
High-Bandwidth Address Translation
for Multiple-Issue Processors

Todd M. Austin Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison

1210 W. Dayton Street
Madison, WI 53706�

austin,sohi � @cs.wisc.edu

Abstract
In an effort to push the envelope of system performance, mi-

croprocessor designs are continually exploiting higher levels of
instruction-level parallelism, resulting in increasing bandwidth de-
mands on the address translation mechanism. Most current micro-
processor designs meet this demand with a multi-ported TLB. While
this design provides an excellent hit rate at each port, its access la-
tency and area grow very quickly as the number of ports is increased.
As bandwidth demands continue to increase, multi-ported designs
will soon impact memory access latency.

We present four high-bandwidth address translation mechanisms
with latency and area characteristics that scale better than a multi-
ported TLB design. We extend traditional high-bandwidth memory
design techniques to address translation, developing interleaved and
multi-level TLB designs. In addition, we introduce two new designs
crafted specifically for high-bandwidth address translation. Piggy-
back ports are introduced as a technique to exploit spatial locality in
simultaneous translation requests, allowing accesses to the same vir-
tual memory page to combine their requests at the TLB access port.
Pretranslation is introduced as a technique for attaching translations
to base register values, making it possible to reuse a single transla-
tion many times.

We perform extensive simulation-based studies to evaluate our
designs. We vary key system parameters, such as processor model,
page size, and number of architected registers, to see what effects
these changes have on the relative merits of each approach. A num-
ber of designs show particular promise. Multi-level TLBs with as
few as eight entries in the upper-level TLB nearly achieve the per-
formance of a TLB with unlimited bandwidth. Piggyback ports
combined with a lesser-ported TLB structure, e.g., an interleaved or
multi-ported TLB, also perform well. Pretranslation over a single-
ported TLB performs almost as well as a same-sized multi-level
TLB with the added benefit of decreased access latency for physi-
cally indexed caches.

1 Introduction
Address translation is a vital mechanism in modern computer sys-

tems. The process provides the operating system with the mapping
and protection mechanisms necessary to manage multiple large and
private address spaces in a single, limited size physical memory
[HP90]. In practice, most microprocessors implement low-latency

address translation with a translation lookaside buffer (TLB). A TLB
is a cache, typically highly-associative, containing virtual memory
page table entries which describe the physical address of a virtual
memory page as well as its access permissions and reference status
(i.e., reference and dirty bits). The virtual page address of a memory
access is used to index the TLB; if the virtual page address hits in the
TLB, a translation is quickly returned. On a TLB miss, a hardware-
or software-based miss handler is invoked which “walks” the virtual
memory page tables to determine the correct translation to load into
the TLB.

The primary goal of TLB design is to keep address translation la-
tency off the critical path of memory access. In the past, this goal
has been met by building low-latency TLBs. This task was relatively
easy to perform because most TLB designs were single-ported and
small, containing on the order of 32 entries.

Today, however, architectural and workload trends are placing in-
creasing demands on TLB designs. Processor designs are continu-
ally exploiting higher levels of instruction-level parallelism (ILP),
which increases the bandwidth demand on TLB designs. The na-
ture of workloads is also changing. There is a strong shift towards
codes with large data sets and less locality, resulting in poor TLB
hit rates. Notable examples of this trend include environments that
support multitasking, threaded programming, and multimedia appli-
cations.

Together, architectural and workload trends are pushing archi-
tects to look for TLB designs that possess low-latency and high-
bandwidth access characteristics while being capable of mapping a
large portion of the address space. The current approach used in
most multiple-issue processors is a large multi-ported TLB, typically
dual-ported with 64-128 entries. A multi-ported TLB provides mul-
tiple access paths to all cells of the TLB, allowing multiple trans-
lations in a single cycle. The relatively small size of current TLBs
along with the layout of the highly-associative storage lends itself
well to multi-porting at the cells [WE88].

Although a multi-ported TLB design provides an excellent hit
rate at each access port, its latency and area increase sharply as the
number of ports or entries is increased. While this design meets
the latency and bandwidth requirements of many current designs,
continued demands may soon render it impractical, forcing tomor-
row’s designs to find alternative translation mechanisms. Already,
some processor designs have turned to alternative TLB organiza-
tions with better latency and bandwidth characteristics; for exam-
ple, Hal’s SPARC64 [Gwe95] and IBM’s AS/400 64-bit PowerPC
[BHIL94] processor both implement multi-level TLBs.

Our goal in this paper is to extend the work on high-bandwidth ad-
dress translation in two ways. First, we propose a number of designs
for high-bandwidth address translation with latency and area costs
that scale better with the number of ports than a multi-ported TLB.
Second, we perform extensive simulation-based studies to evaluate

Appears in: “Proceedings of the 23rd Annual International Symposium on Computer Architecture”

the relative merits of the proposed address translation designs.
Using detailed cycle-timing simulators, we benchmark the perfor-

mance of the high-bandwidth designs against the performance of a
TLB with unlimited bandwidth. A number of designs are clear win-
ners – their use results in almost no impact on overall system per-
formance. Any latency and area benefits these designs may afford
will serve to improve system performance through increased clock
speeds and/or better die space utilization.

We limit the scope of this work to translation of data memory ac-
cesses for physically tagged caches. Instruction fetch translation is a
markedly easier problem, since fetch mechanisms typically restrict
all instructions fetched in a single cycle to be within the same vir-
tual memory page, requiring at most one translation per cycle. In-
struction fetch translation is well served by a single-ported instruc-
tion TLB or by a small micro-TLB implemented over a unified in-
struction and data TLB [CBJ92].

The rest of this paper is organized as follows: Section 2 describes
our framework for address translation and qualitatively explores the
impact that address translation latency and bandwidth have on sys-
tem performance. Section 3 details the mechanisms proposed for
high-bandwidth address translation, and Section 4 presents exten-
sive simulation-based performance studies of a number of address
translation designs. Section 5 presents a summary and conclusions.

2 Impact of Address Translation on System
Performance

Before delving into the details of our high-bandwidth designs or
their evaluation, it is prudent to first develop a performance model
for address translation. The model we present in this section is
strictly qualitative in nature. We do not use it to derive the perfor-
mance of a particular address translation mechanism; we do this em-
pirically with detailed timing simulations in Section 4. Instead, the
model serves as a framework for address translation. By casting our
designs into this framework, we can readily see which features af-
fect address translation performance, and consequently, how address
translation performance affects system performance.

Figure 1 illustrates our framework for address translation. At the
highest level, a processor core executes a program in which a frac-
tion

�������
of all instructions access memory. Each cycle, the pro-

cessor core makes as many as � address translation requests. A
fraction

���
	����� ����
of these requests are serviced by a shielding mech-

anism. A shielding mechanism is a high-bandwidth and low-latency
translation device that can satisfy a translation request without: 1)
impacting the latency of memory access, or 2) forwarding the re-
quest to the base TLB mechanism. Hence, the shielding mechanism
acts as a shield for the base TLB mechanism, filtering out

����	����� ����
of all translation requests. An effective shielding mechanism can
significantly reduce the bandwidth demands on the base TLB mech-
anism; we examine three shielding mechanisms in detail: L1 TLBs,
piggyback ports, and pretranslation.

