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Abstract

For many programs, especially integer codes, untolerated load in-
struction latencies account for a significant portion of total execution
time. In this paper, we present the design and evaluation of a fast
address generation mechanism capable of eliminating the delays
caused by effective address calculation for many loads and stores.

Our approach works by predicting early in the pipeline (part of) the
effective address of a memory access and using this predicted address
to speculatively access the data cache. If the prediction is correct,
the cache access is overlapped with non-speculative effective address
calculation. Otherwise, the cache is accessed again in the following
cycle, this time using the correct effective address. The impact on the
cache access critical path is minimal; the prediction circuitry adds
only a single OR operation before cache access can commence. In
addition, verification of the predicted effective address is completely
decoupled from the cache access critical path.

Analyses of program reference behavior and subsequent perfor-
mance analysis of this approach shows that this design is a good
one, servicing enough accesses early enough to result in speedups
for all the programs we tested. Our approach also responds well
to software support, which can significantly reduce the number of
mispredicted effective addresses, in many cases providing better
program speedups and reducing cache bandwidth requirements.

1 Introduction

Successful high-performance processor implementations require a
high instruction completion rate. To achieve this goal, pipeline haz-
ards must be minimized, allowing instructions to flow uninterrupted
in the pipeline. Data hazards, an impediment to performance caused
by instructions stalling for results from executing instructions, can
be minimized by reducing or tolerating functional unit latencies. In
this paper, we focus on a pipeline optimization that reduces the la-
tency of load instructions, resulting in fewer data hazards and better
program performance.

There are many contributing factors to the latency of a load in-
struction. If a load hits in the data cache, the latency of the operation
on many modern microprocessor architectures is 2 cycles: one cycle
to compute the effective address of the load, and one cycle to access
the data cache. If the load does not hit in the data cache, the latency

is further increased by delays incurred with accessing lower levels
of the data memory hierarchy, e.g., cache misses or page faults.

Figure 1 illustrates how load instruction latency can affect pro-
gram performance. The figure shows a traditional 5-stage pipeline
executing three dependent instructions. The pipelined execution
continues without interruption until the sub instruction attempts to
use the result of the previous load instruction. In a traditional 5-
stage pipeline, a load instruction requires the EX stage for effective
address calculation and the MEM stage for cache access. The result
of the load operation is not available until the end of cycle 5 (as-
suming a single cycle cache access and the access hits in the data
cache). This situation creates a data hazard on register rw , forcing
the dependent sub instruction to stall one cycle. As a result, the EX
stage of the pipeline is idle in cycle 5 – if the latency of the load
instruction were only one cycle, the code sequence would complete
one cycle earlier.

Much has been done to reduce the performance impact of load
latencies. The approaches can be broadly bisected into two camps:
techniques which assist programs in tolerating load latencies, and
techniques which reduce load latencies. Tolerating load latencies in-
volves moving independent instructions into unused pipeline delay
slots. This reallocation of processor resources can be done either at
compile-time, via instruction scheduling, or at run-time with some
form of dynamic processor scheduling, such as decoupled, dataflow,
or multi-threaded. For a given data memory hierarchy, a good ap-
proach to reducing load latencies is through better register allocation.
Once placed into a register, load instructions are no long required to
access data.

There are, however, limits to the extent to which existing ap-
proaches can reduce the impact of load latencies. Tolerating tech-
niques require independent work, which is finite and usually quite
small in the basic blocks of control intensive codes, e.g., many integer
codes [AS92]. The current trend to increase processor issue widths
further amplifies load latencies because exploitation of instruction
level parallelism decreases the amount of work between load instruc-
tions. In addition, tolerating these latencies becomes more difficult
since more independent instructions are required to fill pipeline de-
lay slots. Global scheduling techniques [Fis81, MLC+92, ME92]
have been developed as a way to mitigate this effect. Latency re-
duction in the form of register allocation is limited by the size and
addressability of register files, forcing many program variables into
memory.

