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Abstract

Data dependence speculation is used in instructivatle
parallel (ILP) processos to allow early recution of an
instruction befoe a Iagically preceding instruction on wHicit
may be data dependent. If the instruction is independent, data
dependence speculation succeeds; if not, it fails, and the two
instructions must be syhonized. The modern dynamically
scheduled pocessos that use data dependence speculation do so
blindly (i.e, every load instruction with uessolved dependences is
speculated). In this papemwe demonsate that as dynamic
instruction windows @t larger, significant performance benefits
can result when intellignt decisions about data dependence
speculation a& made We propose dynamic data dependence
speculation teeniques: (i) to pedict if the ®ecution of an
instruction is likly to esult in a data dependence
mis-speculation, and (ii) to pvide the syrfrronization needed to
avoid a mis-speculation. Experimentadsults galuating the
effectiveness of the @posed teltniques ae presented within the
context of a Multiscalar pocessar

1 Introduction

Speculatie execution is an intgral part of modern ILP proces-
sors, be the statically- or dynamically-scheduled designs. Specu-
lation may tak two forms: control speculation and data
speculation. Control speculation implies theeaition of an
instruction before the xecution of a preceding instruction on
which it is control dependent. Data speculation implies xeele
tion of an instruction before thexecution of a preceding instruc-
tion on which itmay beor is data dependent.

To date, much attention has been focused on control specula-

tion. This outlook is natural because control speculation is the first
step. Control speculation (or some egient basic block enlge-
ment technique such as if-a@rsion with predicatedkecution) is
required if we vant to consider instructions from more than one
basic block for possible issue.v@h the sizes of basic blocks, the
need to go beond a basic block became apparent some time ago,
and seeral techniques to permit control speculation wengelde
oped, both in the conteof statically- and dynamically-scheduled
machine models. Impwing the accurac of control speculation
(especially dynamic techniques) via the use of better branch pre-
diction has been the subject of intersiesearch recently; a pleth-

ora of papers on dynamic and static branch prediction techniques

have been published.

Data speculation has not regai as much attention as control
speculation. The tawforms of data speculation thatveareceved
some attention are dataluespeculation and datadependence
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speculation. In dataalue speculation an attempt is made to pre-
dict the data alue that an instruction is going to prod(it®,19].

In data dependence speculation, xplieit attempt is made to pre-
dict data alues. Instead, a prediction is made on whether the input
data \alue of an instruction has been generated and stored in the
corresponding named location (memory @iseer).

Most of the research on data dependence speculation has
focused on ensuring correcteeution while carrying out this form
of speculationf8,9,10,18] and on static dependence analysis
technique$1,2,5,6,21]. So dr, no attention has beenvgn to
dynamic techniques to impre the accurgcof data dependence
speculation. This is because in the small instruction wirgiaes
of modern dynamically scheduled proces$bgs11,14], the prob-
ability of a mis-speculation is small, and furthermore, the net per-
formance loss that is due to erroneous data dependence
speculation is small.

In this paperwe ague that as dynamically-scheduled ILP pro-
cessors are able to establish wider instruction wirsddhe net
performance loss due to erroneous speculation can become signif-
icant. Accordinglywe are concerned with dynamic techniques for
improving the accurac of data dependence speculation while
maintaining the performance benefits of aggwesspeculation.

We propose techniques that attempt: (i) to predict those instruc-
tions whose immediatexecution is going to violate a true data
dependence, and (ii) to delay theseution of those instructions
only as long as is necessary twid the mis-speculation. A pre-
liminary evaluation of the ideas presented in this papas ¥irst
reported if17].

The rest of this paper isganized as follavs: First, in section 2
we review data dependence speculation and discuasithaffects
ILP execution. Then in section 3, we discuss the components of a
method for accurate and aggreesimemory data dependence
speculation, while in section 4, we present an implementation
framawork for this method. In section 5, we pide experimental
data on the dynamic behiar of memory dependences and present
an e&aluation of an implementation of the method we propose
within the contgt of a Multiscalar process§8,4,7,20]. Finallyin
section 6 we list what, in our opinion, are the contiins of this
work and ofer concluding remarks. In the discussion that fedo
we are concerned with data dependence speculation; accordingly
we use the terms data dependence speculation, data speculation,
and speculation interchangeably

2 Data Dependence Speculation

Programs are written with an implied, total ord®s a program
executes, dataalues are produced and consumed by its instruc-
tions. These alues are comyed from the producer to the con-
sumer by binding thealue to a named storage location, namely
registers and memory

An ILP or other parallel machine, &k a suitable subset of the
instructions (an instruction windg of a program and cesrts the
total order within this subset into a partial ordehnis is done so
that instructions mayxecute in parallel and/or in arxexution
order that might be dérent from the total ordeThe shape of the
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Figure 1. Data dependence speculation examples. Arrows indicate dependences. Dependences through memory are marked with
diamonds. Dotted arrows indicate ambiguous dependences that are resolved to no dependence during execution.

partial order and the parallelism so obtained areilysiafluenced
by the dependences thais between the instructions in the total

in this ewironment, mis-speculations ar&teemely infrequent,
and the cost incurred on mis-speculation . IBoth phenomena

order Dependences may be unambiguous (i.e., an instruction con-are directly attribtable to the winde sizes that these processors

sumes aalue that is knen to be created by an instruction preced-
ing it in the total order) or ambiguous (i.e., an instruction
consumes aalue that may be produced by an instruction preced-
ing it in the total order). Duringxecution, an ambiguous depen-
dence gets resadd to either a true dependence, or to no
dependence.

To maintain program semantics, a producer/consumer instruc-

tion pair that is linkd via a true dependence has toxecated in
the order implied by the program. Wever, ary execution order is
permissible if the tw instructions are lirgd via an ambiguous
dependence that gets resalvto no dependence. This latter case

can establish (these are limited to @& tens of instructions in the
best case). As windo sizes grw larger, havever, we ague that
minimizing the net cost of mis-speculation becomes important.
Under these e conditions, the mis-speculations become more
frequent, and the cost of mis-speculations becomesaiatiigh.

To minimize the net cost of mis-speculation, while maintaining
the performance benefits of speculation, we may attempt: (i) to
minimize the amount of @rk that is lost on mis-speculation, (i) to
reduce the time required to redo therkthat is lost on mis-specu-
lation®, or (iii) to reduce the probability of mis-speculation, (or
other words, to reduce the absolute number of mis-speculations).

represents an opportunity for parallelism and hence for higher per-In this work we pursue the third alternati \\e elaborate on this in

formance. Unfortunatelythe mere classification of a dependence
as ambiguous implies the inability to determine whether a true
dependencexists without actually xecuting the program. It is for

this reason that ambiguous dependences may obscure some of the

parallelism that is\ailable. This problem is most acute in the case
where the production and consumption of data is through memory
Thus, in this papeme restrict our discussion to memory depen-
dences een though all the concepts we present could easily be
applied to the speculation ofgister dependences.

To expose the parallelism that is hindered by ambiguous depen-

the net section.

3 Components of a Solution

The ideal data dependence speculation mechanism not only
avoids mis-speculations completelut also allevs loads to xe-

cute as early as possible. That is, loads with no true dependences
(within the instruction winde) execute without delgywhereas
loads that hee true dependences are além to eecute only after

the store (or the stores) that produces the necessary dateehas e
cuted. Equialently, loads with true dependences are synchronized

dences, data dependence speculation may be used. In data depenith the store (or the stores) thdepend upon. It is implied that

dence speculation, a load is alkd to eecute before a store on
which it is ambiguously dependent. If no true dependence is vio-
lated in the resultingxecution, the speculation is successful. If,

however, a true dependence is violated, the speculation is errone-

ous (i.e., a mis-speculation). In the latter case, tfextsfof the
speculation must be undone. Consequerdlyme means are

required for detecting erroneous speculation and for ensuring cor-

rect behsior. Several mechanisms that pride this functionality
in either softvare and/or hardare, hae been
proposed7,8,9,10,1618].

Though data dependence speculation may ivgpperformance
when it is successful, it may as well lead to performangeade-
tion because a penalty is typically incurred on mis-speculation.
Consequentlyto cain the most out of data dependence speculation
we would like to use it as aggressly as possible whiledeping
the net cost of mis-speculation aw/las possible.

the ideal data dependence speculation mechanism has perfect
knowledge of all the releant data dependences.

An example of hav the ideal dependence speculation mecha-
nism afects eecution is shan in figurel. In part (b), we sho
how the code sequence of part (a) magaaite under ideal data
dependence speculation as compared to when speculation is used
blindly, part (c). The xample code sequence includes tatore
instructions,ST-1 and ST-2, that are follaved by tw load instruc-
tions, LD-1 and LD-2. Ambiguous dependencesig among these
four instructions as indicated by the diamond radr&rrevs. Dur-
ing execution, havever, only the dependence betwe8it! and
LD-1is resohed to a true dependence (as indicated by the continu-
ous arr@v). Under ideal dependence speculatio®? is executed
without delay wheread D-1 is forced to synchronize withT-1.