Requests not handled by the shielding mechanism are directed to
the base TLB mechanism which can service up to � requests per
translation cycle. The base TLB mechanism functions identically to
a traditional TLB, providing fast access to page table entries using
a low-latency caching structure. However, the organization used in
this paper may be non-traditional, e.g., interleaved, for the purpose
of providing increased bandwidth. If a base TLB port is immedi-
ately available, the translation proceeds immediately. If a port is not
available, the request is queued until a port becomes available, at
which time it may proceed. The queuing mechanism employed is
dependent on the processor model, e.g., an out-of-order issue proces-
sor queues requests in a memory re-order buffer, while an in-order
issue processor queues requests by stalling the pipeline. Requests
are queued waiting for a port for an average latency of � ������������ . The
magnitude of � ������������ is determined by the bandwidth of the address
translation mechanism – with unlimited bandwidth � ������������ will be

Port #N

VPN Hit PPN

Processor Core

VPN Hit PPN

. . .

. . .

t_stalled

VPN Hit PPN VPN Hit PPN
Port #1

Pr
oc

es
so

r
M

od
el

Request Queue(s)

Request #1 Request #M

A
ddress T

ranslation M
echanism

Shielding Mechanism f_shielded

Base TLB Mechanism

f_MEM,
f_TOL

t_TLBhit,
M_TLB,
t_TLBmiss

Figure 1: A System Model of Address Translation Performance.
VPN is the virtual page number, PPN is the physical page number.

zero, with limited bandwidth it may be non-zero. How bandwidth
affects queueing latency in the processor is very complex, since it de-
pends on the frequency and distribution of requests to the translation
device. We don’t attempt to derive this relationship analytically. In-
stead, we measure precisely its impact through detailed timing sim-
ulations in Section 4. Once a request is serviced by the base TLB
mechanism, ��� �!�#"%$'&)(requests will hit in the TLB and be ser-
viced with latency � "%$'& 	���� . The remaining � "%$'& of all requests
will miss in the TLB and be serviced with latency �*"%$+&-, ����� .

Under this model of address translation, the average latency of a
translation request (as seen by the processor core), �*. " , is:

� . "0/1���2� ���
	��3�� �4�� (+56�7� ������������98 � ":$+& 	����'8 �;"%$+&<5-��"%$'&=, ����� (
The effect of the latency of address translation seen by the pro-

cessor core is tempered by two factors: 1) the processor’s ability to
tolerate latency, and 2) the relative impact of memory access latency
compared to other latencies. Therefore, the system impact of address
translation latency, measured as the average time per instruction due
to address translation latency, >@?BA . " , is:

>@?BA�. " / � ����� 5C���D� � ":E9$ (�56�
. "
� "%E9$ is the fraction of address translation latency that is toler-

ated by the processor core. The workload and processor model both
affect the degree to which the processor core can tolerate latency. If
the workload exhibits sufficient parallelism and the execution model
provides latency tolerating support, the impact of address transla-
tion latency on overall performance will decrease. Processor mod-
els with high levels of latency tolerating capability include those that
support out-of-order issue, non-blocking memory access, and spec-
ulative execution.

Finally,
� �F�=�

is the dynamic fraction of all instructions that ac-
cess memory. This factor is affected by the workload, the number
of architected registers, and the compiler’s ability to effectively uti-
lize registers. Programs that access memory often will need better
address translation performance for good system performance.

In summary, the performance of the address translation mecha-
nism is affected: 1) by its ability to shield requests from the base

L1 TLB

VPN Hit PPN

Port #1

...

VPN Hit PPN

Port #N

VPN Hit PPN

VPN Hit PPN

LARGE
(64+ entries)

VPN Hit PPN

Port #1

...

VPN Hit PPN

Port #N

VPN Hit PPN

Bank #1

VPN Hit PPN

...

Mid−sized
(<64 entries)

Mid−sized
(<64 entries)

INTERCONNECT

LARGE
(64+ entries)

VPN Hit PPN

Port #1
VPN Hit PPN

Port #N

...

Multi−ported
 TLB

Bank #M

a) b) c)

L2 TLB

small (4−16 entries)

Figure 2: Traditional High-Bandwidth Memory Designs: a) multi-ported, b) interleaved, and c) multi-level.

translation mechanism, and 2) by the latency and bandwidth of the
base translation device. The system impact of address translation
performance is, however, affected by a program’s reliance on mem-
ory access and the processor’s ability to tolerate latency.

3 High-Bandwidth Address Translation
In this section, we present new mechanisms for high-bandwidth

address translation. For each mechanism, we describe how it maps
to our framework for address translation (shown in Figure 1) and
highlight the strengths and weaknesses of the particular approach.

Our designs fall into two categories: 1) designs that extend tra-
ditional high-bandwidth memory design to the domain of address
translation, and 2) designs crafted specifically for high-bandwidth
address translation.

Techniques for delivering high-bandwidth memory access are
well developed, both in the literature and in practice. The common
approaches are multi-ported [SF91], interleaved [Rau91], and multi-
level [JW94] memory structures. We can easily extend these ap-
proaches to the address translation domain.

Piggyback ports are introduced as a technique to exploit the high
level of spatial locality in simultaneous translation requests. This
approach allows simultaneous accesses to the same virtual memory
page to combine their requests at the TLB access port. Pretransla-
tion is introduced as a technique for attaching translations to base
register values, making it possible to reuse a single translation many
times.

All of our high-bandwidth address translation designs are tar-
geted towards systems that use physically tagged caches, i.e., those
which require a translation for each memory access. Virtual ad-
dress caches, however, do not require a translation for each mem-
ory access; address translation is pushed off until data is fetched
from physical storage, e.g., when a physically addressed second-
level cache or main memory is accessed. Such a design eliminates
both bandwidth and latency concerns. Virtual address caches have,
however, two significant drawbacks which discourage their use in
real systems: 1) synonyms, and 2) lack of support for protection.

Synonyms can occur in virtually indexed caches when storage
is manipulated under multiple virtual addresses. In a multipro-
grammed environment, shared physical storage can end up in multi-
ple lines of a virtually indexed cache, creating a potential coherence
problem. In a multiprocessing environment, cache coherence opera-
tions must first be reverse-translated to remote virtual addresses be-
fore remote data can be located in the remote cache. Many solutions
have been devised to eliminate synonyms, including alignment re-
strictions on shared data [Che87], selective invalidation [WBL89],
and single address space operating systems [KCE92]. However,
these approaches have yet to come into widespread use due to per-

formance and/or implementation impacts on application and system
software. Moreover, these solutions do not solve the second prob-
lem that arises with virtual address caches, efficient implementation
of protection.

Traditionally, protection information has been logically attached
to virtual memory pages. As a result, their implementation has been
naturally integrated into the TLB. If the TLB is eliminated through
use of a virtual address cache, the problem of implementing protec-
tion still remains. One solution is to integrate protection information
into cache blocks [Hea86]. However, the page-granularity of pro-
tection information makes managing these fields both complicated
and expensive. Another solution is to implement a TLB minus the
physical page address information [KCE92] – this TLB-like struc-
ture, however, still requires high-bandwidth and low-latency access
(although, latency requirements are somewhat relaxed).

