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Abstract

Two hardware methods for remedying the effects of true
data dependences are studied. The first method, dependence
speculation, is used to eliminate address generation-load
dependences. This is enabled by address prediction that
permits load instructions to proceed speculatively without
waiting for their address operands. The second technique,
dependence collapsing, is used to eliminate data depen-
dences by combining a dependence among multiple instruc-
tions into one instruction. The potential of these techniques
for improving processor performance is demonstrated via
trace-driven simulation. When both techniques are used
with maximum issue widths of 4, 8, 16, and 32, the overall
speedups in comparison to a base instruction level parallel
machine are 1.20, 1.35, 1.51, and 1.66, respectively. In gen-
eral, dependence collapsing contributes the majority of the
improvement in performance. Under the dependence col-
lapsing model, 29% to 47% of the total number of instruc-
tions in a trace may be collapsed. The distance separating
the collapsed instructions is nearly always less than 8. Our
experimentation also suggests that further performance im-
provements can be achieved by incorporating mechanisms
that increase the address prediction rate.

1. Introduction

An execution of a computer program defines a dynamic
dataflow or dependence graph, that reflects the true data

and control dependences. That is, the dynamic dependence
graph contains all the dynamic instructions as nodes, with
an arc from one instruction to another if there is a true data
or control dependence. If we label an arc with a time equal
to the execution time of the instruction producing the re-
sult, then, in theory, the minimum execution time of the pro-
gram is the length of the longest path (i.e. the ”critical path”)
through the dependence graph.

Driving towards the critical path execution time requires
discovery of parallelism among instructions. Consequently,
many techniques for instruction level parallelism (ILP) are
aimed at discovering and executing parallel instructions,
both in hardware and software – e.g. multiple reservations
stations, issuing multiple instructions out of order, software
pipelining, loop unrolling, etc. A different approach is the
use of techniques that improve performance by essentially
“restructuring” the dependence graph. There are two basic
ways hardware can be used to do this:

� The first method effectively removes a dependence arc
by predicting the value carrying the dependence and
proceeding with speculative execution. If the predic-
tion is correct, then the critical path is decreased – pos-
sibly below the theoretical minimum (at least locally).
If the prediction is incorrect, then recovery is imper-
ative and the critical path is not decreased; execution
time can in fact be increased in a real implementation
by using resources needlessly. This technique has been
used for branches (control dependences) for some time,
but has also been proposed for memory addresses [5]
and for data loaded from memory [9].



� The second method can reduce the latency by combin-
ing a dependence among multiple dependent instruc-
tions into a single instruction. Functionalityfor the col-
lapsing of multiple operations has been advanced in a
number of proposals for floating point and fixed point
instructions [14, 16, 19].

The performance limit studies published in the literature [1,
3, 6, 7, 20] are primarily based on the assumption that true
dependence paths through the dynamic dependence graph
place a limit on performance. In addition to theoretical lim-
its under ideal assumptions, limit studies also explore the en-
velope of practical performance by placing some constraints
on hardware execution resources, for example by limiting
the “window” of instructions that may simultaneously be
considered for parallel execution. Significant performance
is achieved with perfect branch prediction, but gains are
diminished when using realistic prediction. Furthermore,
though predicting branches removes some control depen-
dences, data dependences remain as an impediment for in-
creased performance.

In this work, we investigate the potential performance
improvements that can be achieved by the combined use of
two hardware approaches that restructure the dynamic de-
pendence graph: data dependence speculation (d-
speculation) and data dependence collapsing (d-collapsing).
To illustrate the two approaches, consider the code segment
and its dynamic dependence graph shown in Figures 1.a-b.
The d-speculation approach can be used to predict the ad-
dresses for memory instructions, thus enabling the removal
of the arc(s) between dependent address generation and load
instruction (in Figure 1.c this results in the removal of the
arc between instructions 1 and 2). D-speculation can also be
used to predict data values such as those loaded from mem-
ory (in Figure 1.d this results in the removal of the arc be-
tween instructions 2 and 3) and in general the data result
of any instruction. The d-collapsing approach can be used
to combine the dependence of multiple instructions. In the
above example the dependence between instructions 3 and 4
can be collapsed by executing 4’. [8+Ra+Rd] = Re instead
of 4. [8+Rc] = Re. The effect on the dependence graph is
shown in Figure 1.e. Note that the dependence to instruction
4’ comes from node 2 instead of node 3.

