries

report the number of dynamic dependences that can be poten-each. V¢ report a laer bound on the percentage of dynamic
tially predicted as a function of the number of dependences we |oads and stores thatowld hit or get killed, respestly, in this
can remember per static load. It can be seen that a significantTVC (i.e., these accesses will not reach the data cache).

fraction of dependences cannot be predicted unless we record

two or more of the most recent dependences per static load.
Based on the insightained from the prdous two experi-

7.4 Potential Impact on Performance
In this section we attempt to get an estimate on the perfor-

ments we ealuate a cloaking mechanism that associates a com- mance impact the proposed mechanisms mag.h@he base

mon tag to all dependences thaténa common store or a load as
these are detected (we als@leated a scheme that records and

case used in theseperiments is an ILP processor with a tradi-
tional memory system with a 82data cache. In Figu& we

predicts the most recent store per load and found it to be infe- report the speedups obsetdv when our mechanisms (as

rior). As &plained in Sectiod.1, this scheme attempts to pro-
vide support for loads thaxperience dependences with more
than one store.d¥ all experiments, we assume a 256, fully asso-
ciative SF (no notable dérence vas obsered with a direct
mapped SF). In part (c) of Figurewe report the percentage of
the dynamic true dependences whaakie is correctly commu-

described in Section.1) is used or when the data cache size is
doubled to 64. We present te sets of measurement, one with
for miss lateng of 16 g/cles and one for miss latghof 24
cycles. It can be seen that the proposed mechanismestha
potential to impree performancewen when compared to the
system that has twice as much data cache.



16 cycle miss 24 cycle miss

100%
0 BENN 15%
YIN
75% [ 10%
CINIY
0,
(a) 50% WYY o%
0%
25% SILAEEIS SIS
O A A A A O A dddAddd
0% [ Mechanism Il 2xDCache
0
% § g §§§§ E Figure 9. Potential performance impact of our nhemisms.
100% Speedups arrelative to a base mame that has a 3data
B loads [ Stores cacthe “Mechanism” uses in addition all the tlee tebiniques
80% we popose 2xDCache is the base system with k64lata
60% cache The configustions ae described in detail in
Section7.1.

40%
20%
0%

ory systems [8,9]. The TVC brings a traditional memory
hierarcly closer to the idealizedfafient memory hierarghsince
mary of the \alues that are quickly killed are handled by a small
storage without\er getting gposed to the rest of the hieraych

099 124 126 129 130 132 134 147

(b) Methods for making cache management decisions based on

access characteristicsveaalso been suggestedisén, Rrrens,
Matthevs and Pleszkuhave used the miss betiar of loads to
selectvely bypass the data cache [20}vé&ts and Deidson [17],
and Johnson and Hwu [10] used the reuse\hehaf memory
addresses to malcache management decisions. Gonzalez, Alia-
gas and ¥lero use a dynamic scheme to determine the spatial
and temporal locality characteristics of memory addresses and
8 Rdated Work use it to manage twseparate caches [7]. Finallfomerene,
Puzak, Rechtschiain and Sparacio [16] propose the shado
Dependence prediction has been introduced in [15] where it cache as an impvement @er LRU replacement. The TVC
was used to impke the accuracof dependence speculation.  approach is orthogonal to all aforementioned cache management
However, to the best of our kmdedge, no préious work exists methods and diérs in that dependence status prediction is used

in attempting to dynamically establish direct links between to redirect accesses and not the characteristics of the actual data
dependent instructions for the purposes of streamlining the inter address or the miss befar of the instruction.

Figure 8. (a) Output dependence agtiction beakdown
given infinite pediction esouces. (b) Lower bound on the
percentage of all load and star instructions that will either

hit or will be killed in a 256-entryfully associative TVC. &V
assume counter based true and output dependence status
prediction tables, edcof 512-entries.

operation communication; nor has there beenipus work in Wilson, Olulotun and Rosenblum suggested the use of a
using dependence status prediction to manage the storage withinLine Buffer to cache recently accessed data in order to reduce the
a traditional memory hierargh processor—data cache bandwidth and read/port requirements