Our approach, called fast address calculation, works to reduce
load instruction latency by allowing effective address calculation to
proceed in parallel with cache access, thereby eliminating the extra
cycle required for address generation. The technique uses a simple
circuit to quickly predict the portion of the effective address needed
to speculatively access the data cache. If the address is predicted cor-
rectly, the cache access completes without an extra cycle for address
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Figure 1: Example of an Untolerated Load Latency.
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Figure 2: Impact of Load Latency on IPC.

calculation. If the address is mispredicted, the cache is accessed
again using the correct effective address. The predictor is designed
to minimize its impact on cache access time, adding only a single OR
operation before cache access can commence. Verification of the
predicted effective address is completely decoupled from the cache
access critical path. Our approach benefits from software support: a
compiler and linker conscious of our fast address calculation mech-
anism is shown to significantly reduce the number of mispredicted
addresses.

To gauge the performance potential of fast address calculation,
we compared the IPC of 19 benchmarks executing with varied load
latencies. The experiments were performed on an aggressive 4-way
in-order issue superscalar processor simulator with a 16k direct-
mapped non-blocking data cache, with 32 byte blocks, and a 6 cycle
miss delay. The programs were compiled with GNU GCC for an
extended MIPS target. GCC employs local instruction scheduling
and aggressive priority-based register allocation, thus these numbers
are representative of an environment where the compiler works to
tolerate and eliminate load latencies. (Refer to Section 5 for a
detailed description of our experimental framework.) The results of
our experiments are shown in Figure 2. Baseline shows program
performance with 2-cycle loads and a 6 cycle cache miss, 1-Cycle
Loads reduces the cache hit latency to 1 cycle but retains the 6 cycle
cache miss penalty, Perfect Cache represents a 2 cycle load latency
and a 0 cycle cache miss penalty, and 1 Cycle+Perfect represents
the case where all load instructions complete in 1 cycle. In addition,
the graph shows the average IPC, weighted by program run-time (in
cycles), for the integer codes (the left group) and the floating point
codes.

The extra cycle used for effective address calculation (as seen by
comparing 1-Cycle Loads to Baseline) has a sizable impact on the

performance of all of the programs tested. Generally, the integer
codes saw more improvement from 1 cycle loads than the floating
point codes. This result is to be expected considering the better
cache performance and shorter average functional unit latencies of
the integer codes. Moreover, the relative performance impact of 1
cycle loads is greater than executing with 2 cycle loads and a perfect
cache for more than half of the programs.

Clearly, the extra cycle used for effective address calculation is
a performance bottleneck, in many cases a larger one than that of
cache misses. In the remainder of this paper, we develop our fast
address calculation approach and examine its impact on program per-
formance. In Section 2, we present analyses of program reference
behavior, the primary motivating factor behind the design of our fast
address generation mechanism. Section 3 describes our approach
to predicting effective addresses and the pipeline modifications re-
quired. Section 4 describes ways in which software can increase
the prediction accuracy of the fast address generation mechanism.
Results of analyses of 19 benchmarks are presented in Section 5.
Finally, Section 6 describes related work and Section 7 presents a
summary and conclusions.

2 Program Reference Behavior

The case for our fast address generation approach can be made
by examining the reference behavior of programs. We profiled the
load instructions of several benchmarks compiled for an extended
MIPS architecture. (The benchmarks and architecture are detailed
in Section 5.) We made a number of key observations which are
detailed below.



Insts Total Refs Loads
Benchmark (Mil.) (Millions) % % %

Loads Stores Global Stack General

Compress 61.5 14.3 7.5 29.23 9.21 61.56
Eqntott 875.7 205.2 12.6 5.08 7.09 87.83
Espresso 474.4 109.1 25.9 3.91 5.26 90.83
Gcc 121.7 25.8 19.7 7.35 36.02 56.63
Sc 840.1 217.3 91.8 12.68 33.97 53.36
Xlisp 965.2 290.0 172.2 16.78 42.33 40.90
Elvis 249.3 67.7 28.6 1.63 6.33 92.04
Grep 122.2 42.1 1.5 1.13 3.64 95.23
Perl 203.6 50.0 34.2 10.69 43.15 46.16
YACR-2 386.8 59.0 7.1 7.61 32.72 59.68