In contrast to what is ideally possible, in a real implementation,
the releant data dependences are often umkndr herefore, if we

The modern dynamically-scheduled processors that use dataare to mimic the ideal data dependence speculation mechanism,

dependence speculatifiti,12,14] do so blindly (i.e., a load is
speculated whenrer possible). No licit attempt is made to

we hae to attempt: (i) to predict whether the immediatecetion

reduce the net cost of mis-speculation. The reasons are simply thatl, One such technique is Dynamic Instruction R4Sk



of aload is lilely to violate a true data dependence, and if so, (ii) to
predict the store (or stores) the load depends upon, and, (iii) to

ever, since this scheme seems elaborate, it is only natural to

attempt to simplify it. One possible simplification is to sdec- ®

tive data dependence speculation, i.e., carry out only the first part @ Test

of the (ideal) 3-part operation. In this scheme the loads that are Condition Variabie @ Continue
likely to cause mis-speculation are not speculated. Instead, the " Load

wait until the data addresses of all preceding stores, thatrct @@  ® (c)

yet executed, are knvn to be diferent; explicit synchronization is - —

not performed. (W use the terrselective data dependence specu- Figure 2. Synchronization example

lation to signify that we mad a decision on whether a load should teration pe—

be speculated or not. Loads with dependences are not speculated &t (i=0;i<n;i++) 0 20 STafcso) STyicu0) 1 STy

all, whereas loads with no dependences caoee freelyln con- afi+c] = afi] + k 1 STy )? STaertn Jalcs0] 2 STagat] <)ot
trast, in ideal dependence speculation, we enakdecision on [ PN LD,ci0 |2 LD c+1 LD )
when is the right time to speculate a load.) Aamaple of hav ST NN LD"[“O] dotl o LDa[C*[’] o
selectve speculation may f&fct ececution is shan in part(d) of alost] aort] alort]
figurel. In this eample,LD-2 is speculated, wherea®-1 is not, (@) () © @
since the prediction correctly indicates thB#2 has no true depen-  Figure 3. Example code sequence that illustrates that multiple
dences whild.D-1 does. Havever, with this scheme, and due to the instances of the same static dependence can be active in
lack of eplicit synchronization, a load may be delayed more than the current instruction window. In parts (b), (c), and (d),
necessaryLD-1 waits for ST-2 also). In practice, and as we demon- the relevant store and load instructions from four
strate in theluation section, selevé data dependence specula- iterations of the loop of part (a) are shown.

tion can lead to inferior performance when compared to blind
speculation (paifc) of figurel) even when perfect prediction of
dependences is assumedekvthough other simplifications to the
3-part ideal operation may be possible, in this paper we restrict ou
attention to dependence speculation schemes that attempt to mimi
the ideal data dependence speculation systeend®\so because . ; : o X . .
our primary goal is to demonstrate the potential of dynamic depen-'n:tLuecr:'é): (ff?grmt?nt?ﬁect(\);dI(t)lgsnibﬁgamzfult?oglzgehgﬁzzgi:‘ EEZ
dence speculation and synchronization mechanisms, rather than t?oe?d and store instructions Ipn part (b), the load ig ready
perform a thoroughvaluation of a wriety of mechanisms. before the store. Hwever, before the loadx®cutes, it tests the
To mimic the ideal data dependence speculation system, wecondition \ariable; since the test of the conditicariable ils, the
need to implement all the 3 components of the ideal system adoad waits. After the storexecutes, it sets the conditioaniable
described before. That is, we must: (i) dynamically identify the and signals the aiting load, which subsequently continues its-e
store-load pairs that are dily to be data dependent (i.e., the cution as shen. No mis-speculation is obsed, and the sequen-
dependences that aredly to cause mis-speculation), (i) assign a tial order is preserd. In part (c), the order okecution is a store
synchronization mechanism to dynamic instances of these depenfollowed by a load. After the storezeeutes, it sets the condition
dences, and (iii) use this mechanism to synchronize the store an@ariable and records a signal for the load. Before the lozalites,

where we assume that some meatistéo dynamically associate
store-load instruction pairs with conditiomnables (we discuss
rthese means later in this section). Asvamadn part (a), an earlier
E”lis-speculation results in the association of a conditamable

with a subsequent dynamic instance of thierafing store-load

the load instructions. it tests the conditionariable; since the test of the conditicariv
Dynamically tracking all possible ambiguous store-load pairs is 8Ple succeeds, the load continuesecation as shen (the con-

not an option that we consider desirable, \@mepractical. Brtu- dition variable is reset at this point). One maypnder wly

nately our empirical obseations suggest that the folng phe- synchronization is praded een when thexecution order follars

nomena gists: the static store-load instruction pairs that cause the program order (i.e., store folled by load). This scenario rep-

most of the dynamic data mis-speculations are relatively few and resents the case where the dependence prediction correctly indi-

exhibit temporal locality (we present empirical vielence in cates that a dependenodsés hut fails to detect that the order of

section5). That is, at angiven time, diferent dynamic instances ~ €xecution has changed (mostdli in response toxéernal eents
of a fav static store-load pairs, either operating repeatedly on the Whose behéor is not easy or desirable to track and predict, such
same memory location (scalaariable) or operating on défrent as cache misses or resource conflicts). Synchronization is desirable
memory locations, account for the majority of the mis-specula- &€n in this case since, otherwise, the load will be delayed unnec-
tions. This obseation suggests that we may use past history to €ssarily
dynamically identify and track such store-load pairs, and cache Once condition ariables are praded, some means are required
this information in a storage structure of reasonable size. Thetg assign a conditioraviable to a dynamic instance of a store-load
remaining issue is by what means to synchronize the store-loadnstruction pair that has to be synchronized. If synchronization is
pair. to occur as planned, the mapping of conditiariables to dynamic

An apt method of pnading the required synchronization dependences has to be unique at given point of time. One
dynamically is to bild an association between the store-load @PProach is to use just the address of the memory location
instruction pair Suppose this (dynamic) association is a condition accessed by the store-load pair as a handle. This methadesro
variable on which only tvoperations are definedfait andsignal, an indirect means of identifying the store and load instructions that
which test and set the conditioariable respeately. These opera- are to be synchron_lzed. Unless the store Ic_)catlon is a_lccessed only
tions may be logically incorporated into the dynamic actions of the by the corresponding store-load palre assignment will not be
(dependent) load and store instructions to aghie necessary  Unique.
synchronization. Alternatively, we can use the dependence edge as a handle. The

The abwe concept is illustrated in thexample of figure2 dependence edge may be specified using the (full or part of)



instruction addresses (PCs) of the store-load pair in question.the proposed technique is better described when the support struc-
Unfortunately as eemplified by the code sequence of figBre  tures are considered in thiashion. Havever, it is possible and
part(b), using this information may not be ficient to capture the  probably desirable in an actual implementation, to combine the
actual behaor of the dependence duringcezution; the pair prediction and the synchronization structures and/or t@rate
(PCsy, PG p) matches agjnst all four edges stm even though them with other components of the procesBor example, a sim-
the dotted ones should not be synchronized. A static dependencéle &tension is to preide the synchronization functionality in the
between a gen store-load pair may correspond to multiple data cache or some other similar storage structure, so that both the
dynamic dependences, which need to be gddimultaneously ~ data and the necessary synchronization areiged at the same
point. Later in this papewe describe the implementation of a sin-

le structure that pvides both dependence prediction and syn-
hronization and discuss its aaages and its limitations.
However, since our goal is to demonstrate the utility of the pro-
gosed technique, we do not consider furthergiation or ag

ther implementations.

To distinguish between the fiifent dynamic instances of the
same static dependence edge, a tag (preferably unique) could b
assigned to each instance. This tag, in addition to the instruction
addresses of the store-load paém be used to specify the dynamic
dependence edge. In order to be of practical use, the tag must b
derived from information aailable during gecution of the corre-
sponding instructions. A possible source of the tag for the depen4.1 MDPT
dent store and load instructions is the data address of the memory
location to be accessed, aswhdn figure3 part(c). An alternate
way of generating instance tags iswhan figure3 part(d), where
dynamic store and load instruction instances are numbered base
on their PC& The diference in the instance numbers of the
instructions which are dependent, referred to asdépendence
distance, may be used to tag dynamic instances of the static depen
dence edg%(as may be seen for thgaenple code, a dependence
edge between $Bnd LD, qistanceiS t@gged - in addition to the
instruction PCs - with thealue i+distance). Though both tagging
schemes stre to proide unique tags, each maglifshort of this
goal under some circumstances (frample, the dependence dis-
tance may change in aaw that we &il to predict, or the address
accessed may remain constant across all instances of the sal
dependence).