It is worthwhile to observe that it is sometimes possible
to eliminate nodes in a dynamic dependence graph. For in-
stance, with the collapsing of the dependence between in-
structions 3 and 4, if the result of instruction 3 is not needed
elsewhere then 3 need not be executed. This restructuring is
shown in Figure 1.f. Instructions whose execution is neces-
sary to verify a prediction always need to be executed (such
as instruction 1 in 1.c).

The remainder of the paper is organized into the follow-
ing sections. Section 2 reviews related work. In Section
3, we discuss the speculation and collapsing mechanisms

1. Rb = Rg + 8

2. Ra = [Rb]

3. Rc = Ra + Rd

4. [Rc + 8] = Re
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Figure 1. (a) Sample Dynamic Instruction
Stream (b) Dynamic Dependence Graph
(c) D-Speculation Predict Address (d) D-
Speculation Predict Value to be Loaded (e)
D-Collapsing (f) Node Elimination

studied in this paper. Section 4 addresses the experimen-
tal framework and assumptions. Section 5 contains the dis-
cussion of the obtained results. Section 6 will conclude the
study.

2. Related Work

Several schemes for reducing the effects of execution
and memory dependences have been proposed [2, 5, 9, 19].
These techniques are claimed to have minimal or no impact
on the clock cycle. Mechanisms for remedying the effects of
memory dependences using early memory loads were intro-
duced in [2, 5]. In [5] the combination of three strategies is
proposed. The first identifies data dependences required for
address generation that can be resolved immediately. The
second is used for the case in which dependences can not be
resolved immediately; it predicts the address using a table
where memory access patterns are stored. The third strat-
egy removes load operations from the instruction stream in
advance (possibly multiple cycles before the actual issue of
loads). This approach allows the processor to execute load
instructions in parallel with instructionspreceding the loads,
achieving a zero cycle load execution time when the spec-
ulation is found to be correct. Austin [2] exploits the fact
that small offsets are suitable for simple fast address calcula-
tion and determines memory addresses early in the pipeline
for those cases. This enables the load instructions to issue
early and effectively hide the load-use latency. A differ-
ent approach that predicts data values instead of addresses
has been proposed in [9] for invariant data values loaded
from memory. Numerous other schemes for prefetching
data in the memory hierarchy have been proposed – for fur-
ther references see [4, 12]. Prefetching schemes do not con-
sider the possibility of speculative instruction execution us-



ing predicted addresses. The address prediction techniques
used for prefetching can be applicable for prediction in d-
speculation, however.

Data dependence collapsing functionality has been ad-
vanced in a number of proposals. Collapsing for specific
instances of floating point operations with new instruction
definitions has been proposed and implemented in a num-
ber of processors. The multiply-add operation was used in
the RS/6000 [14, 16] and since then it has been incorpo-
rated in other superscalar pipelined processors [21]. A gen-
eral scheme capable of collapsing a dependence pair involv-
ing fixed point arithmetic and logical instructions was pro-
posed in [19]. The proposed solution takes into account a
general CISC instruction set that includes the functional-
ity of RISC and post-RISC based instruction sets. The per-
formance of such a proposal for some realistic machine or-
ganizations was reported in [10] and a single cycle imple-
mentation of a subset of this proposal was implemented in
POWER 2 [21]. A device that includes the majority of the
functions a collapsing fixed point unit can perform, was pro-
posed in [17].