Alvinn 1015.4 362.5 125.1 0.73 1.51 97.77
Doduc 1597.2 536.3 195.8 29.33 38.44 32.23
Ear 338.4 75.6 43.0 1.04 1.19 97.76
Mdljdp2 729.1 276.9 84.9 2.30 0.23 97.47
Mdljsp2 874.4 219.8 75.6 5.01 1.14 93.86
Ora 1057.1 231.2 98.2 33.19 33.14 33.67
Spice 1250.6 443.9 76.5 27.42 21.03 51.55
Su2cor 796.1 333.8 88.8 2.91 3.76 93.32
Tomcatv 464.2 172.8 35.9 4.68 4.07 91.25

Table 1: Program Reference Behavior.

2.1 Reference Type

There are three prevalent modes of addressing that occur during
execution, which we classify as global pointer, stack pointer, and
general pointer addressing. Table 1 details the dynamic number
of loads and stores executed by each program and the dynamic
breakdown by reference type for loads.

Global pointer addressing is used to access small global (static)
variables. The MIPS approach to global pointer addressing uses a
reserved immutable register, called the global pointer, plus a con-
stant offset to access variables in the global region of the program’s
data segment [CCH+87]. The linker constructs the global region
such that all variables referenced by name are grouped together near
the target address of the global pointer. As shown in Table 1, global
pointer addressing is prevalent in some programs, but not all. The
frequency of this mode is highly dependent on the program structure
and style.

Stack pointer addressing is used to access elements of a function’s
stack frame. The stack pointer register holds an address to the base
of the stack frame of the currently executing function. Accesses to
frame elements are made using the stack pointer register plus a con-
stant offset (positive, by convention, on the MIPS architecture). As
is the case with global pointer addressing, stack pointer addressing is
also a prevalent, but not an entirely dominating form of addressing.

The third mode of addressing, general pointer addressing, encom-
passes all other accesses. These accesses are the result of pointer
and array dereferencing occurring during program execution. Quan-
titatively, all the benchmarks make heavy use of general pointer ad-
dressing with more than half of them using it for more than 80% of
loads.

2.2 Offset Distribution

A RISC-style load has two inputs: base and offset. The base is
added to the offset during effective address computation. In our
extended MIPS architecture, the base is supplied by a register and
the offset may be supplied by either a signed 16-bit immediate
constant, i.e., register+constant addressing, or via a register,
i.e., register+register addressing.

We examined the size distribution of offsets for global, stack, and
general pointer accesses. The cumulative size distributions (using a
log scale) are shown in Figure 3 for four of the benchmarks. (These
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Figure 3: Load Offset Cumulative Distributions.

curves are representative of the other benchmarks.) The graphs
include loads using register+register addressing, in which case
the base and offset of the load are determined by convention.

The offsets applied to the global pointer are typically quite large,
being that they are partial addresses. As one would expect, there is
a strong correlation between the size of the offsets required and the
aggregate size of the global data addressed by the program.

Stack pointer offsets tend to be large as well due to the large size



of stack frames. While a stack frame may have only a few local
variables, there are overheads not apparent to high-level language
programmers which can greatly increase its size. These overheads
include register save areas, dynamic stack allocations, return address
storage, among others.

For general pointer accesses, most load offsets are small. In fact,
for a number of programs we analyzed, e.g., Alvinn and Espresso,
zero was the most common offset used. Zero offsets are primarily
the product of array subscript operations where strength reduction
[ASU86] of the subscript expression succeeded, pointer dereferences
to basic types (e.g., integers), and pointer dereferences to the first
element of a structured (record) variable.