In light of these drawbacks, virtual address caches have seen lit-
tle use in real systems. In addition, it is likely that if virtual ad-
dress caches are adopted they may still employ TLB-like structures
to implement protection, which requires a high-bandwidth mecha-
nism like the ones we describe here. Consequently, we don’t con-
sider virtual address caches any further; instead, we concentrate on
address translation designs for physically tagged caches.

3.1 Multi-ported TLB
A multi-ported TLB, illustrated in Figure 2a, uses a brute force

approach to providing high-bandwidth. Each port is provided its
own data path to every entry in the TLB, implemented by either
replicating the entire TLB structure (one single-ported TLB for each
port) or multi-porting the individual TLB cells. Since every entry of
the TLB is accessible from each port of the device, this design pro-
vides a good hit rate for each port (low � ":$+&). However, the ca-
pacitance and resistance load on each access path increases with the
number of ports on the device [WE88], resulting in longer access la-
tency (� ":$+& 	����) as the number of ports or entries increases. In addi-
tion, this design incurs a large area overhead due to the many extra
wires and comparators needed to implement each port. (In CMOS
technology, the area of a multi-ported device is proportional to the
square of the number of ports [Jol91].)

Independent of access latency and implementation area consid-
erations, this design provides the best bandwidth and hit rate of all
the designs, hence, it provides a convenient standard for gauging the
performance of the other approaches that we propose.

3.2 Interleaved TLB
An interleaved TLB, shown in Figure 2b, employs an intercon-

nect to distribute the address stream among multiple TLB banks.
Each TLB bank can independently service one request per transla-

V
PN

=

VPN Hit PPN

LARGE
(64+ entries)

VPN Hit PPN

Port #1
VPN Hit PPN

Port #1

...

ID EX

Reg
File

Pre−
Xlation
Cache

PPN
Flags

PPN
Flags

IR

MEM

a) b)

V
PN

(B
ase)

=

(O
ffset)

V
PN

V
PO

Request
TLB?

To Tag Check

To Prot Check

A
G
E
N

PPN
TLB

To D−Cache

Pretranslation Pretranslation

Translations
from TLB

Figure 3: Address Translation Specific Designs: a) piggyback port, and b) pretranslation.

tion cycle. This design provides high-bandwidth access as long as
simultaneous accesses map to different banks.

The mapping between virtual page addresses and the TLB banks
is defined by the bank selection function. This function influences
the distribution of the accesses to the banks, and hence, the band-
width delivered by the device. In our evaluations, we consider both
bit selection, which uses a portion of the virtual page address to se-
lect the bank, as well as an XOR-folding scheme, which random-
izes the bank assignment by XOR’ing together portions of the virtual
page address. (XOR-folding functions have been shown to provide
better bank distribution [KJLH89].)

By its construction, an interleaved TLB may not be fully-
associative, since any particular page may only reside in one bank.
Its associativity must be limited to the associativity of the individual
banks. As a result, �#"%$+& for this design may be higher than a same-
size design with a more associative organization, possibly resulting
in longer average translation latency. The impact should be minimal,
however, if the interleaved TLB remains highly-associative.

This design will likely have better latency and area characteris-
tics than a multi-ported TLB, especially for large TLBs. While the
interconnect, typically a full crossbar, adds some latency to the ac-
cess path, this latency is mitigated by the shorter access latency of the
smaller, single-ported banks. The area overhead is concentrated in
the interconnect; for a full crossbar, the implementation area is pro-
portional to the square of number of access ports. For small numbers
of ports, sizes should not be prohibitively large.

3.3 Multi-level TLB
A multi-level TLB, shown in Figure 2c, provides high-bandwidth

and low-latency address translation by exploiting locality in pro-
gram references. When an entry from the base TLB mechanism (L2
TLB) is referenced, it is placed into in a small upper-level TLB (L1
TLB). An L1 TLB acts as a shielding mechanism; if it offers a good
hit rate, it will shield the L2 TLB from all accesses that hit in the L1
TLB, significantly reducing the bandwidth demand on the L2 TLB.

When an access misses in the L1 TLB, it must forward the request
to the L2 TLB, where L2 TLB access port contention, L2 TLB access
latency, and L2 TLB miss latency may increase overall the latency
of the access. Since the L1 TLB is small, it may be possible to use a
more effective replacement policy (e.g., LRU replacement in the L1
TLB vs. random replacement in the L2 TLB), which should improve
the hit rate of the L1 TLB.

If the processor supports hardware-based TLB consistency opera-

tions [BRG
�

89], multi-level inclusion should be enforced in the L1
TLB during L2 TLB replacements or invalidations, i.e., the entries
in the L1 TLB should be a subset of the entries in the L2 TLB. This
implementation strategy will eliminate the need for consistency op-
erations to probe the L1 TLB, which may be expensive if it is tightly
integrated into the processor pipeline.

The L1 TLB is a multi-ported TLB with enough ports to handle all
simultaneous requests from the processor core. By keeping the L1
TLB small, it is possible to provide both high-bandwidth and low-
latency access to all its entries. The additional area overhead of this
design is concentrated in the implementation of the L1 TLB, which
for small sizes and few ports should be much smaller than the L2
TLB.

At least two commercial processors have explored the use of
multi-level TLBs; Hal’s SPARC64 [Gwe95] and IBM’s AS/400
64-bit PowerPC [BHIL94] processors both implement multi-level
TLBs to meet the latency and bandwidth needs of their respective
designs. Multi-level TLB designs have long been used for reducing
the latency of instruction fetch translations [CBJ92].

3.4 Piggyback Ports
Piggyback ports, shown in Figure 3a, exploit spatial locality in

simultaneous address translation requests. When simultaneous re-
quests arrive at a TLB port, requests with identical virtual page ad-
dresses may be satisfied by the same TLB access.

To implement piggybacking, the virtual page addresses of
blocked requests are compared to the virtual page address of requests
in progress. A blocked request may use the result of a translation in
progress if their virtual page addresses match. For a single port, the
hit detection signal from the TLB port can be gated with the result
of the virtual page address comparison. The approach is similar to
read combining in multiprocessor interconnection networks [LS94].
Assuming both requests are executing under the same protection do-
main, the other fields of the translation request, i.e., protection and
page status information, may also be forwarded to other requesters
with matching virtual page addresses.

Piggyback ports have minimal impact on translation latency.
Once a request is submitted to the TLB, all other requesters can com-
pare virtual addresses in parallel with TLB access. As a result, the
impact on translation latency is limited to the gating of the TLB hit
signal. Area costs are also very small, being limited to a single com-
parator and hit signal gate per piggyback port.