Several studies have examined the limits of instruction
level parallelism with a variety of control and resource mod-
els [1, 3, 6, 7, 20]. However, no limit study has examined the
impact of data dependence collapsing and speculation on in-
struction parallelism. A related work [15] used static pro-
gram representation and profiling weights to calculate the
frequencies of sequences (pairs, triples and quads) of depen-
dent instructions within and across basic blocks. This work
however did not examine the impact on latency/parallelism.
In [10, 18], performance studies were conducted to charac-
terize the effects of interlock (dependence) collapsing func-
tionality on parallelism for a variety of resource and con-
trol models. The dependence collapsing performed in these
studies was restricted to collapsing only consecutive instruc-
tions within a single basic block.

The models used in the work presented here differentiate
from previous studies of data speculation and collapsing in
the following ways:

� D-Speculation:

– Load speculation is performed selectively based
on a confidence indication.

� D-Collapsing:

– Non-consecutive instructions can be collapsed.

– Dependence collapsing may be performed across
basic block boundaries.

– Shift operations can be collapsed in addition to
fixed point arithmetic and logic operations.

– Three dependent instructions may be collapsed,
in addition to two dependent instructions as in
previous work.

– Zero operands are detected and used to enable
further collapsing.

� Combining speculation and collapsing:

– We study the combination and interaction of d-
speculation and d-collapsing techniques.

3. Speculation and Collapsing Mechanisms

In this section we provide some information regarding
the specific mechanisms as they are modeled in the simula-
tor used to collect the results.

D-Speculation Mechanisms: Data speculation can be
used to predict data and address values. In this study one
mechanism, called load-speculation, is directed at mem-
ory dependences. The aim of load-speculation is to reduce
the effect of the latency of load-use dependences. This is
achieved by predicting addresses and speculatively issuing
load operations.

A realistic method for address prediction uses a table for
maintaining information about strides used for memory ac-
cesses. The table we consider is a 4096 entry direct mapped
table. The 14 least significant bits of a load instruction ad-
dress is the index into the table. The algorithm used for pre-
diction and the table entry information is identical to the two
delta strategy in [5]

�

. The delta size in our table is 32 bits.
To the previously proposed table, we add a 2 bit saturat-
ing counter for each table entry to represent the confidence
in issuing a load with a predicted address. The counter in
each table entry is initialized to zero and incremented by 1
(decremented by 2) on a correct (wrong) address prediction.
The predicted address is used only when the counter value
is greater than 1. This means that as long as the counter in-
dicates low confidence in a prediction, predicted addresses
are not used for speculative load issue.

A load calculating its address early enough that it does
not require a predicted address is called a ready load. All
loads update the table state but only not ready loads (i.e.
loads that take advantage of speculation) use the table.
Therefore, a not ready load will either speculatively issue
using the predicted address from the table (if the confidence
table value is greater than 1) or wait to issue until its address
can be calculated (if the confidence table value is less than
or equal to 1). Speculatively issued loads can be divided
further into two categories: those that were predicted cor-
rectly and those predicted incorrectly. Subsequent instruc-
tions that depend on a speculative load can issue as soon
as the data are available from the memory without having
to wait for the determination of the correct address. When
the correct address becomes available and a misprediction

�

Note that the load speculation mechanism uses a subset of the mecha-
nisms presented in [5].



is detected, only the instructions dependent on the load are
affected. In the simulator, these instructions can not issue
before the cycle that the load with the correct address com-
pletes execution. No restriction on the number of loads that
can be load-speculated is imposed. We report the distribu-
tion of loads sorted into the four categories: ready, not pre-
dicted, predicted correctly, predicted incorrectly.

For the purpose of comparison with an ideal case, we also
simulated the case where all load addresses are predicted
correctly (ideal load-speculation).