Non-zero offsets arise from primarily three sources: structure
offsets, some array accesses, and array index constants. Structure
offsets are small constants applied to pointers when accessing fields
of a structured variable. Array base addresses are combined with
index values to implement array accesses, e.g., a[i] . Our compiler,
based on GNU GCC, only generates this form of addressing when
strength reduction of the subscript expression is not possible or fails.
(When strength reduction is successful, a zero offset suffices.) Index
constants are generated when part of an array subscript expression
is constant, e.g., array[i+10] . In addition, the compiler creates
many index constants when unrolling loops. Index constants are
usually small, although when in the higher dimension of a multi-
dimensional array, they can become large.

For a few of the floating point programs, most notable Spice and
Tomcatv, there were a significant number of large offsets. This
result indicates strength reduction of array accesses was generally
ineffective. Consequently, the compiler had to rely on the brute
force approach of adding the index variable to the base address of
the array for every array access made, creating many large (index
register) offsets.

Negative offsets are usually small immediate constants, generated
by negative array subscript constants. They occur infrequently for
both the integer and floating point intensive programs, e.g. for GCC
they account for 5.7% of the general pointer loads and about 3.2%
of all loads.

To summarize these observations, it is clear that any mechanism
designed to speed up address calculation must: 1) perform well
on all reference types, 2) perform well on small offsets, and 3)
perform well on large offsets applied to the stack and global pointers.
Secondary goals to good performance include support for predicting
large index register offsets and support for small negative offsets.
In the following section, we present our fast address calculation
mechanism, designed to satisfy these criteria while minimizing cost
and impact to processor designs.

3 Fast Address Calculation

The fast address calculation mechanism predicts effective addresses
early in the pipeline, thereby allowing loads to complete earlier.
To accomplish this task, we exploit an organizational property of
on-chip data caches.

To minimize access time, on-chip caches are organized as wide
two-dimensional arrays of memory cells (as shown in Figure 4).
Each row of the cache array typically contains one or more data
blocks [WRP92, WJ94]. To access a word in the cache, the set
index portion of the effective address is used to read an entire cache
row from the data array and a tag value from the tag array. Late
in the cycle, a multiplexor circuit uses the block offset part of the
effective address to select the referenced word from the cache row.
At approximately the same time, the tag portion of the effective
address is compared to the tag value from the tag array to determine
if the access hit in the cache. Hence, on-chip cache organizations
require the set index portion of the effective address early in the
clock cycle and the block offset and tag portion late – after the cache
row and tag have been read. Our prediction mechanism leverages

off this property of on-chip caches, allowing part of the address
calculation to proceed in parallel with cache access.

Figure 4 shows a straightforward implementation our effective
address prediction mechanism for an on-chip direct-mapped cache,
targeting ease of understanding rather than optimal speed or integra-
tion. The set index portion of the effective address is supplied very
early in the cache access cycle by OR’ing the set index portion of
the base and offset. We call this limited form of addition carry-free
addition as this operation ignores any carries that may have been
generated in or propagated into the set index portion of the address
calculation.1 Because many offsets are small, the set index por-
tion of the offset will often be zero, allowing this fast computation
to succeed. For larger offsets, like those applied to the global or
stack pointer, we can use software support to align pointer values,
thereby increasing the likelihood that the set index portion of the
base register value is zero.

In parallel with access of the cache data and tag arrays, full adders
are used to compute the block offset and tag portion of the effective
address. Later in the cache access cycle, the block offset is used by
the multiplexor to select the correct word from the cache row, and
the tag portion of the effective address is compared to the tag value
read from the tag array.

Special care is taken to accommodate small negative offsets. The
set index portion of negative offsets must be inverted, otherwise
address prediction will fail. In addition, the prediction will fail
if a borrow is generated into the set index portion of the effective
address computation. In our design, we’ve assumed that offsets from
the register file arrive too late for set index inversion, thus address
predictions for these loads and stores fail if the offset is negative.
This conservative design decision has little impact on our results
since negative index register offsets are extremely infrequent.