3.5 Pretranslation
Pretranslation is a shielding mechanism that allows a single trans-

lation request to be used for multiple memory accesses. Figure 4 il-
lustrates the basis for this approach. Loads and stores access mem-
ory through register pointers: global accesses through the global
pointer [CCH

�

87], stack accesses through the stack pointer, and all
other references through general purpose register pointers. Pointers
are created whenever a variable is referenced, its address is taken, or
when dynamic storage is allocated. During the lifetime of a pointer,
it is dereferenced at loads and stores, and manipulated using integer
arithmetic. Over the lifetime of the pointer, it may be dereferenced
and manipulated many times.

Studies have shown, e.g. [EV93], that when pointers are manip-
ulated, it is often the case that small constant values are added to or
subtracted from the pointer. The end result, which we exploit in this
design, is that translations between successive uses of a pointer often
yield accesses to the same virtual memory page.

In traditional TLB-based address translation mechanisms, an ad-
dress translation request is made to the TLB each time a pointer is
dereferenced, often requesting the same translation on subsequent
requests. With pretranslation, we attach a translation to a register
value at the first dereference of the value, i.e., at the first load or
store to use the register as a base register value. On subsequent deref-
erences, loads and stores may use the translation (or as we term it,
pretranslation) attached to the register value provided that the vir-
tual page address of the memory access matches the virtual page
address of the attached translation. When pointers are manipulated
with arithmetic operations, any attached translation is propagated to
the destination register value. Pretranslation yields high bandwidth
as long as register pointers are reused often and point to the same vir-
tual memory page. Thus, a single translation request from the base
TLB mechanism may be used multiple times.

Our pretranslation design is shown integrated into a processor
pipeline in Figure 3b. Pretranslations are accessed in parallel with
register file access in the decode stage of the pipeline, making the
pretranslation available by the start of instruction execution. If the
instruction is an arithmetic operation, the pretranslation is attached
to the result register value. For loads and stores, the pretranslation,
if available, is used to elide TLB access if the virtual page addresses
match. If the virtual page addresses do not match, a translation re-
quest is forwarded to the base translation mechanism. The result of
the translation is attached to the base register value.

Two important considerations affect the design of the mecha-
nism used to attach pretranslations to register values. First, a single
pointer value may reference multiple pages. A suitable mechanism
to attach multiple translations to a single register may improve per-
formance, e.g., a few bits from the offset could be combined with
the base register identifier to form the identifier of a pretranslation.
Second, only a fraction of all registers will be pointer values at any
one time, thus, storage need not be allocated for each register. It suf-
fices to use a small cache (which we term a pretranslation cache) to
hold pretranslations. If this cache is kept small, it will facilitate high-
bandwidth and low-latency access to pretranslations.

Any changes in virtual memory state, e.g., address mapping, page
size, or access permission, must be reflected in the pretranslation
cache, otherwise, invalid accesses may go undetected. If virtual
memory state changes are infrequent, it may be sufficient to simply
flush the pretranslation cache whenever changes occur.

The VAX IPA register used a similar technique to reuse a trans-
lation for instruction fetching [LE89]. The current PC physical ad-
dress translation is stored in the Instruction Physical Address (IPA)
register, and this translation is used to access the cache until: 1) the
PC crosses a page boundary, or 2) a branch is taken. On either of
these events, the previous translation is invalidated and another ad-
dress translation of the PC is initiated. Bray’s translation hit buffer
(THB) [BF92] further extends this idea to include a prediction of the

Use/ManipulationCreation Death

for (p=start; p<end; p++)
 if (p−>tag)
 break;
 .
 .
 .
p=...

a) b)

p++

p=start
p−>tag

p=...

Figure 4: The Life of a (Register) Pointer. Figure a) shows a C code
fragment in which pointer p strides through an array. Figure b) illustrates
the operations that occur over the lifetime of pointer p.

next translation as well.
Pretranslation can be viewed as an extension of Chiueh and Katz’s

branch address cache (BAC) [CK92], which was applied as a mech-
anism to reduce access latency of physically indexed caches. (A sim-
ilar mechanism was proposed in [HHL

�

90].) Our design extends
the BAC technique to provide high-bandwidth translation. By at-
taching the virtual page address to a register value, the base TLB
mechanism does not have to be accessed to validate use of an at-
tached physical page address. Like the BAC, our design provides
the physical page address by the end of instruction decode. Thus, it
may be used to access a physically indexed cache without an added
latency for address translation.

Our design includes two modifications to the original BAC mech-
anism. First, our design tracks instructions that create pointer values,
and propagates the pretranslation of any operand to the result reg-
ister. This optimization is important for good performance on op-
timized code where register copies occur often, for example, during
instruction scheduling or loop unrolling. Second, we employ a small
cache to store pretranslations, instead of the larger BAC. Since only
a fraction of all registers contain pointer values at any one time, our
small pretranslation cache provides an excellent hit rate.

4 Experimental Evaluation
We evaluated the relative merits of our high-bandwidth address

translation designs by extending a detailed timing simulator to sup-
port the proposed translation mechanisms and by examining the
performance of programs running on the extended simulator. We
varied the page size, processor issue model, and number of archi-
tected registers to see what affect these system parameters had on
the translation mechanisms. All the results presented in this sec-
tion are run-time weighted averages across all the benchmarks. In-
dividual results for all experiments are available via FTP in the file
“ftp://ftp.cs.wisc.edu/sohi/isca96-results.ps.Z”.

4.1 Methodology
All programs were compiled with GNU GCC (version 2.6.2),

GNU GAS (version 2.5), and GNU GLD (version 2.5) with max-
imum optimization (-O3) and loop unrolling enabled (-funroll-
loops). The Fortran codes were first converted to C using AT&T
F2C version 1994.09.27. All experiments were performed on an
extended (virtual) MIPS-like architecture. The architecture imple-
ments a superset of the MIPS-I instruction set [KH92], with the fol-
lowing modifications:

� extended addressing modes: register+register and post-
increment and decrement are included

� no architected delay slots

Our baseline simulator is detailed in Table 1. The simulator exe-
cutes only user-level instructions, performing a detailed timing sim-
ulation of an 8-way superscalar microprocessor and the first level
of instruction and data cache memory. The simulator supports both

Fetch Interface fetches any 8 instructions in same cache block per cycle, separated by at most one branch
Instruction Cache 32k 2-way set-associative, 32 byte blocks, 6 cycle miss latency
Branch Predictor 8 bit global history indexing a 4096 entry pattern history table (GAp [YP93]) with 2-bit

saturating counters, 3 cycle misprediction penalty
In-Order Issue Mechanism in-order issue of up to 8 operations per cycle, allows out-of-order completion
Out-of-Order Issue out-of-order issue of up to 8 operations per cycle, 64 entry re-order buffer, 32 entry
Mechanism load/store queue, loads may execute when all prior store addresses are known
Architected Registers 32 integer, 32 floating point
Functional Units 8-integer ALU, 4-load/store units, 4-FP adders, 1-integer MULT/DIV, 1-FP MULT/DIV
Functional Unit Latency integer ALU-1/1, load/store-2/1, integer MULT-3/1, integer DIV-12/12, FP adder-2/1,
(total/issue) FP MULT-4/1, FP DIV-12/12
Data Cache 32k 2-way set-associative, write-back, write-allocate, 32 byte blocks, 6 cycle miss latency,

four-ported, non-blocking interface, supporting one outstanding miss per physical register
Virtual Memory 4K byte pages, 30 cycle fixed TLB miss latency after earlier-issued instructions complete

Table 1: Baseline Simulation Model.