D-Collapsing Mechanisms: Computational data depen-
dences are resolved using the d-collapsing approach. The
collapsing of data dependences, theoretically, can be applied
to any sequence of dependent instructions. In this study we
enabled only the collapsing of dependences between pairs
and triples of instructions (in some cases as explained be-
low four dependent instructions can also be collapsed). A
dependent sequence of instructions can be described by a n-
1 (n to 1) dependence expression where n is the number of
operands in the expression. For instance in the following se-
quence:

1. Rb = Rd << Rh
2. Rg = Rb + Re
3. Ra = Rf - Rg

the dependence expression between instructions 1 and 2 is a
3-1:

Rg = (Rd << Rh) + Re

and the dependence expression between instructions1, 2 and
3 a 4-1:

Ra = Rf - ((Rd << Rh) + Re).

As a result of the collapsing assumed in this paper, the above
serial sequence is transformed to the following with all de-
pendences eliminated.

1. Rb = Rd << Rh
2. Rg = (Rd << Rh) + Re
3. Ra = Rf - ((Rd << Rh) + Re)

It should be noted that it is possible for a dependence be-
tween two or three instructions to result in a dependence ex-
pression greater than 3-1 or 4-1. A dependence between a
pair of instructions can result to a 4-1 dependence, for exam-
ple, if the instructions are Rb = Ra + Rd and Rc = Rb + Rb,
then the computation of Rb requires (Ra + Rd) + (Ra + Rd)
which is a 4-1 dependence. A dependence between three op-
erations can result in up to an 8-1 dependence expression.
In this study we assume the performance of a collapsing de-
vices for 3-1 and 4-1 dependence expressions that involve
the followingoperation types: shift, arithmetic (not multiply
or divide), logical, move, address generation (for loads and

stores), and condition code generation for branch instruc-
tions. This is a relatively optimistic approach intended to
explore the envelope of the performance potential.

The assumed mechanisms extend proposed devices [17]
with the ability of collapsing shift operations and 4-1 depen-
dence expressions. Shift operations are added in our study
because they appear frequently in the instructionmix of pro-
grams (about 6%) and shift distances are dominated by a
few values. We believe the potential exists for collapsing
shifts with ALU operations – at least for the commonly oc-
curring shift distances. We also consider collapsing per-
formed between consecutive and non-consecutive instruc-
tions, within and across basic block boundaries. Further-
more, zero operands are detected in loads and stores oper-
ations and reduce the size of the dependence expressions.
For instance, in the fragment code below, the dependence
expression for instruction 4 is a 5-1 which is not collapsible
with the assumed functionality. However, the detection of
the zero reduces the expression to a collapsible 4-1 expres-
sion. In general the detection of zero operands can reduce
the expression size and hence the complexity of the device
required to resolve a dependence.

1. Rf = Rg or 0x288
2. Rh = Ra - 1
3. Rd = Rf >> Rh
4. Ra = [Rd + 0]

We divide the dependences collapsed in three broad cat-
egories: 3-1, 4-1 and zero operand detection (0-op). We re-
port the contribution for each collapsing category as well as
the distance between collapsed instructions.

4. Simulation Framework

To measure the impact of data speculation and depen-
dence collapsing on parallelism we developed a trace driven
simulator for the SPARC v.8 Architecture [13]. Our test
set includes the benchmarks shown in Table 1. The bench-
marks 026.compress, 008.espresso, 0.23 eqntott and 022.li
are from the SPECINT92 suite and 099.go and 132.ijpeg
are from the SPECINT95 suite. The benchmarks were com-
piled using the gcc version 2.6.3 at -O4 optimization level
(go and ijpeg benchmarks compiled at -O3 optimization).
The traces were generated by qpt2 [8] and do not include
system code. For those benchmarks longer than 250 million
instructions, only the first 250 million instructions of each
benchmark trace were simulated due to time constraints.
Nop operations were ignored and are not included in the
simulations.