To complete the hardware design, we augment the cache hit/miss
detection logic with a circuit that verifies the predicted address. Us-
ing the result of this circuit, the cache controller and the instruction
dispatch mechanism can determine if the access needs to be re-
executed in the following cycle using the non-speculative effective
address (computed in parallel with the speculative cache access). A
misprediction is detected by looking for carries, either propagated
into or generated in the set index part of the effective address com-
putation. Four failure condition exist: 1) a carry (or borrow) is
propagated out of the block offset portion of the effective address
(signal Overflow in Figure 4), 2) a carry is generated in the set index
portion of the effective address (signal GenCarry), 3) a constant
offset is negative and too large (in absolute value) to result in an
effective address within the same cache block as the base register
address (signal LargeNegConst), or 4) an offset from the register file
is negative (signal IndexReg<31>).

Figure 5 illustrates our approach to fast effective address genera-
tion. Example (a) shows a pointer dereference. Since the offset is
zero, no carry is generated during address calculation and the pre-
dicted address is correct. Example (b) shows an access to a global
variable though the global pointer. In this example, the global pointer
is aligned to a large power of two, so carry-free addition is sufficient
to generate the correct address. In example (c), carry-free addition is
sufficient to predict the portion of the address above the block offset,
but full addition is required to compute the block offset. Since a
carry in not generated out of the block offset portion of the effective
address computation, the prediction succeeds. Finally, example (d)
shows a stack frame access with a larger offset. In this case, the
predicted address is incorrect because a carry is propagated out of
the block offset and generated in the set index portion of the effective
address computation.1Technically, a carry-free addition requires an XOR function, but use of
a simpler inclusive OR suffices here because the functions only differ when
address prediction fails.
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  01 1011 1000  0100
  00 0000 0110  0110
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(a)

(b)
   000...01 00
   000...00 00
   000...01 00
   000...01 00
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  00 1001 1000  0100
  00 1001 1000  0100

(c)

(d)

Generated
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   011...11 01
   000...00 00
   011...11 01
   011...11 01

   011...11 01
   000...00 00
   011...11 01
   011...11 01

  01 1011 1000  0100
  00 0001 0110  1100
  01 1011 1110  0000
  01 1100 1111  0000

   000...01 10
   000...00 00
   000...01 10
   000...01 10

load r3, 0(r8)
r8            = 0x0001ac00
offset        = 0x00000000
prediction    = 0x0001ac00
actual result = 0x0001ac00

load r3, 2436(gp)
gp            = 0x00010000
offset        = 0x00000984
prediction    = 0x00010984
actual result = 0x00010984

load r3, 102(sp)
sp            = 0x7fff5b84
offset        = 0x00000066
prediction    = 0x7fff5bea
actual result = 0x7fff5bea

load r3, 364(sp)
sp            = 0x7fff5b84
offset        = 0x0000016c
prediction    = 0x7fff5be0
actual result = 0x7fff5cf0

<−− Tag −−>  <−− Index−−>  <BO>

  10 1100 0000  0000
  00 0000 0000  0000
  10 1100 0000  0000
  10 1100 0000  0000

Generated
Carry

Figure 5: Examples of Fast Address Calculation. The address bits are
split into the tag, index and block offset fields corresponding to a 16K byte
direct-mapped data cache with 16 byte blocks.

3.1 Design Considerations

We’ve designed our prediction mechanism to minimize impact on the
cache access critical path. The two typical cache access critical paths
are denoted with bold dashed lines in Figure 4. While a much more
detailed design would be required to demonstrate the exact impact
our prediction mechanism has on the cache access critical path, we
will point out a few design features of this circuit that indicate it
should have minimal impact on cycle time. Three paths through our
prediction circuit could affect the cache access cycle time. The first
is through the tag adder. The tag portion of the effective address
computation must arrive at the tag comparator before the tag array

output becomes stable. For small addresses and large cache set
sizes, this computation will likely complete before tag comparison.
For large addresses and small cache set sizes, this computation may
not complete in time. For these designs, the logical OR operation
used to compute the set index could also be used to compute the
tag portion of the address. We have run all our experiments with
and without full addition capability in the tag portion of the effective
address computation and found this capability to be of limited value.
This result is to be expected considering the relatively small size of
load offsets compared to cache set sizes, and the large alignments
required on either the base or offset for carry-free addition to succeed
on the set index portion of the address computation but fail on the
tag portion.