Mnemonic Description

T4 4-ported TLB, 128 entries, fully-associative, random replacement
T2 2-ported TLB, 128 entries, fully-associative, random replacement
T1 1-ported TLB, 128 entries, fully-associative, random replacement
I8 8-way bit-select interleaved TLB, 128 entries (16 entry fully-associative bank), random replacement in bank
I4 4-way bit-select interleaved TLB, 128 entries (32 entry fully-associative bank), random replacement in bank
X4 4-way XOR-select interleaved TLB, 128 entries (32 entry fully-associative bank), random replacement in bank
M16 4-ported 16-entry L1 TLB w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement
M8 4-ported 8-entry L1 TLB w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement
M4 4-ported 4-entry L1 TLB w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement
P8 4-ported 8-entry pretranslation cache w/LRU replacement, 128-entry L2 TLB, fully-associative, random replacement
PB2 2-ported TLB w/ 2 piggyback ports, 128 entries, fully-associative, random replacement
PB1 1-ported TLB w/ 3 piggyback ports, 128 entries, fully-associative, random replacement
I4/PB 4-way bit-select interleaved TLB w/piggybacked banks, 128 entries (32 entries/bank), random replacement in bank

Table 2: Analyzed Address Translation Designs.

in-order and out-of-order issue execution models. Simulation is
execution-driven, including execution down any speculative path
until the detection of a fault, TLB miss, or misprediction. The in-
order issue model provides no renaming and stalls whenever any
data hazard occurs on registers. The out-of-order issue model em-
ploys a 64 entry re-order buffer that implements renamed register
storage and holds results of pending instructions. Loads and stores
are placed into a 32 entry load/store queue. Stores execute when all
operands are ready; their values, if speculative, are placed into the
load/store queue. Loads may execute when all prior store addresses
have been computed; their values come from a matching earlier store
in the store queue or from the data cache. Speculative loads may ini-
tiate cache misses if the address hits in the TLB. If the load is subse-
quently squashed, the cache miss will still complete. However, spec-
ulative TLB misses are not permitted. That is, if a speculative cache
access misses in the TLB, instruction dispatch is stalled until the in-
struction that detected the TLB miss is squashed or committed. Each
cycle the re-order buffer commits up to 8 results in-order to the ar-
chitected register file. When stores are committed, the store value is
written into the data cache. The data cache modeled is a four-ported
32k two-way set-associative non-blocking cache.

We found early on that instruction fetch bandwidth was a critical
performance bottleneck. To mitigate this problem, we implemented
a limited variant of the collapsing buffer described in [CMMP95].
Our implementation supports two predictions per cycle within the
same instruction cache block, which provides significantly more in-
struction fetch bandwidth and better pipeline resource utilization.

A number of changes were made to the simulator to support our
high-bandwidth address translation mechanisms. The designs we

examine, with their mnemonic designations, are listed in Table 2.
For all configurations, TLB access is assumed to be fully over-

lapped with data cache access. Thus, address translation does not
create a visible latency unless the translation mechanism cannot im-
mediately service a translation request, i.e., due to insufficient TLB
bandwidth or a TLB miss. When multiple requests meet at a single
TLB port, the port is allocated first to the earliest issued instruction.
The interleaved schemes, i.e., I8 and I4, use bit selection to select the
TLB bank; the three or two address bits immediately above the page
offset portion of the virtual address are used to select the proper TLB
bank. The configuration X4 uses an XOR-folding of the three least
significant groups of two address bits immediately above the page
offset portion of the virtual address. In the two-level designs, i.e.,
M16, M8, and M4, the L1 TLB can service up to four hits per cycle.
L1 TLB misses are sent in the following cycle to the L2 TLB, where
they may queue if other requests are being serviced by the L2 TLB.
The minimum latency for an L1 TLB miss is 2 cycles. The pretrans-
lation cache design (P8) has a hit latency of one cycle; misses are not
detected until the cycle immediately following address generation,
resulting in at least one more cycle latency for access to the single-
ported base TLB. Like the multi-level TLB designs, requests to the
single-ported base TLB may have to queue waiting for the port. The
pretranslation cache tags are composed of the register identifier (5
bits) concatenated with the upper 4 bits of the offset of a load or zero
for any other instruction. In the piggybacked designs, i.e., PB2 and
PB1, requests that do not receive a translation port may piggyback
off any other translation performed in the same cycle. For the I4/PB
configuration, piggyback ports are provided at each bank of the TLB,
thus, simultaneous requests that meet at the same bank may be ser-

Insts Loads Stores Inst/Cycle (Ld+St)/Cycle Br Pred
Program Inputs/Options (Mil.) (Mil.) (Mil.) Issue C’mit Issue C’mit Rate (%)

Compress in 62.0 15.8 6.1 3.65 1.96 1.30 0.69 89.7
Doduc doducin 1,375.1 330.4 130.2 2.16 1.76 0.71 0.59 86.6
Espresso -t cps.in 517.5 116.5 32.7 4.48 2.90 1.32 0.84 90.2
GCC -O 1stmt.i 110.6 26.4 16.5 3.56 1.87 1.32 0.72 80.2
Ghostscript -dNOPAUSE -sDEVICE=ppm fast-addr.ps -c quit 625.2 109.1 53.3 2.76 2.18 0.73 0.55 93.3
MPEG play coil.mpg 529.6 114.9 47.9 4.10 2.82 1.19 0.87 85.9
Perl tests.pl 231.5 57.7 37.2 2.85 1.43 1.10 0.57 81.2
TFFT MEXPONENT=20, ITER=1 959.8 136.6 89.4 2.69 1.79 0.62 0.42 79.9
Tomcatv N=129 359.7 90.9 18.3 3.64 2.72 1.00 0.83 86.6
Xlisp li-input.lsp 962.7 289.2 171.6 4.17 2.52 1.86 1.21 87.9

Table 3: Program Execution Performance. Instruction, load, and store counts include only non-speculative operations. The columns labeled Issue and
C’mit indicate the average number of operations issued and committed per cycle, respectively, on the baseline 8-way out-of-order issue processor simulator.

viced at the same time if their virtual page addresses match.
In the multi-level TLBs and pretranslation design, i.e., M16, M8,

M4, and P8, page status information (i.e., reference and dirty bits) is
propagated into the upper-level caching structures. However, when
a change must be made to the page status (e.g., first reference or write
to a page), the change is immediately sent to the base TLB, where the
access may be queued if a port is not available immediately. This
write-through strategy for page status information simplifies flush-
ing of the upper-level TLB structure, since any status in the upper-
level cache structure is fully replicated in the base TLB. Immediately
propagating page status changes to the base TLB has little impact on
performance, because page status changes require little bandwidth.
Multi-level inclusion is enforced in the L1 TLBs, i.e., M16, M8, and
M4, by loading TLB misses into both the L1 TLB and the L2 TLB,
and by selectively invalidating from the L1 TLB any entry replaced
in the L2 TLB. Coherence is enforced in the pretranslation cache by
flushing it whenever an entry in the base TLB is replaced.