SimulationMethodology: Our simulation methodology
is similar to that used by Wall[20]. Instructions are fetched
and placed in a “window”, from which instructions are cho-
sen to issue. The maximum window size is fixed, and in-



Name Input File Flags Trace Size
(Millions)

026.compress in 88
008.espresso bca.in 250
023.eqntott int pri 3.eqn -s -.ioplte 250
022.li li-input.lsp (7 queens) 207
099.go 9 9 122
132.ijpeg vigo.ppm 250

Table 1. Benchmark Characteristics

Name Conditional Branches Predicted
(%) Correctly (%)

026.compress 13.2 89.7
008.espresso 18.5 94.1
023.eqntott 27.5 96.0
022.li 15.8 96.8
099.go 13.5 83.7
132.ijpeg 8.97 92.8

Table 2. Benchmark Branch Characteristics

structions are placed into the window to replace instructions
as they issue – i.e. the window is kept full. The latency of
the different operations is 1 cycle with the following excep-
tions: loads and multiplications require 2 cycles and divides
require 12 cycles.

Simulation Parameters: The simulation model con-
tains a number of parameters that characterize important
processor characteristics. These parameters include the
maximum number of instructions allowed in the schedul-
ing window, the maximum issue width and the types of
data speculation and collapsing schemes used. The max-
imum issue width establishes the maximum attainable in-
struction level parallelism. For all configurations sim-
ulated, conditional branches are predicted using the bi-
modalN/gshareN+1 scheme proposed in [11] with 8kByte
cost. All other branches and jumps (indirect, unconditional,
call and return) are assumed to be always predicted cor-
rectly. The performance of the predictor is shown in Table 2.
We show the percentage of branch instructions in each trace
and the percent of the branches that were predicted correctly.

We assume zero cycle penalty for fetching instructions
from the path of correctly predicted branches. In the case of
misprediction, instructions following a branch can not issue
before or during the cycle the branch instruction issues.

All simulated configurations use ideal register renaming
and perfect memory disambiguation. No resource limit was
set for the different operation types.

Real load-speculation uses the address prediction table
described in the previous section. Ideal load-speculation
is assumed to speculate correctly every load instruction.
Load-speculation in the context of memory disambiguation

is modeled as follows. With no load-speculation a load can
issue as soon as all its dependences are satisfied; a load-
speculated load needs to respect all dependences with the
exception of address generation dependences. In the case of
address misprediction, or no prediction, a load will issue as
if no load-speculation is employed. A speculatively issued
load instruction may require resources for both speculation
and verification. In this study we account for the resources
during the verification phase only.

The simulations were conducted for a base and four dif-
ferent data speculation and dependence collapsing configu-
rations. The different configurations simulated are outlined
below. The uppercase letter in parentheses will be used to
identify the configurations in graphs to follow.

� base, (A),

� base + real load-speculation, (B),

� base + d-collapsing, (C),

� base + d-collapsing + real load-speculation (D)

� base + d-collapsing + ideal load-speculation (E)

For each of the above configurations simulations were per-
formed for instruction issue widths of 4, 8, 16, 32 and 2048
(2k). In each case the window size was set to twice the issue
width.

5. Simulation Results

This section contains results of our performance simula-
tions. We present results both in terms of instructionsper cy-
cle (IPC) and speedup versus the base superscalar machine.
The speedups are with respect to the base configuration with
same issue width. For both measures, we summarize results
by taking the harmonic mean over the benchmark set.

5.1. Overall Performance

For the five machine configurations studied (A through
E), Figures 2 and 3 show the harmonic mean instructions
per cycle and speedups versus the base machine. Results for
maximum issue widths 4, 8, 16, 32, and 2K per cycle are
plotted. The results suggest the following:

� The maximum potential of d-speculation and d-
collapsing (point E) is quite high, with speedups from
1.25 (issue width 4) to 2.95 (issue width 2K). Note that
these are compared with base superscalar implementa-
tions that are quite optimistic – with the major (non-
ideal) limitation being realistic branch prediction.

� If a realistic load-speculation mechanism is used with
d-collapsing (point D), speedups are still significant
(1.2–1.9).
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� The combined use of d-collapsing and d-speculation
provide speedups roughly equal to the sum of the in-
dividual speedups of d-collapsing and d-speculation
(compare point D and the sum of points B and C in Fig-
ure 3).