The second path that could affect cycle time runs through the
block offset adder. This result must arrive at the data array multi-
plexor before the data array produces stable output. For most cache
designs, a 4- or 5-bit adder should suffice for this computation. The
complexity of the block offset adder is small, on the order of the
cache row decoders, hence, this part of our design will likely not
impact the cache access critical path.

The third path that could affect cache access cycle time is through
the prediction verification circuit. Since this circuit is completely
decoupled from the normal cache access, it cannot affect the cache
access cycle time as long as validation of the predicted effective
address completes before the end of the clock cycle. This prediction
verification signal, however, could affect processor cycle time if it
is not available early enough to allow the processor control logic
to schedule operations for the following cycle (a function of the
success and failure of memory accesses in the current cycle). Since
the verification circuit is very simple, we do not expect it to impact
the processor cycle time.

The OR operation used to generate the upper portion of the ef-
fective address is, however, directly on the critical paths denoted in
Figure 4. The impact of this operation may or may not impact pro-
cessor cycle time, depending on the specifics of the pipeline design.



In some designs, it may be possible to integrate the OR operation
into the address decoder logic or the execute stage input latches,
possibly reducing cycle time impact to zero.

Our fast address generation mechanism assumes that data cache
access can start as soon as the set index part of the effective address
is available. If this is not the case, e.g., the cache is indexed with a
translated physical address, our approach will not work.

Another important consideration is the handling of stores. The
question of whether or not to speculate stores really depends on
specifics of the memory system. If stalling a store can cause a load
to stall, e.g., the processor executes all memory accesses in order,
performance may be improved by speculatively executing stores.
For designs that speculatively execute stores, care must be taken
to ensure that a misspeculated store can be undone. For designs
employing a store buffer [Jou93], this may not pose a problem, as
the approach uses a two-cycle store sequence. In the first cycle the
tags are probed to see if the access hits in the cache, in the second
(possibly much later cycle) the store is made to the cache. Since our
fast address calculation mechanism determines the correctness of the
address after one cycle, the store buffer entry can simply be reclaimed
or invalidated if the effective address is incorrect. Possibly more
important to consider, however, is the effect of increased bandwidth
demand due to misspeculated accesses on store buffer performance.
With speculative cache accesses stealing away free cache cycles,
the processor may end up stalling more often on the store buffer,
possibly resulting in overall worse performance. We examine one
detailed design that addresses a number of these issues in Section 5.

4 Increasing Prediction Performance with
Software Support

Software support can increase the prediction accuracy of our fast
address generation mechanism by reducing the need for full-strength
addition in the set index portion of the effective address calculation.
We accomplish this task by decreasing the size of offset constants and
increasing the alignment of base pointers. Note, however, software
support is only used as a mechanism to improve the performance of
our approach, it is not required. As we show in Section 5, our fast
address calculation mechanism is remarkably resilient, providing
good speedups even without software support.

Compiler support was added to GNU GCC (version 2.6.0), linker
support was added to GNU GLD (version 2.3). The modifications
made for each type of addressing is slightly different, ensuring a
high prediction rate for each.

Global Pointer Accesses
Since the linker controls the value of the global pointer and offsets
applied to it, it is trivial to ensure all global pointer accesses are
correctly predicted. The linker limits all offsets off the global pointer
to be positive and relocates the global region to an address starting at
a power-of-two boundary larger than the largest offset applied. As
a result, carry-free addition suffices for any global pointer access.

Stack Pointer Accesses
As is the case with global pointer addressing, the compiler com-
pletely controls the value of the stack pointer and the organization of
stack frames. By aligning the stack pointer and organizing the stack
frame so as to minimize the size of offset constants, it is possible to
ensure that all stack pointer accesses are correctly predicted.