4.2 Analyzed Programs
When selecting benchmarks, we looked for programs with vary-

ing memory system performance, i.e., programs with large and small
data sets as well as high and low reference locality. Table 3 details
the programs we analyzed (giving their inputs, and instruction and
reference counts) and the corresponding performance on the base-
line simulator. Compress, Doduc, Espresso, Tomcatv, and Xlisp are
from the SPEC ’92 benchmark suite. Ghostscript is a postscript
viewer rendering a page with text and graphics to a PPM-format
graphics file. MPEG play is an MPEG video decoder displaying
a 79 frame compressed video file. Perl is a script language inter-
preter running its test suite. TFFT performs real and complex FFTs
on a randomly generated data set. Ghostscript and TFFT have the
largest data sets, roughly 10 and 40 Mbytes, respectively. Compress,
MPEG play, and TFFT have notably little locality in their reference
streams; small data caches and TLBs perform very poorly for these
three programs.

4.3 Baseline Performance
Figure 5 shows the performance of all the designs running on

the baseline processor model, an aggressive 8-way out-of-order is-
sue processor with 32 registers and 4k virtual memory pages. The
run-time weighted average IPC (weighted by the run-time of T4 in
cycles) is shown for each design. The IPCs are normalized to the
IPC of the four-ported TLB design (T4). The T4 design provides a
convenient benchmark, since it can service up to four translation re-
quests per cycle, thus no latency is introduced into the results due
to insufficient translation bandwidth. (The baseline simulator has a
four-ported data cache, so cache bandwidth is never a bottleneck.)
Since the timing simulations only count cycles, any clock cycle ef-
fects that a poorly scalable design (such as T4) might introduce are

T4 T2 T1 M16 M8 M4 P8 I8 I4 X4 PB2PB1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

at
iv

e
R

TW
 A

vg
 IP

C

I4/PB

Figure 5: Relative Performance on Baseline Simulator. All results are
run-time weighted average IPCs normalized to the performance of design T4.

ignored. On this common ground, the relative performance of a
particular design indicates the cycle time improvement required to
make the design worth implementing. For example, the average IPC
of the 2-ported TLB design (T2) is 94.1% of the 4-ported design
(T4), as a result, for a T2-based design to be a win, the average time
per instruction must be at least 0.941 times that of the T4 design.

The leftmost group of bars in Figure 5 are the multi-ported TLB
designs, i.e., T4, T2, and T1, with 4, 2, and 1 port(s), respectively.
These results demonstrate how sensitive the simulated system is to
address translation bandwidth. Since the four-ported TLB design
(T4) provides all the translation bandwidth the processor needs, its
performance is always the best. With half as much translation band-
width, i.e., the dual-ported TLB (T2), the average IPC drops by
6%. With a single-ported TLB (T1), performance drops off sharply
to 76% of the performance of the four-ported TLB (T4) design.
Clearly, to not impact system performance, a translation device will
have to provide at least two translations per cycle.

The second group of bars in Figure 5 are the multi-level (e.g.,
M16, M8, and M4) and pretranslation (P8) designs. The perfor-
mance of multi-level TLBs is quite good. An L1 TLB with as few
as four entries over a single-ported L2 TLB suffers less than a 4%
degradation in average IPC. Figure 6 indicates why the multi-level
designs perform so well. This figure shows the run-time weighted
average miss rates (labeled RTW Avg) for fully-associative TLBs
from 4 to 128 entries. The 4, 8, and 16 entry TLBs use LRU replace-
ment (as done for the 4, 8, and 16 entry L1 TLBs), while the 32, 64,
and 128 entry TLBs employ random replacement (as done for the

RTW Avg Compress MPEG Play TFFT

4 8 16 32 64 128

Fully-associative TLB size

0

5

10

15

20

25

30

35

40

M
is

s
ra

te
 (%

 o
f a

ll r
ef

s)

Figure 6: TLB Miss Rates. All values shown indicate percent of all refer-
ences that miss in a fully-associative TLB. The line labeled RTW Avg is the
run-time weighted average miss rate over all the benchmarks.

128 entry base TLB mechanisms). A four entry L1 TLB with LRU
replacement shields all but 13.8% of the translation requests from
reaching the L2 TLB. This shielding effect significantly reduces the
bandwidth demand on the L2 TLB. The few references that do reach
the L2 TLB have only slightly longer latency which is effectively tol-
erated by the out-of-order issue processor. A few of the programs,
most notably Compress, MPEG play, and TFFT, have poor perfor-
mance on the multi-level designs. These programs have very low
locality in the data reference stream, as can be seen by their large
TLB miss rates in Figure 6.

While the pretranslation design (P8) performs well, i.e., less than
a 3% degradation in average IPC, its overall performance is worse
than a same-sized L1 TLB. The reason for this difference lies in the
mechanism by which each design reuses translations. The pretrans-
lation design is only able to reuse a translation whenever a register
pointer is reused. The multi-level TLB design, on the other hand,
is able to reuse a translation in the L1 TLB whenever an address is
reused. The latter case is more common, since when a new register
pointer is first used on the pretranslation designs it must be trans-
lated, while on the multi-level designs, the address the new register
pointer creates may be in the L1 TLB. It is interesting to note that
reference locality and register reuse are sometimes orthogonal. In a
few specific instances, e.g., Compress and GCC, the pretranslation
designs performed better than a same-sized L1 TLB. This contradic-
tory behavior is likely due to better cache management for the pre-
translation design. When new pointer values are created, they are re-
inserted into the pretranslation cache, which places the entry on the
tail of the LRU queue. Other benefits of the pretranslation cache,
such as early presentation of the physical page address should fur-
ther motivate the use of this design. (Our simulations do not take
advantage of early presentation of the physical page address.)

The interleaved designs did not perform as well as the multi-level
designs, providing on the average less bandwidth than a dual-ported
TLB (T2). This rather lackluster performance was not due to the
set-associative organization required by the interleaved configura-
tions. All of the configurations analyzed were at least 16-way set-
associative and possessed excellent hit rates. Poor performance was
due to bank conflicts which delayed requests. Increasing the number
of banks (I8) or use of an XOR-folding bank selection function (X4)
provided only marginal benefit, suggesting that many simultaneous
accesses were to the same page, thus no increase in interleaving or
change in bank selection function could eliminate conflicts.

The piggybacked designs, i.e., PB2 and PB1, performed better
than the interleaved designs. Piggybacking a single-ported TLB

T4 T2 T1 M16 M8 M4 P8 I8 I4 X4 PB2PB1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

at
iv

e
R

TW
 A

vg
 IP

C

I4/PB

Figure 7: Relative Performance with In-order Issue.

(PB1) resulted in only a 6% worse average IPC than the four-ported
TLB design (T4). Clearly, many simultaneous accesses are to the
same virtual page. However, not all concurrent accesses reference
the same page as seen in the improved performance of the piggy-
backed dual-ported TLB design (PB2). This design can perform two
independent translations per cycle, all other requests may use the re-
sult of either translation. The piggybacked dual-ported TLB design
(PB2) performs nearly as well as the four-ported TLB design (T4).