An entry of the MDPT identifies a static dependence and pro-
vides a prediction as to whether or not subsequent dynamic
Hpstances of the corresponding static store-load pair will result in a
mis-speculation (i.e., should the store and load instructions be syn-
chronized). In particulareach entry of the MDPT consists of the
following fields: (1) walid flag (V), (2) load instruction address
(LDPC), (3) store instruction address (STPC), (4) dependence dis-
tance (DIST), and (5) optional prediction (notwhdn ary of the
working examples). The alid flag indicates if the entry is cur-
rently in use. The load and store instruction address fields hold the
program counter alues of a pair of load and store instructions.
This combination of fields uniquely identifies ttaticinstruction

air for which it has been allocated. The dependence distance

cords the dférence of the instance numbers of the store and load
instructions whose mis-speculation caused the allocation of the

Since, our primary goal in this papés to introduce andvalu- entry (if we were to use the data address to tag dependence
ate nwel mechanisms (and not to carry out a thorough analysis ofinstances this field euld not hae been necessary). The purpose
a \ariety of options), we restrict our attention to the second schemeof the prediction field is to capture, in a reasonaldg, the past

where the dependence distance is used to tag dependences. behaior of mis-speculations for the instruction pair in order to aid
) in avoiding future mis-speculations or unnecessary delaysyMan
4 Implementation Aspects options are possible for the prediction field (forample an

up-dovn counter or dependence history based schemes); a discus-
sion is postponed until later in this section. The prediction field is
optional since, if omitted, we cannalys predict that synchroniza-
tion should tak place.

As we discussed in the pieus section, in order to impre the
accurayg of data dependence speculation, we attempt: (i) to predict
dynamically based on the history of mis-speculations, whether a
store-load pair is ligly to be mis-speculated and if so, (ii) to syn-
chronize the tw instructions. In this section, we describe an 4.2 MDST
implementation framgork for this technique. ¥ partition the . L
support structures into tw interdependent tables: @emory An entry of the MDST supplles. a condltlom}n{ible and the .
dependence prediction table (MDPT) and amemory dependence _mechamsm necessary to synchronize a dynamic instance of a static
synchronization table (MDST). The MDPT is used to identjfy instruction pair (as pred_lcted by the MDP.T)' Ir‘ partlgumch
through prediction, those instruction pairs that ought to be syn-entry of the M.DST consists of the folking fields: (1) \al!d flag .
chronized. The MDST prdes a dynamic pool of conditiorari- (V), (2) load instruction address (LDPC), (3) store instruction
ables and the mechanisms necessary to associate them wit ddress (STPC), (4) load identifier (LDID), (5) store identifier

dynamic store-load instruction pairs to be synchronized. In the dis-( TID), (6) instance tag (IN®WNCE), and (7) fullempty flag

cussion that folls, we first describe the support structures and (F/E)- The @lid flag indicates whether the entry is, or is not, in
then proceed toxplain their operation by means of amenple. use. The load and store instruction address fielde shevsame

o purpose as in the MDPThe load and store identifiersvieato
We present the support structures as separate, distinct compouniquely identify within the current instruction windo a
nents of the processdie do so, since we belie that the crux of  dynamic instance of a load or a store instruction reségtThe
exact encoding of this field depends on the implementation of the
2. Atthis point we are not concerned with mechanisms that implement this func- 000 QUI_'Qf'Qrder) e<ecut|on_ engme_ (fOI’ Jeample, na supgrsca-
tionality. However, note that only the difrence between the instance numbers is  lar machine that uses resation stations we can use the ird#
relevant and not the absolutalues. As weglain in the galuation section, in the reserstion station that holds the instruction as its LDID or
Multiscalar we can approximate the instance numbers by using statically assigned STID) The instance tag field is used to distinguish betwetardif

stage identifiers. In a superscalavisonment we may use a small assouti d . f th icd d d in th
pool of counters. Load and store instructions can then be numbered based on theilent ynamic instances of the same static dependence edge ('n the

PC as the are issued.d support imalidations due to mis-speculation, these working example that follvs we shar how to derive the \alue for
counters will hge to be treated asgisters. Alternatiely, a load (store) that has this field). The full/lempty flag prades the function of a condition
to synchronize, may perform a backw (forward) scan through the instruction variable.

window attempting to locate the appropriate store (load) instruction.

3. To aid understanding, this scheme can be@itas a dynamic, run-time imple-
mentation of the linear recurrence dependence analysis done by compilers.
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Figure 4. Synchronization of memory dependences.

4.3 Working Example ber of LD3, and the LDID assigned to LD3 by the OoO core
. ) . (action 3, part (c)). At the same time, the full/lempty flag of the

e e o e PP an e nay llcated ety is et o empnal; the NDST reuns

sion that folls we are using %/he(wking ame (')f figure 4. 67 the load identifier to the load/store pool indicating that the load

the working example, assume thaxecution taks place on a pro- mustvai (actpn 4 part (¢))- o

cessor which: (i) issues multiple memory accessesyste from a ~ When ST2 is ready to access the memory hieyaithinstruc-

pool of load and store instructions and (ii) yides a mechanism  tion addre;s and its instance number (which is 2).are sent to the

to detect and correct mis-speculations due to memory dependencMDPT (action 5, part (d)). (&/do not she the STID since, as we

speculation. Br the sak of clarity we assume that once an entry is  later eplain, it is only needed to support control speculation.) The

allocated in the MDPT it will avays cause a synchronization to be ~ instruction address of ST2 is matchediagt the contents of all
predicted. store instruction address fields of the MDPT (@hadn grey).

) . . . Since a match is found, the MDPT inspects the contents of the
C_:on5|der _the memory operations for three Iterations of_the IOOp’entry and initiates a synchronization in the MD3$ a result, the
which constitute the aet pool of load and store instructions as  \;ppT adds the contents of the DIST field to the instance number
shawn in %art (a) of the f|gu1e. Fprth;ﬂs_:lme tz?ghlltpargﬁt of the store (that is, 2 + 1) to determine the instance number of the
gomts _to t € same mferr;]or)l/ ogatlo(r; or afueschi _ta S. eh load that should be synchronized. It then uses this result, in combi-
yna[;mc Ollnstargicef] of the doa a(? store |nstlru§t|ons damnsd N hQation with the load instruction address and the store instruction
numbered, and the true dependences are indicated as dashegyress, 1o search through the MDST (action 6, part (d)), where it
arrovs connecting the corresponding instructions in part (a). Thefinds the allocated synchronization entrg@onsequently the
g?r%uﬁgcgedm “Egts that ;‘(;aqs to theb sznchr(r)]nléatuf)nh Off. the 1, 1/empty field is set to full, and the MDST returns the load identi-
-LD3 dependence is shin in parts (b) through (d) of the fig- e\ 45 the |oadistore pool to signal thaiting load (action 7, part
ure. Initially, both tables are empujs soon as a mls-speculatlon (d)). At this point, LD3 is free to continugexution. Furthermore,
Sq-{il_tlr_]gzaggrr):::eim;‘) tlﬁecht)Ziitegﬁo? tl\k/lleDPs-lt—oregtri%sltsru?:ltli(c))(rflztegr’%nce the synchronization is complete, the entry in the MDST is
X ) ot needed and may be freed (action 8, part (d)).
recorded (action 1, part (b)). The DIST field of thevlyeallocated y ( ) part (d)) o
entry is set to 1, which is the fiifence of the instance numbers of I ST2 accesses the memory hiergrtfefore LD3, it is unnec-
ST1 and LD2 (1 and 2 respagly). As a result of the mis-specu-  €ssary for LD3 to be delayed. Accordingtile synchronization

lation, instructions follwing the load are squashed and must be Scheme allws LD3 to issue andxecute without aydelays. Con-
re-issued. W do not shw the re-gecution of LD2. sider the sequence of refet eents shan in parts (e) and (f) of

. . . figure 4. When ST2 is ready to access the memory higtaitch

As execution continues, assume that _the ?ddfess of LD3 is Cal'passes through the MDPT as before with a match found (action 2,
culated before the address of ST2. At this point, LD3 may specula-pa it (e)). Since a match is found, the MDPT inspects the contents
tively access the memory hierayciBefore LD3 is allwed to do 46 entry and initiates a synchronization in the MDSGwever,
S0, its instruction address, its instance number (which is 3), and its;, matching entry is found there since LD3 has yet to be’ Seer.
assigned load |dent|f|er. (theaxt \alue of LDID is |mm§lter|al) are Consequentlya nev entry is allocated, and its fulllempty flag is
sent to the MDPT (action 2, part (c)). The instruction address of 5oy 1o fyy|| (action 3, part (e)). Latawhen LD3 is ready to access
LD3 is matched agjnst the contents of all load instruction address memory hierar(;lh it passes through the MDPT and determines
fields of the MDPT (shen in grgy). Since a match is found, the . 5 synchronization isasranted as before (action 4, part (f)).
MDPT inspects the entry predictor to determine if a synchroniza- v \ppT searches the MDSWhere it nev finds an allocated
tion |shv\ar'\r/|a[r)1;)e_|(_:i. ,lﬁl\ssumlng the pred_lctor: m'(\:i/llgast_e}s a _syncri:roplzz- entry with the full/lempty flag set to full (action 5, part (f)). At this
tion, the allocates an entry In the using the load ,yint the MDST returns the load identifier to the load/store pool
instruction address, the store instruction address, the instance nu 5o the load may continuexecution immediately (action 6, part



(). It also frees the MDST entry (action 7, part (f)).
4.4 |ssues

We naw discuss a f& issues which relate to the implementation
we have described.