Numerous techniques that attempt to predict the data [21]. The Line Bufer is placed in front of the data cache, and all
addresses of loads and storesehbeen proposed and used to  accesses va to go through it (for this reason its size is limited
reduce the access latgnaf loads both in hardare and in soft- by timing considerations). Furthermore, in contrast to the TVC,
ware [e.g., 1,2,3,4,6,18]. Bm though no attempt is made to  all loads accesses cause the corresponding data to be cached into
establish eplicit links between dependent instructions, these the Line Bufer.
techniques mayas a side &ct, reduce the latepof the com- Finally, value speculation mayfettively reduce the lategc
munication of load-store dependences,vigted that the data  of memory communication independently of whether the load
address accessed by the load is correctly predicted and that thengs a true dependence or not [12]. The success of this approach

store hasxecuted (i.e., both the data address aaidevare wail- relies on the ability to track and predict the actuglues. In
able). Cloaking may streamline the communicativeneif the cloaking we do not directly predict the loaalue, rather we pre-
access pattern defies prediction. dict its producer

In this work we were motiated by the laye fraction of .
memory accesses that correspond to dependences with a recen® Summary and Conclusions
store and by the fraction of memorglwes that are killed soon
after thg are created. A number of studiesdalso lookd at
the memory referencing behar of programs for the purpose of
optimizing the memory hierarghMcNiven and Deidson [14]
analyzed memory referencing belma and suggested using
compiler hints to identify @lues that are killed in order to reduce

traffic between adjacentuels of the memory hierarghHuang ory operations can be predicted with high acouran a per

and Shen studied the minimal bandwidth requirements of current ;,sir,ction basis and based solely on the history ofigue data
processors, as a function of instruction issue rate, memory capac-gependences.

ity and memory bandwidth. Thielso formalized éitient mem-

We revisit memory communication and consider techniques
that use dynamically collected information to ke the drev-
backs associated with the traditionaynof expressing and per-
forming memory communication. In doing so, we make
following contrilutions:

(1) We shav that the data dependence status of most mem-



(2) We shav that the traditional implicit specification of
memory communication can be dynamically vented into a
explicit, albeit speculatie form.

(3) We propose speculaé memory cloaking and itxen-
sion speculate memory bypassing, which utilize th&pécit
specification of memory communication to éatkhe address cal-
culation, the disambiguation, the data cache access andwehene
possible, the load and store instructions thenesedf the com-
munication path.

(4) We propose the rénsient \lue Cache a dependence

status prediction managed storage structure that can reduce the

contention for data cache resources.
We demonstrated that ad@r percentage of the intepera-

tion memory communication can be streamlined via cloaking

and hidden via the TVC. Furthermore, we shd that a lage
percentage of the storalues that are quickly killed can also be
hidden by a TVC.

Several directions for further researckist. Although efec-
tive, the implementations we proposed are preliminacgord-
ingly, further irvestigation may help in: (i) impnang accurag
and performance of the proposed mechanisms, (li¢ldging
better implementations and (ii) determining the redaimpor-
tance of each of the mechanisms.ifprove the accuracof the

dependence prediction more sophisticated predictors may be

sought. The relate importance of the mechanismsxpected to

vary as the assumptions about the processor and the memory sysi8]

tem change. Furthervastigation is required to determine o
the proposed mechanisms perform as instruction wisdand

memory latencies increase or as other speculation methods are[l

incorporated.
A more eciting research direction n@ver is to study the
impact a communication centric approach mayehan memory

hierarcly design and management. The methods we propose

male a first step ward this direction. More general schemes
may be possible.df example we may attempt to collect and pre-
dict various kinds of communication attites and to associate

this information with the corresponding loads and stores. This

information may be useful in making memory hiergrofanage-
ment decisions. It may also be utilized tovelep nwel storage
structures that are optimizedward diferent communication

patterns. What kinds of information might be useful in this con-

text, whether thg can be collected and predicted dynamically or

statically whether it is best to associate them with dependences

rather than names, andvhaohey might be used, are open ques-

tions. As a starting point we may consider a number of communi-

cation characteristics (e.g. lifetime, inteference times, o
important a walue is in terms of performance) and studyho
these characteristicary from the point of vie of the depen-
dences and of the memory names.