Although the use of realistic load-speculation and d-
collapsing provide significant speedup, as pointed out
above, there is also significant performance drop when go-
ing from ideal load-speculation (i.e. always load specu-
late correctly) to the realistic stride-based load-speculation
mechanism. In fact, when using realistic load-speculation,
it is apparent that d-collapsing provides the biggest por-
tion of the performance gain. This leads us to study load-
speculation in more detail to determine means of capturing
more of the ideal performance.

5.2. The effect of pointers on load-speculation per-
formance

Given that the load-speculation mechanism is based on
detecting strides, we decided it would be useful to divide
the benchmarks into two categories, namely pointer chasing
benchmarks and non pointer chasing benchmarks – under
the assumption that the stride-based load-speculation mech-
anism would be relatively ineffective for the pointer chasing
benchmarks. A program was classified as pointer chasing if
a large fraction of its loads are indirect. We categorized the
benchmarks by profiling and inspection of code. The pointer
chasing benchmark set consists of the benchmarks go and li
and the other set contains the remaining benchmarks. Fig-
ures 4 - 7 report the overall IPC and speedups for the two
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Figure 3. SpeedUp over the Superscalar Base
Machine (A)

sets.
The followingcan be observed regarding pointer chasing

benchmarks (Figures 4 and 5):

� With ideal load-speculation (point E), the speedup is
about the same as when all the benchmarks are con-
sidered. However, the performance drop with realistic
load-speculation is more pronounced than in the com-
plete set of benchmarks.

� Furthermore, for issue widths 4, 8, 16 and 32, realis-
tic load-speculation has a very small performance ef-
fect (speedups of 5%-9%, see B in Figure 5).

� The d-collapsing gains are smaller as compared to the
means for all benchmarks (points C in Figures 3 and
5). This can be attributed to the instructionmix of those
benchmarks that consist of non-collapsible instructions
(for 022.li, 7% of the instructions are calls and returns)
and higher branch misprediction rates (go has branch
prediction rate of 83.6%).

The most important observation regarding realistic load-
speculation for pointer chasing benchmarks is that by itself
(with no d-collapsing) it provides negligible performance
gains. This is understandable because the load-speculation
mechanism is based on stride prediction, and it does not
perform well with pointer-based codes. Special load units
for pointer-based codes have been proposed [12], how-
ever, there is no scheme known to us that combines load-
speculation mechanisms for both pointer chasing and non
pointer chasing codes. It is of interest, therefore, as a fu-
ture research topic to investigate load-speculation mecha-
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Figure 4. IPC for the “Pointer Chasing”
Benchmarks

nisms that can provide satisfactory performance for both
non-pointer and pointer chasing benchmarks.

To better understand the issues caused by pointer chasing
we investigated in more detail the performance of the load-
speculation mechanism we used. Table 3 suggests the fol-
lowing.

� For pointer chasing benchmarks, the success rate of ad-
dress prediction is low (12.4-26.7%).

� Low prediction rate is mainly because a very large per-
centage of loads (around 38-44%) are not predicted at
all – they simply do not demonstrate stride behavior.

� On the positive side, the percentage of incorrect pre-
dictions is very small implying that the counter scheme
can capture the predictability of loads. Possible vari-
ations are currently being explored to determine even
more accurate confidence measurements.

The increase in the number of ready (non-speculated) loads,
with increasing window size (Table 3), is attributed to a cor-
responding increase of collapsed instructions.

Turning to the benchmarks that do not rely on pointer
chasing, we have plotted the expected IPC and speedups
over the base superscalar machine in Figures 6 and 7. The
following can be observed:

� The overall speedups are higher when using realistic
load-speculation than for the entire mix of benchmarks.