4.4.1 Intelligent Prediction

Upon matching a MDPT entrg determination must be made as
to whether the instruction pair in questioamants synchroniza-
tion. The simplest approach is to assume thatnaatching entry
ought to be synchronized (i.e., the predictor field is optional).

(ii) using a suitable encoding of the STID and LDID tags that
would allowv for the irvalidation of a range of instructionsoi
example, we can use as myahits as the maximum number of
simultaneouslyunresoled control transfer instructions alled.
This encoding alls us to imalidate at a basic block granularity
with an associate lookup.

4.4.4 Multiple Table Entry Matches

Although not illustrated in thexamples, it is possible for a load
or a store to match multiple entries of the MDPT and/or of the
MDST. This case represents multiple memory dependences

However, this approach may lead to unnecessary delays in caseé,nvo_lving the same static load and/or store instructions {ame
where the store-load instruction pairs are mis-speculated onlyple in the codef (cond) store; M else store, M; load M, there are ta
some of the time. Instead, a more intelligent approach may bedependencefstore,, load) and(store,, load)). There are seral ways

effective. Ary of the plethora of knen methods (counterspting
schemes, adapt predictors, etc.) used to pide the intelligent

prediction of control dependences may be applied, with appropri-

ate modifications, to the prediction of data dependencemréiRe

less of the actual choice of mechanism, the prediction method

ought to &hibit the quality that it strengthens the prediction when
speculation succeeds and weiak the prediction when speculation
fails.

4.4.2 Incomplete Synchronization

So far, it has been assumed thatydpad, that wvaits on the
full/empty flag of an entry in the MDS&entually sees a match-
ing store that signals to complete the synchronization. Since a
MDPT entry only preides a prediction, thisxpectation may not
always be fulfilled. If this situation arises, theotwain consider-
ations are: (i) to\wid deadlock and (ii) to free the MDST entry
allocated for a synchronization that willuee occur The deadlock

problem is easily sobd, as it is reasonable to assume that a load is

always free toxecute once all prior stores are noto hae exe-

cuted. At that point, the load identifier has to be send to the MDST

where it is used to free the entry thasaallocated for the particu-

lar load.The information recorded in the MDST entry can then be
used to locate update the corresponding prediction entry in the

MDPT

Under similar circumstances to those described/@ba store
may allocate an MDST entry for which no matching loadver e
seen. Since storesvez delay theirxecution, there is no deadlock
problem in this case. hver, it is still necessary toventually
free the MDST entryUnfortunately we cannot de-allocate this
entry when the store retires (recall that in section 3 xpéaed
that we vould like to synchronize a store-load pair when the pre-
diction indicates that we shouldven if the &ecution order does
not violate the dependence). A possible solution is to free entrie
whose full/lempty flag is set to full wherex an entry is needed

and no table entries are not in use. Another possible solution is t

allocate entries using random or UReplacement, in which case
entries are freed as needed.

4.4.3 Mis-speculations

In the erent of control or data mis-speculation, it is desirable,
although not necessany irvalidate ag MDST entries that were

of addressing this issue.

A straightforward approach is to ensure, by means of the
replacement and allocation policies, that a uniqgue mapping with
respect to both loads and stores is maintained in the taldes. F
example, in the MDPT we may alloa nev entry to be created
only after ay pre-&isting entries for the same static load or store
are de-allocated.oTmaintain a uniqgue mapping in the MDSie
may force a load or a store to stall and retry if there is another
entry for either of the instructions thatieato synchronize (alter-
natively we may de-allocate the preisting entry). This approach
is acceptable when: (i) multiple dependences per static load and
store are relately uncommon or (ii) when the dynamic depen-

Ndence pattern consists of long series during which only one of the

mary dependences is aei for the most part. In both cases, the
adaptve nature of the prediction mechanism igljkto discard all

but the most frequent mis-speculations. If multiple dependences
are relatrely common, a more aggressiapproach thatvaluates
multiple entries simultaneously ixmedient. One approach is to
support multiple stores per load or viarsa. This can be achi

by modifying the entries MDPT and MDST to include multiple
fields for store PCs per load (or the othayvaround).

If multiple dependences are to be fully supported within the
implementation frameork we presented in this section, the fol-
lowing considerations must be addressed: (i) when multiple depen-
dences are predicted from the MORYow to allocate multiple
entries, one per predicted dependence, in the MBi§Twhen
synchronization happens on an MDST entrgw to determine
whether the particular load has other entries it hasaibfar, and
(iii) when a store synchronizes simultaneously with ynaads in
the MDST how to go about sending all the LDIDs. &ig seeral
options &ist. For the purposes of this pap&re address all three
considerations by combining thedvables into a single structure

Swhere each prediction entry carries with it a predefined number of

synchronization entries (note that in thigamization, the PCs of
%he instructions need not be recorded in each synchronization
entry). W\ net explain hav this oganization addresses the afore-
mentioned issues. Allocating multiple synchronization entries,
each for a dferent prediction entryis straightforvard since the
prediction and synchronization entries arevnghysically adja-
cent. D determine whether a load has other synchronization
entries when a synchronization occurs, we do a second associati

allocated to the instructions that are SquaShed. The LDID and tthokup using the load’' LDID. If no other entries are found the

STID fields can be used to identify the entries thaeha be inal-
idated.

Typically, mary instructions continuous in the program order
are irvalidated when a mis-speculation occurs. Thus, we may ha
to invalidate multiple MDST entries on mis-speculatiortB-
nately the MDST has to be notified only of those instructions that
have entries allocated to them, which are typically going to we fe
To support multiple ivalidations per ycle, seeral options ist
such as (i) praiding multiple ports to the STID and LDID tags, or

load is alleved to continuesecution. Finallywhen multiple loads
are simultaneously synchronized, we allonly up to a predefined
number of them to do so atyagiven g/cle (selecting the loads to
wake up among those thatyeabeen signalled is no thfent than
selecting the instructions taecute from those that are ready in an
000 processor).

445 Centralized Versus Distributed Structures
So far it has been assumed that the MDPT and the MDST are



centralized structures. Mever, as greater lels of instruc- program is partitioned into portions called tasks. These tasks may
tion-level parallelism arexloited, greater numbers of concurrent be control and data dependent. A Multiscalar processor sequences
memory accesses must be sustained. Under such conditions, thiarough the CFG speculeglly, a task at a time, without pausing to
support structures are éky to play a ky role in ecution. As a inspect ag of the instructions within a task. A task is assigned to
consequence, it is important to assure that neither structureone of a collection of processing units faeeution by passing the
becomes a bottleneck. The most straightiodway to meet this initial program counter of the task. Multiple taskeeute in paral-
demand is to multi-port the tables. While such an approach pro-lel on the processing units, resulting in an agae execution rate
vides the needed bandwidth, its access Igtemd area gme of multiple instructions pernycle. In this oganization, the instruc-
quickly as the number of ports is increased. It is also possible totion windov is bounded by the first instruction in the earliest-e
divide the table entries into banks imdd by the load and store  cuting task and the last instruction in the latestcating task.
instruction addresses. This solution i€likto be inadequate since  More details of the Multiscalar model can be foun{Bid,7,8,20].
temporal and spatial locality in instruction reference patterns may

A In a Multiscalar processpdependences may be characterized
cause mayconflicting bank accesses.