Acknowledgements

We are thankful to Scott Breach, Andy ®J8abak Rlsafi,
Stefanos Kaxiras, Amir Roth,Vvinash Sodani and. N. Vijayku-
mar for helpful discussions and for thealvable comments. &/
also thank Mark Hill for comments on an earliersion of this
paper Scott Breach also prvawled the simulators used in this
study He, and TN. Vijaykumar hae patiently read and com-
mented on seeral versions of this te.

This work was supported in part by NSF Grant MIP-
9505853, by U.S. Army Intelligence Center araitFHuachuca
under Contract BBT63-95-C-0127 and ARRorder no. D346,

by a donation from Intel and an equipment donation from Sun
Microsystems. The vies and conclusions contained herein are

those of the authors and should not be interpreted as necessarily
representing the fi€ial policies or endorsements, either
expressed or implied, of the U. S. Army Intelligence Center and
Fort Huachuca, or the U.S. @&nment.

References

[1] T.M. Austin, D.N. Pnevmatikatos, and G. Sohi. Streamlining
data access with fast address calculatiorPrioc. ISCA-22 June
1995.

[2] T.M. Austin and GS. Sohi. Zero-cycle loads: Microarchitecture

support for reducing load latency.Pmoc. MICRO-28 Nov. 1995.

[3] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme
to reduce data access penaltyPoc. Supercomputing’9lpages
176-186, 1991.

R.J. Eickemeyer and ¥assiliadis. A load-instruction unit for pipe-
lined processors. IBBM journal on research and developmerag-
es 37(4):547-564, July 1993.

[5] M. Franklin and GS. Sohi. ARB: A Hardware Mechanism for Dy-
namic Memory DisambiguatiotEEE Transactions on Computers
45(5):552-571, May 1996.

[6] M. Golden and TMudge. Hardware support for hiding cache laten-
cy. CSE-TR-152-93, University of Michigan, Dept. Of Electrical En-
gineering and Computer Sciendeeb. 1991.

[7] A. Gonzalez, CAliagas, and MValero. A data cache with multiple

caching strategies tunned to different types of localityProc. of

the 1995 Conference on Supercomputihghe 1995.

A. S. Huang and P. Shen. The intrinsic bandwidth requirements of

ordinary programs. IRroc. ASPLOS-V]IOct. 1996.

[9] A.S.Huang and P. Shen. A limit study of local memory require-

ments using value profiles. Proc. MICRO-28 Dec. 1996.

T. L. Johnson and W.-MV. Hwu. Run-time adaptive cache hierar-

chy management via reference analysisPinc. ISCA-24 June

1997.

[11] G.Kane. MIPS R2000/R3000 RISC Architectur@rentice Hall,
1987.

[12] M. H. Lipasti, C.B. Wilkerson, and P. Shen. Value locality and
load value prediction. IRroc. ASPLOS-VJIOct. 1996.

[13] S.McFarling. Combining branch predictolSEC WRL Technical
Report TN-36June 1993.

[14] G.D. McNiven and ES. Davidson. Analysis of memory referenc-
ing behavior for design of local memories.Rroc. ISCA-15May
1988.

[15] A. Moshovos, SE. Breach, TN. Vijaykumar, and GS. Sohi. Dy-
namic speculation and synchronization of data dependences. In
Proc.ISCA-24 June 1997.

[16] J.Pomerene, TR. Puzak, RRechtschaffen, and Bparacio.
Prefetching Mechanism for a high-speed buffer stReferred to as
"Patent Pending 1984", iHigh Performance Computer Architec-
ture, H. S. Stone, 3rd Edition, Addison Wesley, 1993.

[17] J.A. Rivers and ES. Davidson. Reducing conflicts in direct-
mapped caches with a temporality-based desidPrdo. of the 1996
Conference on Parallel Processiniune 1995.

[18] Y. Sazeides, S/assiliadis, and E. Smith. The performance poten-
tial of data dependence speculation and collapsirferda. MICRO-
29, Dec. 1997.

[19] G.S. Sohi and MFranklin. High-bandwidth data memory systems
for superscalar processors.Rroc. ASPLOS-IVApr. 1991.

[20] G. Tyson, M.Farrens, MMatthews, and AR. Pleszkun. A modified
approach to data cache managementPioc. MICRO-28 Dec.
1996.

[21] K. M. Wilson, K.Olukotun, and MRosenblum. Increasing cache
port efficiency for dynamic superscalar microprocessorsrbt.
ISCA-23 May 1996.

2