The compiler maintains alignment of the stack pointer by restrict-
ing all frame sizes to be a multiple of a program-wide stack pointer
alignment. At function invocations, the adjusted frame size is sub-
tracted from the current stack pointer. Since the stack pointer is
initially aligned in the startup code to the program-wide alignment,
the alignment is maintained throughout the entire execution.

Nearly all stack pointer addressing is performed on scalar vari-
ables. By sorting the elements of the stack frame such that the scalars
are located closest to the stack pointer, the compiler can minimize
the size of offsets constants applied to the stack pointer.

Using this approach, carry-free addition suffices for address com-
putations in which the offset is smaller than the alignment of the
stack pointer. Some programs, most notably the FORTRAN codes,
have a large variance in frame sizes, and thus benefit little from a
program-wide stack pointer alignment. For stack frames larger than
the program-wide stack pointer alignment, the compiler employs
an alternative approach: the stack pointer is explicitly aligned to
a larger alignment by AND’ing the stack pointer with the adjusted
power-of-two frame size times a negative one. Since this approach
creates variable size stack frames, a frame pointer is required for
access to incoming arguments not in registers. In addition, the pre-
vious stack pointer value must be saved at function invocation and
restored when the function returns.

The impact of this approach is increased stack memory usage –
frame size overhead can grow as much as 50%. If a program uses
more memory, cache and virtual memory performance could suffer.
We provide the programmer a compiler option to limit the size of
alignments enforced on the stack pointer, thereby providing a means
to control memory overhead.

General Pointer Accesses
For general pointer accesses, offsets are typically small and positive,
the result of index constants and structure offsets. The compiler
increases the likelihood of a carry not being generated out of the
block offset portion of the effective address by aligning variable
allocations to a multiple of the cache block size.

Global and local variable alignments are increased to the next
power-of-two larger than the size of the variable, bounded by the
block size of the target cache. Dynamic storage alignments are in-
creased in the same manner by the dynamic storage allocator, e.g.,
malloc() . Since many languages, e.g., C, employ type-less dy-
namic storage allocation, the allocator lacks the type information
required to minimize alignment overheads. As a result, all dynamic
allocations are aligned to the maximum allowed alignment, typically
the block size of the target cache. Alloca() allocations (used heav-
ily by the benchmarks GCC and Grep) employ a similar approach
for dynamic storage allocation within stack frames.

To ensure proper alignments of interior objects, e.g., array ele-
ments, the compiler rounds up the size of structured types to the next
larger power of two, bounded by the block size of the target cache.
Since basic types, e.g., integers and floats, are already a power of
two in size, overheads are only incurred for arrays of structured vari-
ables. The compiler does not, however, enforce stricter alignments
on structure fields, as this would serve to spread out elements of a
structure. Our experiments indicated that having dense structures is
a consistently bigger win than enforcing stricter alignments within
structured variables.

As is the case with larger stack frame alignments, these tech-
niques can increase memory usage by as much as 50%. Hence,
a compiler option was provided to limit the alignments placed on
variable addresses and sizes.

In addition to the changes described above, we also made mod-
ifications to GCC’s existing optimization routines to improve the
performance of optimized code. Specifically, we modified com-
mon subexpression elimination (CSE) to give preference to aligned
pointer subexpressions. Small modification were also made to the
strength-reduction phase of loop optimization. We modified the ad-
dress cost functions so as to make register+register addressing
seem very expensive. This modification makes GCC work harder
to strength-reduce loop induction variables, resulting in more zero
offset loads and stores within loops.



5 Experimental Evaluation

We evaluated the effectiveness of our approach by examining its
ability to predict the effective addresses generated by 19 non-trivial
programs. To examine the efficacy of software support, we per-
formed the experiments on programs compiled with and without
fast address calculation specific optimizations. In addition, we in-
vestigated the impact of fast address calculation in the context of
a realistic processor model by examining each program’s perfor-
mance running on a detailed superscalar timing simulator extended
to support fast address calculation.