as intra-task (within a task) orinter-task (between indiidual

An alternatve approach is to actually distute the structures,  tasks). The results herein are all simulatgdcations in which
with identical copies of the MDPT and the MDST yided at each intra-task memory data dependences are not speculated, b
source of memory accesses (assuming multiple load/store queuesntertask memory data dependences are freely speculated. That is,
multiple load/store reseation stations, etc.). Each source of mem- mis-speculations may only occur for store-load instruction pairs
ory accesses need only use its localyoomipthe two tables most of whose dependence edge crosses dynamic task boundaries. Further-
the time. As soon as a mis-speculation is detected, dbisi$ more, the results refleckecution with no compiler supported dis-
broadcast to all copies of the MDPJausing an entry to be allo- ambiguation of these memory dependences. This detail implies
cated in each cgpas needed. A load instruction uses both tables in that een in cases where an unambiguous memory dependence
the same manner as described earfestore instruction, on the  exists, it is treated no ddrently than an ambiguous memory
other hand, belvas somehat diferently In the @ent a match for dependence duringcecution. At first glance, the reader may be
a store is found in a local MDP@ll identifying information for tempted to conclude that the results of this section areergt v
the entry is broadcast to all copies of the MDEach cop of the useful since mandependences could be classified as unambigu-
MDST searches its entries to findyaallocated synchronization  ous, @en with a rudimentary compileédowever, this conclusion is
entry The outcomes with respect to whether a match is or is notnot necessarily correct, and we elaborate on this ne

fo_ur_1d are similar to those described earlisraddition, ag pre- _ The goal of ap 000 eecution processpbe it superscalar or
diction upda_te to an entry of a local MDPT must be_broadca_st N Multiscalar is to eecute a sequential program in parallel. In doing
order to maintain a similar vieamong all of the copies of this s0, ary processor of this kind, dynamically aants the sequential
table. program order into a parallekecution orderln this erironment,
: : the only condition that prvents the OoOxecution of tvo instruc-

5 Experimental Evaluation tions is the ristence of a dependence that the Oo@cation

In this section we presenkmerimental gidence in support of  engine can detect withoukecuting the instructions. This implies
our obserations on the dynamic bekhar of memory depen-  that een if the compiler knas that a particular memory depen-
dences, and wevaluate the utility of the mechanism we proposed dence gists, nothing preents the dynamic speculation of the cor-
in the preious section. & do so, we require a processing model responding load instruction. Consequentlio prevent the
where dynamic data dependence speculation igilhased and speculation of a dependence, the compiler has to identify by some
where the dynamic windosize is relatiely lage. One processing ~ means (for gample through ISAxensions) that a load should not
model that satisfies both requirements is the Multiscalar processbe speculated immediately and to enforce synchronization
ing model[7, 20]. Accordingly we use &rious configurations of  between unambiguously-dependent instructions (perhaps by using
Multiscalar processors for most of theperiments we perform. signal and it operations on compiler generated synchronization
However, for some of ourperiments we use an unrealistic OoO variables or via full/empty bits). This is not avial task and futh-
execution model. W do so in order to demonstrate that our obser- ermore, a program in which synchronization has been inserted is
vations on the dynamic beliar of memory dependences are not not a sequential programyamore.
specific to the Multiscalar processing model. 5.1 Methodology

The unrealistic OoOxecution model we use corresponds to a
processor that is capable of establishing a perfect, continuous win
dow of a given size. Under this model and for a windsize ofn,

a load is alvays mis-speculated if a preceding store, on which it is
data dependent, appears within less tharstructions apart in the
sequential xecution orderThis model represents theokst case
scenario with respect to the number of mis-speculations that can b
obsenred at run-time since it assumes thatrg dependence that is
visible from within the gien instruction winde is mis-specu-
lated. W use this model not only to sthdhat our obsemtions
about the dynamic behiar of memory dependences holdea

_ The results we presentyebeen collected on a simulator that

faithfully represents a Multiscalar processdrhe simulator

accepts annotated big endian MIPS instruction set binaries (with-

out architected delay slots ofyakind) produced by the Multisca-

lar compiler a modified ersion of GNU GCC 2.5.8 compiler (the
PECIint95 benchmarks were compiled with theest Multisca-

ar compiler which \as hilt on top of GCC 2.7.2). In order to pro-

vide results which reflect reality with as much accuras

possible, the simulator performs all of the operations of a Multi-

scalar processor andexutes all of the program code&gcept sys-

under thesexéreme conditions, Ut also, to praide some insight €M calls, on aycle-by-grcle basis. (System calls are handled by

on hav the number of possible mis-speculations and dependen(:e§r""|c’ping to the OS of the simulation host.)
varies as a function of the dynamic wimdsize. We performed the Wk of our eperimentation with programs

To demonstrate the utility of the proposed mechanisms, we Sim_?aken from the SPECint92 benchmark suite (with inputs indicated

ulate \arious configurations of a Multiscalar processors. A Multi- 1" Parenthesesompress (in), espresso (ti.in), gec (integrate.i),sc
scalar processor relies on a combination of harévand softare (loadal), anddisp (7 queens). Hoever, to demonstrate the utility
to extract parallelism from ordinary (sequential) programs. In this of the proposed data dependence speculation mechanism, we also

model of eecution, the control flo graph (CFG) of a sequential report performance results (for one Multiscalar configuration) for



the SPECIint95 and SPECfp95 suitewdeer, in order to kep the

simulation time of the SPEC95 programs reasonable, we used
either the train or the test input data sets (which sometimes are in

the order of a fe billion instructions). V& used the train data set
for the folloving programs:099.gq 129.compess 132.ijpey,
134.perl (jumble), 147 .vorte, 101.tomcaty110.apply 141.apsi
145.fpppp, and 146.wave5 For 124.m88ksim 126.gc¢ 130.lj,
102.swim 103.su2car 104.hydo2d, 107.mgrid,and 125.turb3d,

we used the test data set. All programscept 101.tomcatv
125.turb3d, and 146ave5, were ran to completion for the input
used. @blel reports the dynamic, useful (i.e., committed),
instruction counts for the corresponding Multiscalaecition.
Only one ‘ersion of a Multiscalar binary is created per benchmark;
the same Multiscalar binary is used for all the Multiscalar configu-
rations in thesexperiments. The Multiscalar binaries are also
used by the unrealistic OoQkexution modelhowever in this
case, the Multiscalar specific annotations are ignored.

SPECint92 SPECIint95 SPECfp95
compess 73M | 099.go 595 M | 101.tomcatv 28G
espesso 596 M | 124.m88ksim | 496 M | 102.swim 776 M
gce 73M | 126.gcc 1.6 G | 103.su2cor 14G
sc 440 M | 129.compess 39 M | 104.hydo2d 12G
xlisp 247.M | 130.li 1.08 G | 107.mgrid 59G

132.ijpgy 1.58 G | 110.applu 675 M
134.perl 2.37G | 125.turb3d 286G
147 .vorte 3.04 G | 141.apsi 29G
145.fpppp 511 M
146.wave5 27G

Table 1.Dynamic instruction count per bemmark (committed
instructions).

5.2 Configuration

In this section we ge the details of the Multiscalar processor
configurations we used in ouxgerimentation. W simulate Multi-
scalar processor configurations of 4 and 8 processing units (o
stages) with a global sequencer to orchestrate task assignment. T
sequencer maintains a 1024 entry &veet associate cache of
task descriptors. The control figpredictor of the sequencer uses
the path based scheme describe[d8}). The control flav predic-
tor also includes a 64 entry return address stack.

The pipeline structure of a processing unit is a traditional 5
stage pipeline (IF/ID/EX/IMEM/WB) which is configured with
2-way, out-of-order issue characteristics. (Thus the paakugion
rate of a 4-unit configuration is 8 instructions pgcle). The
instructions are »@cuted by a collection of pipelined functional
units (2 simple intger FU, 1 compbeinteger FU, 1 floating point

FU, 1 branch FU, and 1 memory FU) according to the class of the

particular instruction and with the latencies indicated in tabke
unidirectional, point-to-point ring connects the processing units to
provide a communication path, with a s width and 1 ycle
lateny between adjacent processing units. All memory requests
are handled by a single 4evd, split transaction memoryu$.
Each memory access requires a\li€leaccess lategdor the first

4 words and 1yxle for each additional 4avds, plus apbus con-
tention.

Each processing unit is configured with 32 kilobytes ofa3~w
set associate instruction cache in 64 byte blocks. (An instruction
cache access returns 4nds in a hit time of 1ycle, with an addi-
tional penalty of 10+3yxles, plus ay bus contention, on a miss.)

A crossbar interconnects the processing units to twice ag man

interleaved data banks. Each data bank is configured as 8 kilobytes

r

Scalar Cycles | Scalar Cycles | Floating-Point Cycles
Add/Sub 1 | Stoe 1 | Add/Sub SP/DP 2/2
Shift/Layic 1 | Load 1 | Multiply SP/DP 4/5
Multiply 4 | Branch 1 | Divide SP/DP 12/18
Divide 12

Table 2.Functional Unit Latencies (“SP/DP” stands for “Sin-
gle/Double pecision”).

of direct mapped data cache in 64 byte blocks with a 32 entry
address resolutionuffer, for a total of 64 kilobytes and 128 kilo-
bytes of ban&d data storage as well as 256 and 512 address reso-
lution entries for 4-stage and 8-stage Multiscalar processors
respectrely. (A data bank access returns ard/in a hit time of 2
cycles, with an additional penalty of 10+8ctes, plus ay bus
contention, on a miss.) Both loads and stores are non-blocking.