� Collapsing with realistic load-speculation (point D in
Figure 7 for windows of 4, 8, 16 and 32) speedups be-
tween 1.23–1.8 are reached.
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Figure 5. SpeedUp over the Superscalar Base
Machine (A) for the “Pointer Chasing” Bench-
marks

Issue Ready Predicted Predicted Not Predicted
Width (%) Correctly (%) Incorrectly (%) (%)

4 30.16 26.73 4.76 38.34
8 35.94 20.87 5.16 38.02
16 39.79 15.13 5.13 39.95
32 40.29 12.42 5.35 41.94
2k 36.20 14.90 5.41 43.50

Table 3. Load-Speculation Behavior for
Pointer Chasing Benchmarks with Configu-
ration D

� The difference between speedups with ideal and realis-
tic load-speculation is smaller when compared with the
pointer chasing programs.

� The major contribution is still due to d-collapsing, but
a significant contribution is made by load-speculation.

Table 4 is the counterpart of Table 3 for the non pointer
chasing benchmarks. The behavior of the loads in Table 4
in comparison to the behavior of the loads for pointer chas-
ing benchmarks (Table 3) indicates a significant reduction in
the number of mispredicted loads and similar reduction of
the number of not predicted loads. A significant number of
loads remain not predicted, nevertheless. These results sug-
gest that even the stride-based load-speculation method can
be improved. We intend to investigate such approaches as
part of our continuing research.
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Issue Ready Predicted Predicted Not Predicted
Width (%) Correctly (%) Incorrectly (%) (%)

4 20.67 56.95 2.17 20.21
8 39.23 39.99 1.91 18.87
16 49.94 28.16 1.97 19.93
32 47.80 30.13 1.96 20.11
2k 38.13 39.85 2.02 20.00

Table 4. Load-Speculation Behavior for non-
Chasing Pointer for Configuration D

5.3. A Closer Look at D-Collapsing

As indicated earlier, d-collapsing plays an important role
in the speedup gains over a base superscalar machine. To
analyze in more depth the various contributions and behav-
ior of such mechanisms we plot in Figures 8 - 10: the per-
centage of instructions that have been collapsed in all bench-
marks, the contributionof the 3-1, 4-1, and 0 operand detec-
tion, and distance between collapsed instructions. The fol-
lowing conclusions are suggested by the figures.

� A large percentage of the instructions are collapsed
(from 29-47% with increasing issue width - Figure 8).

� The biggest collapsing contributor is the 3-1 (Figure 9).
For example, with issue windows equal to or less than
32 instructions, 3-1 collapsing accounts for 65-82% of
the d-collapsing instructions.

� 4-1 collapsing mechanisms account for 13-30% of the
collapsed instructions. This indicates that 4-1 collaps-
ing may hold important performance benefits and the
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Figure 7. SpeedUp over the Superscalar
Base Machine (A) for non “Pointer Chasing”
Benchmarks

design of such units may need to be considered. How-
ever, doing this without adding latency will be a major
issue. The results also suggests that collapsing greater
than 4-1 dependences may offer very little performance
benefit.

� The zero value operand detection has a contribution of
5–10%. If the implementation of such a mechanism
is not expensive it could offer some performance im-
provements.

� An interesting statistic is the distance among the in-
structions that are collapsed (Figure 10). For issue
widths larger than 8 instructions the majority of the
collapsed instructions are not consecutive. This sug-
gests that a wide-issue implementation will need to
consider non-consecutive instruction collapsing in or-
der to exploit the available performance gains. We also
observe most of the instructions collapsed have a dis-
tance of less than 8 instructions even for the 2k issue
width. This indicates that we may not need to imple-
ment across basic blocks since the average basic block
size is expected to be around 6 - 8 instructions. The per-
formance pay off versus the complexity of collapsing
across basic blocks is currently being investigated.