Design I4/PB is an interleaved TLB with piggyback ports at each
bank. This design leverages off the complementary benefits of the
interleaved and piggybacked approaches. For an address stream
with little spatial locality, requests will be steered to different banks
and be serviced in parallel. For an address stream with good spatial
locality, requests to the same page will be steered to the same bank
and can share the translation result using the piggyback ports. This
design should account for only a minimal increase in translation la-
tency, since the addition of the piggyback ports only adds a single
gate to the hit detection signal. (The virtual page address comparison
to determine if the translation may be piggybacked occurs in parallel
with bank access.) As shown in the Figure 5, this design performs
very well, resulting in only a 1% degradation in average IPC.

4.4 Impact of In-Order Issue Model
Figure 7 shows the performance of the designs under the same

conditions as Figure 5 except the processor is constrained to use an
in-order issue model. This modification has two competing effects
on the results. First, the average IPC of the in-order issue proces-
sor is markedly lower than that of the out-of-order issue processor,
i.e., 1.156 vs. 2.094, respectively. Consequently, the bandwidth de-
mand on the address translation mechanism is reduced. Second, the
in-order issue processor model cannot tolerate latency as effectively
as the out-of-order issue processor. Thus, it is much more sensitive
to address translation latency introduced by insufficient bandwidth.

Figure 7 shows the results of the experiments running on the 8-
way in-order issue processor. The multi-ported TLB designs, i.e.,
T4, T2, and T1, demonstrate the reduced bandwidth demand on the
address translation. With only a single-ported TLB (T1), perfor-
mance only degrades 6% below performance with a four-ported TLB
(T4). The multi-level designs still perform well, although the per-
formance of the 4 entry L1 TLB (M4) was affected more by the in-
order issue model than the 8 (M8) and 16 (M16) entry designs. This
result is likely due to the reduced latency tolerating capabilities of
the in-order issue model, which cannot tolerate the 2 or more cycle
latency incurred for the 13.8% of all memory accesses that must be
serviced by the L2 TLB. The out-of-order issue model tolerates this
latency much better than the in-order model, resulting in better over-
all performance. The interleaved designs perform much better on the

T4 T2 T1 M16 M8 M4 P8 I8 I4 X4 PB2PB1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
R

el
at

iv
e

R
TW

 A
vg

 IP
C

I4/PB

Figure 8: Relative Performance with 8k Pages.

in-order issue model. The degradation in IPC dropped from 10% to
about 5% for these experiments. The reduced bandwidth demands
on the interleaved designs reduces the number of bank conflicts. The
piggybacked designs all perform better, with the PB2 and I4/PB de-
signs experiencing virtually no degradation in average IPC.

4.5 Impact of Increased Page Size
A recent trend in TLB design has been to increase page sizes

[TH94]. This trend is prompted by workloads with large data sets
and/or little locality. Increased page size has a number of effects on
the performance of the designs. With the same number of TLB en-
tries, more memory may be mapped, which can reduce the number of
TLB misses for both the base and L1 TLBs. Increased page size will
increase the lifetime of pretranslations, allowing a pointer to stride
further before leaving a page. Larger pages will also affect bank se-
lection in the interleaved TLB designs, address bits formerly used to
select the bank will become part of the page offset of the larger page.
Changing the bank selection function will affect the distribution of
accesses to the TLB banks.

Figure 8 shows the performance of the translation mechanisms
running on the baseline 8-way out-of-order issue processor, except
with 8k pages instead of 4k pages. The performance of the multi-
ported designs is mostly unchanged, because the TLB miss rates
were unchanged. The miss rates with a 128 entry TLB with 4k pages
are already very low. The multi-level and pretranslation designs ben-
efited from the larger page size. The L1 TLBs can map more mem-
ory and hence have better hit ratios, while the pretranslation cache
benefited from longer pretranslation lifetimes. The interleaved de-
signs performed roughly the same as with 4k pages, although there
were some large variations in individual program performance due
to changes in the bit selection function. As expected, the larger page
size improved the performance of the piggybacked designs, i.e., PB2
and PB1 and I4/PB, since the larger page size provides more oppor-
tunity to piggyback requests.

4.6 Impact of Fewer Registers
A number of architectures in wide-spread use today have few

architected registers, e.g., the x86 or System/370 architectures. To
evaluate the efficacy of our high-bandwidth translation mechanisms
for these architectures, we measured the performance of the bench-
marks recompiled to use only 8 integer and 8 floating point registers
(one-quarter the normal supply). The primary effect of fewer reg-
isters is an increased number of loads and stores, as many as 346%
more for Tomcatv. Most of these references are directed to the stack
and global regions of the data memory address space with a high de-
gree of spatial and temporal locality. The results of the experiments

T4 T2 T1 M16 M8 M4 P8 I8 I4 X4 PB2PB1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
el

at
iv

e
R

TW
 A

vg
 IP

C

I4/PB

Figure 9: Relative Performance with Fewer Registers (8 int/8 fp).

are shown in Figure 9. All simulations were performed on the base-
line 8-way out-of-order issue processor with 4k pages.

Even with the many extra memory accesses, the multi-level de-
signs perform well. However, the pretranslation design (P8) suf-
fered because (with few registers) pointer register value lifetimes
were severely shortened due to many extra spills. When a pointer
is spilled to the stack its pretranslation is lost, thus, another transla-
tion request must be made to the single-ported base TLB when it is
reloaded. The performance of the interleaved designs was impacted
significantly, dropping nearly 10% overall. Comparing the multi-
level performance to the interleaved designs supports the conclusion
that the many extra references have a high degree of locality. How-
ever, as shown by the poor performance of the piggybacked single-
ported TLB designs (PB1), the locality is not always to the same vir-
tual memory page. The interleaved and piggybacked design (I4/PB)
performs slightly worse, suggesting that the extra accesses may have
spatial locality spanning a page, which could occur for very large
stack frames or many extra accesses directed to a large global region.

5 Summary and Conclusions
Four alternative mechanisms for high-bandwidth address trans-

lation were presented: interleaved TLBs, multi-level TLBs, piggy-
back ports, and pretranslation. These translation mechanisms all
have latency and area characteristics that scale better than a simple
multi-ported TLB, providing architects with better design choices as
architectural and workload trends make it increasingly difficult to
rely on a multi-ported TLB for good performance.

We performed extensive evaluations of a number of designs em-
ploying these basic high-bandwidth mechanisms. We examined
their performance in a number of contexts: with out-of-order and in-
order issue processors, with large and small pages, and on architec-
tures with many and few registers.

Overall, we found several designs performed on par with a four-
ported TLB. The multi-level TLB designs performed well except for
programs with poor reference locality. The interleaved and piggy-
backed designs complement each other; an interleaved TLB with
piggybacking at each bank performed well for all programs. Alone,
the interleaved designs performed poorly due to many simultaneous
accesses to the same bank, which without support for piggybacking
are serialized at the bank. Piggybacking alone also performed poorly
over a single-ported TLB due to many accesses occurring simulta-
neously to different pages. A piggybacked dual-ported TLB appears
to be an adequate substitute for a four-ported TLB.