5.3 Dynamic behaior of memory dependences

As we noted in section 3, the number of mis-speculations
increases with the wingdosize. Furthermore, theast majority of
the mis-speculations obsen/dynamically can be attrited to rel-
atively few static dependences (store-load pairs) thhtbé tem-
poral locality In this section, we presentgerimental gidence in
support of these obsertions. D do so, we simulatdata depen-
dencecaches,or DDCs, of various sizes. A DDC of sizg records
the data dependences that causedhthest recent mis-specula-
tions. W& count tvo events, hits and misses. These we define as
follows: whenger a mis-speculation occurs we search through the
DDC using the instruction PCs of thefafding store and load
instructions. If a matching entry is found, we count a hit, other-
wise, we count a miss. Awdata dependence cache miss rate
implies that the relent data dependenceghéit temporal local-
ity.

In table 3, we report the number of mis-speculations obderv
under the unrealistic OoO model foarious windav sizes (WS
column). As it can be seen, ming from a windev of 8 instruc-
tions to a windw of 32 instructions results in a dramatic increase
in the number of mis-speculations. It is implied that most of the
dynamic dependences are spread acrosgrae instructions
Which may include manunrelated stores). This obsation pro-
vides a hint to wi selectve data dependence speculation (i.e., not
speculating the loads with dependences within the current win-
dow) may cause performancegiadation when compared to blind
speculation; when a dependence is spread acrosmkeinrelated
stores, it is often the case that itdakmore time to ait until all
the unrelated stores are resmlvthan to incur a mis-speculation
and re-gecute the load and the instructions that fellb

In table 4, we she the number of static dependences that are
responsible for 99.9% of all dynamic mis-speculations. Note that
as the windw size increases more static dependencesxamsed.
These nely exposed dependences may bemore frequent than
the dependences obsedv when the winde is smaller This
explains, for @ample, wly in compessfewer dependences are
responsible for the ast majority of mis-speculations when the
window increases from 8 to 16 or 8 to 32. Finally table 5 we
shav the miss-rate of DDCs of 32, 128, and 512 entries. As it can
be seen,ven when all the dynamic dependences (that are visible
from within the gven instruction windea) are mis-speculated,
only a fav static dependences cause most of the mis-speculations.
Furthermore, DDCs of moderate size capture most of these depen-
dences.

For the Multiscalar model we use dveonfigurations, one with
four stages and one with eight stages. The number of mis-specula-
tions obsergd for these configurations are aimoin table 6. As it



WS | compress espresso gce sc xlisp Cs compress espresso gce sc xlisp
8 33 47.45K | 276.08 K 2.99M 2.03M 1 50.970 16.68 85.20 73.74 68.29
16 | 857.05K 1.01M | 602.73K 6.09 M 535M 2 31.470 11.18 75.59 28.16 39.82
32 2.46 M 141 M 157M | 11.38M 8.67 M 4 11.240 9.74 62.96 16.22 18.77
64 3.74M 7.25M 251M | 1373M| 13.85M 8 0.660 4.28 45.84 14.45 4.40
128 431M 10.87M 333M | 2691M| 19.79M 16 0.020 1.10 31.93 6.46 1.59
256 5.42 M 14.15M 426M | 3218M| 23.93M 32 0.002 0.36 18.05 2.96 0.31
512 6.05 M 17.19M 502M | 3559M | 26.66M 64 0.002 0.10 8.92 0.88 0.01
Table 3. Unrealistic OoO model: Number of dynamic memory 128 0.002 0.05 4.55 0.17 | .0004
dependences observed as a function of window size (WS). 256 0.002 0.03 3.16 0.02 .0004
- 512 0.002 0.02 2.93 0.01 .0004
WS | compress | espresso gce sC xlisp
5 5 = | 25 | 26 n 1024 0.002 0.02 2.40 0.01 .0004
16 2 104 | 704 | 127 73 Table 7. 8-stage Multiscalar: DDC missates (pecentae) as a
= : 201 | 1753 | 250 | 105 function of the DDC size (“CS” stands for DDC size).
64 9 429 | 2967 | 380 | 167 configuration only (i.e., for thisxperiment we use the configura-
tion with the higher number of mis-speculations). As it can be
128 18 848 | 4446 | 589 | 266 ; L :
seen, een a DDC of 64 entriesxhibits a miss rate of less than
256 25 1500 | 6083 | 722 | 333 10% for all benchmarks. Furthermore, a DDC with 1024 entries
512 26 2021 | 8001 | 851 | 367 captures virtually all static dependences for all benchmadepé

— - - gcc. For the Multiscalar model, we do not shoneasurements on
Table 4. Unrealistic 00O model: number of static dependences  the number of static dependences that cause most of the mis-spec-

responsible for 99.9% of all mis-speculations observed jations. That these dependences aneiseimplied by the results

("WS” stands for “window size”). of the nat section.
WS | CS | compress | espresso | gec < xlisp 5.4 Comparison of dependence speculation palicies

8| 32| 1g1818| 0.1317| 22430 08489 | 0.0275 In this section we: (i) demonstrate that selectspeculation
8| 128 | 1g1g18| 01194| o0.8645| 00034 | 0.0027 may lead to inferior performance when compared to blind specula-
tion and (ii) obtain an upper bound on the performance wepro
ment that is possible through the use of the data dependence

8| 512 | 1s1818| 0.1194| 01252 | 0.0034| 0.0027

16| 32 0.0028 0.3331 | 18.3372| 5.5203| 1.5507 prediction and synchronization approach we described in

16 | 128 0.0028 | 0.0190 | 15781 | 0.0445| 0.0026 section3.

16 | 512 | o0.0028| o0.0178| 07249 | 00043 | 0.0026 To do so, we compare the folling four data dependence spec-
ulation policies: (i) NEVER, (ii) AWAYS, (ii) WAIT, and (vi)

82| 32 00020 19247 330022| 6.6796] 4.8927 PSYNC (for perfect synchronization). Under NEVER, no data

32 | 128 0.0020 | 0.1128 | 4.3829| 1.7359 | 0.0033 dependence speculation is performed. UndeWAYS, depen-

3 | 512 0.0020 | 00343 | 10176 | 0.0045| 0.0028 dence speculation is used blindly (this is the polised in the

modern ILP processors that implement dependence speculation).
Under poliy WAIT, data dependence speculation is used selec-
64 | 128 0.0023 |  0.2453 | 10.5860 | 3.3251| 0.1762 tively, that is loads with true dependences rwesynchronized,;

64 | 512 0.0023 00142 | 12652 | o0.0062| 0.0028 instead the are forced to wit until the addresses of all preus
stores are knen to be diferent. Finally under PSYNC, loads with

no dependencexecute as early as possible, whereas loads with

64 32 0.0034 2.3540 | 44.4893 | 11.1012| 19.7762

128 32 0.0269 | 17.3775| 52.1914 | 21.5784 | 37.8038

128 | 128 0.0027 | 06911 | 20.5244 | 3.7346 | 2.6479 true dependences synchronize with the corresponding stores. Pol-
128 | 512 0.0027 | 0.0389 | 22264 | 0.1043 | 0.0029 icy PSYNC preides an upper limit on the performance imgro
256 | 32 00274 | 208417 | 56.0067 | 29.7778 | 55.9566 ment that is possible through the use of the mechanisms we

presented in sectid® For PSYNC and WIT we male use of per-

256 | 128 0.0026 3.5985 | 27.4677 | 4.4675 5.2390 fect dependence prediction

256 | 512 0.0026 0.1261 3.6096 0.3614 0.0034

150%
Table 5. Unrealistic OoO model: Miss-Rate (pentaye) of DDC 4-Stages 8-Stages
as a function of window size and DDC s stands for

“window size”, and CS stands for “DDC size”. 100%

Stages | compress | espresso gce sC xlisp 50%
4 1.04M 2.38M 285 K 257M 2.18M
8 1.99M 2.86 M 464 K 4.81M 2.76 M 0% 1.03 1.61 1.36 1.45 1.34| 1.13 1.63 1.40 1.54 1.38
Table 6. Multiscalar model: number of mis-speculations observed. E g 8 ° g' E g 8 ° ‘_<>f_<?
can be obserd, mis-speculations are more frequent when the B ALWAYS o wWAIT [0 PSYNC

window size is lager (8 stages as opposed to 4 stages). In table 7

; : . ' Figure 5. Comparison of thee data dependence speculation
we report the miss-rates of DDCs @rious sizes for the 8-stage g P P P

policies. Speedups (%)erelative to policy NEVER.