In Tables 5 and 6 we show the average for the most fre-
quently collapsed 3-1 and 4-1 dependence sequences for the
D configuration. The followingencodings are used in Tables
5 and 6, the instruction types are ar: arithmetic, lg: logic,
sh: shift, mv: move, ld: load, st: store, brc: conditional
branch; the source operand types are r: register, i: imme-
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Figure 8. Instructions D-Collapsed

diate, 0: zero immediate or zero register. For example, the
collapsing of Rb = Rd + Rh and Rg = Rb + 8 to Rg = Rd
+ Rh + 8, corresponds to an arrr – arri collapsed pair. The
average for each 3-1(4-1) dependence sequence is the sum
of all such collapsed dependences over the total number of
3-1(4-1) collapsed dependences in all benchmarks.

6. Conclusions

In this paper we considered two hardware based schemes
that enable the elimination of true data dependences: d-
speculation and d-collapsing. The separate and combined
use of the mechanisms that implement the different schemes
was investigated. Trace driven simulation was the means
used for demonstrating the potential of these methods. Sev-
eral experiments were conducted for a number of machine
configurations and issue widths.

The results show consistently that a substantial increase
in performance is possible by using d-collapsing and realis-
tic load-speculation (configuration D). We observed that d-
collapsing is responsible for the majority of the gains though
d-speculation still provides significant gains for non-pointer
chasing programs. It is also established that there are large
benefits to be gained if the load-speculation scheme is im-
proved.

With regard to the behavior of d-collapsing, a large frac-
tion of instructions, 29% to 47%, can potentially be col-
lapsed. The number of collapsed instructions increases as
windows grow larger. The distance between collapsed in-
structions increase marginally even for larger windows, but
is usually less than 8.

Overall, the results are quite promising and suggest that
data dependence speculation and collapsing can potentially
have a significant impact on performance. This study re-
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Figure 10. Distance between D-Collapsed In-
structions for the D Configuration

veals interesting information about the behavior of depen-
dences that can be of value during the implementation of
data speculating and collapsing mechanisms. Further re-
search is currently undertaken in several directions that in-
clude: development of mechanisms to support data depen-
dence speculation and collapsing, determination of ways to
use compilers to increase ILP under this paradigm, and addi-
tional performance studies for more realistic environments.
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Operation Types Issue Width

Op1 Op2 2k 32 16 8 4

arrr brc 12.68 12.67 12.25 13.62 17.08
arri brc 12.37 12.72 12.87 14.00 15.71
arri arri 8.04 7.12 7.01 3.35 1.75
arr0 brc 7.13 7.47 7.76 8.95 10.05
shri ldrr 5.07 5.42 5.43 5.31 5.75
mvi lgri 4.99 4.81 4.62 4.34 3.96
mvi ldri 4.87 4.88 4.80 4.77 4.07
arrr arrr 4.43 3.80 3.78 4.10 3.31
arri ldrr 3.16 3.54 4.66 3.31 1.56
shri arrr 3.01 3.90 3.94 4.54 4.07
arrr shri 2.77 2.38 2.24 2.46 3.32
arri arrr 2.02 2.37 3.56 4.81 4.38

Table 5. Collapsed 3-1 Dependences

Operation Types Issue Width

Op1 Op2 Op3 2k 32 16 8 4

arri arri arri 17.97 14.55 7.27 0.46 0.00
lgr0 lgr0 arrr 6.59 6.52 8.32 10.89 0.50
arri arri ldrr 6.19 7.25 4.38 0.02 0.00
arrr arrr arrr 5.97 6.05 5.56 4.09 2.38
arrr shri arrr 4.84 4.73 5.86 7.83 13.70
arri arri arrr 4.16 4.57 3.88 0.08 0.02
lgri shri ldrr 3.37 4.12 5.25 7.80 7.72
arrr arrr shri 3.15 2.76 3.68 4.33 5.63
shri arrr shri 2.88 4.39 5.66 8.28 12.17
lgrr lgrr lgrr 2.51 2.87 3.28 3.13 3.20
shri arrr ldrr 2.22 2.50 0.82 0.76 0.15
shri arrr ldri 2.16 2.49 3.17 4.47 5.57
shri arrr arrr 1.72 3.04 5.41 8.00 12.55

Table 6. Collapsed 4-1 Dependences
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