The pretranslation design also performed well, although its per-
formance was slightly worse than a same-sized multi-level TLB de-
sign. Other benefits of this design should motivate its use. Pre-
translations are available early in the pipeline, facilitating the use

of upper-level physically indexed caches. In addition, attaching ad-
dress information to physical registers prior to reception of their re-
sults could have other benefits, e.g., classifying computation as ac-
cess and execute, or using the address information to disambiguate
memory references.

With in-order issue, bandwidth demand on the translation mech-
anism is reduced, but it still must perform well to provide good sys-
tem performance due to the reduced latency tolerating capability of
the in-order issue processor. The reduced bandwidth appears to be
the stronger force, resulting in better overall performance for all the
translation designs.

With larger pages (i.e., 8k vs. 4k), the multi-level, pretranslation,
and piggybacked designs performed well. Larger pages allow the L1
TLBs to map more address space and benefit pretranslation because
pointers may stride further before a pretranslation is invalidated.

With few registers (i.e., 8 int/8 fp vs. 32 int/32 fp), bandwidth de-
mands on the translation mechanism rose sharply. All but the multi-
level designs suffered worse performance. The high degree of refer-
ence locality in the extra references generated allowed a small L1
TLB to service most of the load. Pretranslation performed worse
with fewer registers due to shorter register lifetimes.

Clearly, there exist many effective alternatives to the brute force
approach of multi-porting the TLB. The designs presented in this pa-
per should give architects plenty of choices when multi-ported TLB
designs become impractical.

Acknowledgements
We thank Scott Breach, Dionisios Pnevmatikatos, and the ref-

erees for their comments on drafts of this paper. This work was
supported in part by NSF Grants CCR-9303030 and MIP-9505853,
ONR Grant N00014-93-1-0465, a donation from Intel Corp., and by
U.S. Army Intelligence Center and Fort Huachuca under Contract
DABT63-95-C-0127 and ARPA order no. D346. The views and
conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the U. S. Army Intelli-
gence Center and Fort Huachuca, or the U.S. Government.

References
[BF92] B. K. Bray and M. J. Flynn. Translation hint buffers to reduce

access time of physically-addressed instruction caches. Proc.
of the 25th Annual International Symposium on Microarchitec-
ture, 23(1):206–209, December 1992.

[BHIL94] J. Borkenhagen, G. Handlogten, J. Irish, and S. Levenstein.
AS/400 64-bit PowerPC-compatible processor implementa-
tion. ICCD, 1994.

[BRG
�

89] D. Black, R. Rashid, D. Golub, C. Hill, and R. Baron. Transla-
tion lookaside buffer consistency: A software approach. Proc.
of the 3rd International Conference on Architectural Support
for Programming Languages Operating Systems, pages 113–
122, 1989.

[CBJ92] J. B. Chen, A. Borg, and N. P. Jouppi. A simulation based
study of TLB performance. Proc. of the 19th Annual Interna-
tional Symposium on Computer Architecture, 19(2):114–123,
May 1992.

[CCH
�

87] F. Chow, S. Correll, M. Himelstein, E. Killian, and L. Weber.
How many addressing modes are enough. Proc. of the 2nd In-
ternational Symposium on Architectural Support for Program-
ming Languages and Operating Systems, pages 117–121, Oc-
tober 1987.

[Che87] R. Cheng. Virtual address caches in UNIX. Proc. of the Summer
1987 USENIX Technical Conference, pages 217–224, 1987.

[CK92] T. Chiueh and R. H. Katz. Eliminating the address transla-
tion bottleneck for physical address cache. Proc. of the 5th In-
ternational Symposium on Architectural Support for Program-
ming Languages and Operating Systems, 27(9):137–148, Oc-
tober 1992.

[CMMP95] T. Conte, K. Menezes, P. Mills, and B. Patel. Optimization of
instruction fetch mechanisms for high issue rates. Proc. of the
22nd Annual International Symposium on Computer Architec-
ture, 23(2):333–344, June 1995.

[EV93] R. J. Eickemeyer and S. Vassiliadis. A load-instruction unit
for pipelined processors. IBM J. Res. Develop., 37(4):547–564,
July 1993.

[Gwe95] L. Gwennap. Hal reveals multichip SPARC processor. Micro-
processor Report, 9(3):1–11, March 1995.

[Hea86] M. Hill and et al. Design decisions in SPUR. IEEE Computer,
19(11):8–22, November 1986.

[HHL
�

90] K. Hua, A. Hunt, L. Liu, J-K. Peir, D. Pruett, and J. Temple.
Early resolution of address translation in cache design. Proc. of
the 1990 IEEE International Conference on Computer Design,
pages 408–412, September 1990.

[HP90] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc.,
San Mateo, CA, 1990.

[Jol91] R. Jolly. A 9-ns 1.4 gigabyte/s, 17-ported CMOS register file.
IEEE J. of Solid-State Circuits, 25:1407–1412, October 1991.

[JW94] N. P. Jouppi and S. J.E. Wilton. Tradeoffs in two-level on-chip
caching. Proc. of the 21st Annual International Symposium on
Computer Architecture, 22(2):34–45, April 1994.

[KCE92] E. J. Koldinger, J. S. Chase, and S. J. Eggers. Architectural sup-
port for single address space operating systems. Proc. of the
5th International Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems, 27(9):175–186,
October 1992.

[KH92] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice
Hall, Englewood Cliffs, NJ, 1992.

[KJLH89] R. E. Kessler, R. Jooss, A. Lebeck, and M. D. Hill. Inexpen-
sive implementations of set-associativity. Proc. of the 16th
Annual International Symposium on Computer Architecture,
17(3):131–139, 1989.

[LE89] H. Levy and R. Eckhouse. Computer Programming and Archi-
tecture, The VAX. Digital Press, 1989.

[LS94] A. Lebeck and G. Sohi. Request combining in multiprocessors
with arbitrary interconnection networks. IEEE TPDS, Novem-
ber 1994.

[Rau91] B. R. Rau. Pseudo-randomly interleaved memory. Proc. of the
18th Annual International Symposium on Computer Architec-
ture, 19(3):74–83, May 1991.

[SF91] G. S. Sohi and M. Franklin. High-bandwidth data memory
systems for superscalar processors. Proc. of the 4th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pages 53–62, April 1991.

[TH94] M. Talluri and M. D. Hill. Surpassing the TLB performance
of superpages with less operating system support. Proc. of
the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, 29(11):171–
182, November 1994.

[WBL89] W.-H. Wang, J.-L. Baer, and H. M. Levy. Organization and per-
formance of a two-level virtual-real cache hierarchy. Proc. of
the 16th Annual International Symposium on Computer Archi-
tecture, 17(3):140–148, May 1989.

[WE88] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design:
A Systems Perspective. Addison–Wesley Publishing, 1988.

[YP93] T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. Proc. of the
20th Annual International Symposium on Computer Architec-
ture, pages 257–266, May 1993. Computer Architecture News,
21(2), May 1993.