In figure5, we report (along the X-axis) the IPC of Multiscalar

paper since the design space &sty and the simulation method

processor configurations that do not use data dependence speculthat is necessary (instruction wbn, timing simulation) is

tion (policy NEVER) and the speedups obtained when policies
ALWAYS, WAIT, or PSYNC are used instead. Since the dynamic
window size is an important consideration we simulate Multiscalar
configurations of four and eight stages. It can be obdetivat
even blind data dependence speculation (gohtWAYS) signifi-

cantly impraves performance in all cases. Furthermore, in contrast
to when dependence speculation is not used, increasing the win

dow size results in sizeable performance benefits.

Focusing on polig PSYNC, we can obsesvthat it constantly
improves performancever polioy ALWAYS, sometimes signifi-
cantly and furthermore, that the fdifence between PSYNC and
ALWAYS becomes greater as the windsize increases (8 stages
compared to 4 stages). In addition, under pdRSYNC, increas-
ing the windav size typically results in higher performance. The
results about polic PSYNC demonstrate that the technique we
described in section 3 has the potential for performance wapro
ments that are often significantvém when compared to blind
speculation). Finallyselectve data dependence speculation (pol-
icy WAIT) generally outperforms blind speculation (pglic
ALWAYS) and performs comparably to pgli®SYNC in the
4-stage configuration for three of the benchmarks (espresso, gc
and xlisp). Havever, for compress and sc, it performsnse than
both PSYNC and AWAYS (the cause of this phenomenon we
explained in section 3, figure 1). As we veato lager windavs (8
stages) the diérence between PSYNC andAW becomes more
significant for all benchmarkseept xlisp.

5.5 Evaluation of the proposed mechanism

In the preious section we demonstrated the performance poten

extremely time consuming.

Even though we do not attempt axhaustve evaluation of the
design space, we do simulateotdifferent dependence predictors
which we refer to as (i) SYNC and (ii) ESYNC (the “E” is for
enhanced). SYNC is our baseline predictor that uses anvup/do
saturating counter (as described in thgitaing of this section).
ESYNC, in addition to the up/da counter also records for each
dependence the PC of the task that issued the corresponding store
instruction. Synchronization is enforced on a load that matches a
MDPT entry only if the task PC of the stage at distance DIST (as
recorded in the MDST entry) matches the task PC recorded in the
predictor This enhancement gets loads that ka multiple static
dependences which occur viafdient &ecution paths. In this
case, the load does notveao wait for all the dependences, only
for the dependence that lies on the propercetion path. He-
ever, since the task PC represents only minimal control path infor-
mation, this predictor mayall short of its goal under some
circumstances.

In the rest of this section, we first present and discuss results on
the SPECIint92 programs. éAteport the accurgcof the depen-
Cdence prediction mechanism, the mis-speculation rate, and the per-
formance impreement obtained. The speedups reported are
relative to blind speculation (polic ALWAYS of sectiorb.4),
which is the polig currently implemented in geral modern pro-
cessors. W later present and discuss results on the SPEC95 pro-
grams. Br the latter programs, we report only performance
numbers (due to space limitations).

In table8, we report the breakdm of the dynamic dependence

tial of our data dependence speculation technique. In this sectiorPredictions for the SPECint92 programs. Since a load on which a

we evaluate an implementation of this technique. The implementa-

dependence prediction is made may not necessarity aepen-

tion we simulate is based on the mechanism we detailed indence, a single number cannot be used to describe the gcetirac

sectiond. In this implementation, the MDPT and MDST are com-

dependence prediction (in contrast to what is possible in control

bined into a single structure where each MDPT entry carries asprediction). Instead, a dependence prediction has to be classified
mary MDST entries as there are stages. This implementation N0 one of four possible caeries depending on whether a depen-

allows us to support multiple dependences per static store or stat
load as wexplained in sectiod. Hovever, with this oganization,
only a single synchronization entry is alled per static depen-
dence and per stage. The simulated structure is a centralized, ful
associatie resource that pvaes as manports as need for a par-
ticular Multiscalar processor configurationorFprediction pur-
poses, each entry contains a 3-bit upadosaturating counter
which tales on walues 0 through 7. The predictor uses a threshold
value of 3 for prediction;alues less than the threshold predict no

idence is predicted and on whether a dependence actxiatly. én
the results shen, we count the dependence predictions done on
loads that were either committed owaéeen issued from tasks
|);hat were squashed as a result of a dependence mis-speculation
(we do not count predictions on loads that were squashed for other
reasons). Predictions are recorded only once per dynamic load and
at the time the load is ready to access the memory higrdrah
thermore, for those loads on which a dependence is predicted, the
prediction is recorded after weeacheclkd the synchronization

dependence, andalies greater than or equal predict dependence entries for the first time. That is, in the case when a dependence is

and consequent synchronizatione \Aiso maintain LB informa-

predicted, we count a “no dependence” outcome if a xisthay,

tion for purposes of replacement. An entry within the table may be Matching, synchronization entry alle the load to continuececu-

allocated speculately without cleanup if bogusubupdates to the
prediction mechanism within an entry only occur non-specula-
tively when a stage commitso Histinguish between instances of
the same static dependence we usaration of the instance dis-
tance scheme which we discussed in se@idn this scheme we

tion without delay otherwise we count a “dependence” outcome.
A dependence prediction is correct when the predicted and the
actual outcomes are the sameMgON/N” and“Y/Y”), otherwise

the prediction is incorrect (ws “N/Y” and“Y/N” ). An incorrect
dependence prediction may result in mis-speculatiefy( ), or it

approximate the instance numbers via the use of stage identifierdn@y unnecessary delay the load/N” ). We will refer to the latter
which are statically assigned to each stage. A load that is forced tPredictions asalse dependencegutictions

synchronize on multiple dependences isvedid to eecute only
after all of them are satisfied. All simulation runs are performed
for the Multiscalar processor configurations described eaaliet

In table 9, we report o the mis-speculation frequenc
(defined as the number of mis-speculatiovisr committedloads)
improves when the proposed mechanism is in place for 4 and 8

unless otherwise noted, the MDPT/MDST structure we simulate stage configurations. In nearly all cases, the proposed predic-

has 64 entries.

The results presented in this section are in support of z ore-
cept. Consequentlypur primary goal is to demonstrate the utility
of the proposed mechanism. Though a thorougtiuation of the

tion/synchronization mechanism reduces the number of mis-spec-

ulations by an order of magnitude. Furthermore, mis-speculations

are typically reduced to less than 1% of useful loadsveder,

note that a decrease in the number of mis-speculations does not

design space is highly desirable, it is not possible to include in thishecessarily translate directly into a proportionate increase in per-

formance (after all, if we did not use speculation, the mis-specula-
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Figure 7. Performance of our data dependence speculatiorhar@sm for the SPEC95ggrams. W& simulate an 8-stgg Multiscalar
processor and weeport speedup<stative to blind speculation (policy WAYS) for the ESYNC @dictor and for perfect depen-
dence speculation (policy PSYNC). Along the X-axisepert the IPC obtained when the ESYNEduxtor is in use

Table 8. Dependence pdiction beakdown (%).“N” and “Y”
stand for “No dependence” and “Dependenc&spec-
tively, wheeas “P/A” stands for “Pedicted/Actual”.

Table 9. Mis-speculations per committed load.

tion rate would be zero). The main cause isofald. First, the
synchronized instructions may only represent a shift yaies
from time lost due to mis-speculations, to stall time in terall
picture of &ecution. That is,\n though a load is not mis-specu-
lated, there may be little otheiovk to do while the load is aiting

to synchronize. Secondal$e dependence predictions may impose
unnecessary delays.

In figure6, we shav how the performance aries when our

P/A ess li 0,
compress espresso gce sc xlisp 50% 4-Stages 8-Stages
N/N 81.62 98.62 | 9556 | 97.19 | 95.99 40%
o Ny 0.18 002 | 138| 026]| 008 30%
" & YN 4.17 003 | 080 | 0.14]| 006 20%
> YIY 14.03 133 | 227 | 241| 386 10%
@ N/N 85.79 98.63 | 96.06 | 97.40 | 96.07 0%
210 iy 0.09 001 | 120| 024]| 000 -10% s - o o &5 [ & = o o o
& E & § ©° 2 E & § ©° 2
a1 viN 0.30 003 | 007| 008]| 000 g o = g o =
YIY 13.81 133 | 267 | 228 392 B SYNC O ESYNC O PSYNC
N/N 73.60 9552 | 93.60 | 95.00 | 94.99 Figure 6. Performance of our data dependence speculation
i i 0,
o [ 015 020 165 062 0.08 mem_amsm on the SPECint92qgrams. Speedups (%)ear
> relative to policy AWAYS.
“ | YN 4.95 018 | 161| 026]| 014 ) ) ) )
é vy o131 209 315 a1l 279 nism with the ESYNC predictpnot only imprees performance,
g . : . . : but also performs close to what is ideally possible (PSYNC col-
S N/N 79.57 95.54 | 94.85| 95.35| 95.12 umns). The SYNC predictor also impes performance for most
21 Ny 0.07 0.05 1.48 0.66 0.00 of the programs. Heever the SYNC predictor ner outperforms
< . . X
AR 0.00 007 0.09 00s | ooz the ESYNC p(edlctorThe SYNC p_redlctor aIso_fta!i’s virtually no
performance impnement (eer blind speculation) for compress
iy 20.37 434 358 | 395| 487 and sc in the 4-stage configuration. Furthermore, performagee de

radation is obserd for compress on the 8-stage configuration.
False dependence predictions (“YN” madkraws in table8) are
responsible for this poor behar. The counter based SYNC pre-
dictor fails to capture the data dependence pattethibieed by

Policy | compress | espresso gce sc xlisp this program. The ESYNC predictdronever, is able to success-
o Avays | 007312 | 0.02178 | 0.02007 | 0.02089 | 0.03556 fully capture these patterns, since the dependences occur only via
é, svne | 000083 | 0.00026 | 0.00650 | 000272 | 0.00055 §peC|f|c @ecution paths. There are dwcauses for the meekl_
® : : : : : improvement demonstrated for espresso: (i) ¥erage, dynamic
Y| ESYNC| 0.00001| 0.00013| 0.00434 | 0.00250 | 0.00001 task size is about 100 instructions, and (ii) most of the mis-specu-
| ALWAYS | 0.13567 | 0.02613 | 0.03162 | 0.03891 | 0.04436 lations are the result of simple recurrences that occur most of the
% syne | 000205 | 000237 | 001228 | 0.00747 | 0.00069 time (note hwever that the memory locationsvislved are often
2 i - i : : accessed via pointers). Consequerftly this program, the cost of
ESYNC| 0.00004 | 0.00046 | 0.01159 | 0.00698 | 0.00002 mis-speculations is relagly high, whereas, ven a simple

up/davn counter based predictor can capture the dynamiwioeha
of the most important dependences.

In figure7, we report the performance results for the SPEC95

programs on an 8-stage Multiscalar procesAtong the X-axis

we report the IPC obtained when our data dependence specula-
tion/synchronization is used. The ESYNC bars represent the
speedup obtained reladly to blind speculation (poONcALWAYS

of section5.4), whereas the PSYNC matk bars represent the
speedup possible when ideal speculation and synchronization is
used (polig PSYNC of sectios.4). Owrall, our dependence

mechanism is in place, as compared to the base case Multiscalagpeculation/synchronization mechanism inves performance,
processor that speculates all loads as early as possibley (policoften significantly for almost all the programs studied. Further-
ALWAYS of figure5). For almost all cases, the proposed mecha-



more, our mechanism quite often performs close to what is ideally ~ key issues imolved in designing such data dependence specu-

possible for the gen configuration. lation structures.
For the SPECInt95 programs, the potential performance ® We describe a microarchitectural technique that can be used to
improvement is appreciable, ranging from 5% to almost 4086. F implement dynamic data dependence prediction and synchro-

124.m88ksim, 129.compress, and 130.li, our mechanism performs  nization. Furtherwe demonstrate that for a specific OoO pro-
comparably to the ideal mechanism. Though the mechanism does cessor this technique can pide significant performance

not perform as well for 132.ijge 134.perl, and 147ovtex, it does improvements. W finally identify most of and address some of
capture a significant amount of thailg that is possible. Nerthe- the key design issues.

less, both 099.go and 126.ge&tl fshort of this potential as com- ; : : ;
pared to the ideal dependence speculation. The dependence Our perimental results confirm thefiehgy of the technique

patterns of these programs are quitegutar and ghibit relatively we proposet. ngv;ar, ;mceﬂ:hls wrk élnt:pduc;a?ha ze c_oncept,
poor temporal locality as compared to the other programs. In par-We were not able to do a thorouglaeiation of the design space

ticular, the performance of 099.go is limited by poor control pre- &nd to &plore may alternatves and other possible applications of
diction (even with the &irly sophisticated control prediction the proposed technique é/elieve that this &ct does not diminish
scheme used) and instruction supply the importance of our results and obsgions. In our opinion, this

For the SPECfp95 programs, most of the dependences we Cap\_/vork represents only a first stepviirds impreing the accuracof

ture are loop recurrences. Wever, for 145.foppp and 103.su2cor ~ data dependence speculation andafals using dynamic depen-
our mechanism is unable to synchronize some of the dependenceélence speculation and synchronizationvesal directions for

For these tw programs, the size of theovking set of dynamic future researchxést in improving the mechanisms we presented,
dependencesxeeeds the capacity of our dependence prediction in using the proposed technique in other processing models, and in
structures. Closerxamination reeals that the instruction windo using data dependence speculation ayswiferent than those we
established by 145.fpppp can grto be as lage as a fe thousand have discussed.

instructions. (Most of the time is spent in a loop whose iterations

execute each around 1000 instructionsttvthe greedy task parti- Though we hee worked with memory dependences, the pro-
tioning poliey currently used by the Multiscalar compjlerach posed techniques are general and applicable to a range of other
iteration eecutes as a single taskasks of similar size are also  USes of data speculation. Such uses inclugistes dependences
experienced in part of 103.su2caWith the given instruction win-  (this is mostly refeant to multiple program countexezution

dow size, it is no surprise that theorking set of dependences is Models such as Multiscalar) analwe prediction (foremple in a
quite lage. Increasing the size of the dependence prediction struc-data speculation approach that uselie prediction only when
tures or breaking up each iteration tuesal tasks are twpossible ~ dependences are &l to &ist). WWe also beliee that &posing the
solutions. Br 101.tomcatv and 110.applu, our mechanism per- dépendence prediction (MDPT) and/or the synchronization
forms \ery close to what is ideally possible. Our mechanism is (MDST) structures to the compiler (perhaps via 1Seesions)

also able to synchronize dependences taldvotherwise cause ~ OPENs n& possibilities for statically orchestrated dependence
performance dgradation for 141.apsi and 146weS5, hit to a speculation. (Br e<amp|e the synchronlzatlorpuqbles can be.
lesser gtent. It should be noted that we simulated the first 2.8 bil- @llocated by the compiler to enforce synchronization of unambigu-
lion instructions for 101.tomcatv and 146we5. Performance  ©US dependences, whereas the prediction can be probed by the pro-
improves when these programs are simulated to completam. F9ram during run-time to makon-the-fly decisions on when and
example, at 10 billion instructions, the IPC for 101.tomcatv with Which dependences to speculate.)

the ESYNC mechanism is 5.68, whereas the IPC for b¥@5vat Even though in this wk we consideredafrly simple depen-
completion (6.4 billion instructions) is 3.79.oF 102.swim, dence predictors, grof the plethora of predictors used for branch
104.tydro2d, 107.mgrid, and 125.turb3d, there is little to be prediction may be used, with appropriate modifications, to
gained from dependence speculation and synchronization for theimprove the accuracof dependence prediction. Further impe
given configuration. & those programs, some other part of the ment of our mechanisms may be possible by considering alterna-
processor (forxample the functional units or the memory system) tive dependence tagging schemes and synchronization peisniti

is saturated. Furthermore, it wuld be interesting to consider igtating the
L . dependence prediction and synchronization structures with other
6 Implicationsand Conclusions components of the processor (farmenple, we may implement the

synchronization functionality in the data cache or in a similar

We male the follaving contritutions in this paper: A
d . p p structure so that both the data and the necessary synchronization
* \We demonstrate that, as the dynamic winddes get layer, are proided from the same structure).

the net performance loss due to data dependence mis-specula-

tions becomes significant. The techniques we proposed are applicable to processing mod-

els other than MultiscalaHowever, further study is necessary

* We identify three possible directions that can be feid to since diferences in the instruction wingosize and in the granu-
minimize this performance loss: (1) minimizing therklost larity of checkpointing may influence the relatiperformance of
on mis-speculation, (2) minimizing the time required to redo  various dependence speculation and synchronization schemes. W
this work, and (3) impreing the accuracof speculation. maintain that as ILP processors continue to become more aggres-
* We obsere that the static data dependences that are responsi- sive, the use of data speculation will becorneremore wide-
ble for the majority of mis-speculations are/fand dynami- spread, and techniques (especially dynamic ones) to wejhe
cally exhibit temporal locality The latter obseation applies accurag of data dependence speculation, such as those proposed
even when all dependences visible from within the dynamic  in this paperwill become important.
instruction windev are considered. Acknowledgments
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