5.1 Experimental Framework

All experiments were performed with programs compiled for an ex-
tended MIPS architecture. The architecture is functionally identical
to the MIPS-I ISA [KH92], except for the following differences:� extended addressing modes: register+register and post-

increment and decrement are included� no architected delay slots

The addition of register+register addressing allowed us to
more fairly evaluate the benefits of fast address calculation. We
found that without this mode some programs, e.g., spice2g6, showed
dramatic performance improvements – the result of which was not
due to the merits of fast address calculation, but rather to the pro-
gram’s need for register+register addressing. This addressing
mode is not supported in the base MIPS ISA, but can be efficiently
synthesized using fast address calculation.2 We removed all ar-
chitected delay slots to simplify the implementation of a detailed
superscalar timing simulator.

All programs were compiled with GNU GCC (version 2.6.0),
GNU GAS (version 2.2), and GNU GLD (version 2.3) with maxi-
mum optimization (-O3) and loop unrolling enabled (-funroll-loops).
We added fast address calculation specific optimizations to GCC;
these additions include compiler arguments to control: structure
element alignment, structure size alignment, stack frame size align-
ment, static allocation alignment, and dynamic allocation alignment.
In addition, we extended GLD to enforce global pointer alignments.
The compiler and linker support required was surprisingly simple,
totaling less than 1000 lines of code. The Fortran codes were first
converted to C using AT&T F2C version 1994.09.27; we were care-
ful to configure F2C such that it promoted all local scalar variables
from C statics to true local variables (automatics).

When performing fast address calculation specific optimizations,
we optimized both the library codes as well as the program code.
The following fast address calculation specific optimizations were
applied:� global pointer alignment: GLD aligned the global pointer to a

power-of-two value larger than the largest relocation applied to
it. All global pointer relocations were restricted to be positive.
(Normally, the initial value of the global pointer is dependent
on the size of the data segment and is not aligned.)� stack pointer alignment: GCC rounded all stack frame sizes up
to the next multiple of 64 bytes, resulting in a program-wide
stack pointer alignment of 64 bytes. (Normally, GCC maintains
an 8 byte alignment on the stack pointer.) Frames larger than 64
bytes enforce larger stack pointer alignments of up to 256 bytes
by explicitly aligning the stack pointer on function invocation
and restoring the original value on function return.2The MIPS-I ISA, with 2-cycle loads, can

synthesize register+register addressing using an add and a zero-
offset lw in 3 cycles. The same architecture, with support for fast address
calculation, can synthesize the mode in 2 cycles.

Benchmark Input Options/Modifications

Compress in
Eqntott int pri 3.eqn
Espresso cps.in
GCC 1stmt.i
Sc loada1
Xlisp li-input.lsp Short input (queens 8)
Elvis unix.c %s/for/forever/g, %s/./& /g
Grep 3x inputs.txt -E -f regex.in
Perl tests.pl
YACR input2

Alvinn NUM EPOCHS=50
Doduc doducin
Ear short.m22 args.short
Mdljdp2 mdlj2.dat MAX STEPS=150
Mdljsp2 mdlj2.dat MAX STEPS=250
Ora ITER=60800
Spice2g6 greycode.in .tran .7n 8n
Su2cor su2cor.in Short input
Tomcatv N=129

Table 2: Benchmark programs and their inputs.� static variable alignment: static allocations were placed with
an alignment equal to the next power-of-two larger or equal to
the size of the variable, not exceeding 32 bytes.� dynamic variable alignments: malloc() and alloca() allo-
cation alignments were increased from the default of 8 to 32
bytes.� structured variable internal alignments: internal structure off-
sets were not changed, however, structure sizes were increased
to the next power-of-two larger than or equal to the normal
structure size, with the overhead not exceeding 16 bytes.

5.2 Analyzed Programs

In selecting benchmarks, we tried to maintain a good mix be-
tween integer and floating point codes. Table 2 details the programs
we analyzed and their inputs. Fifteen of the analyzed benchmarks
are from the SPEC92 benchmark suite [SPE91]. In addition, we
analyzed four other integer codes: Elvis, a VI-compatible text edi-
tor performing textual replacements in batch mode, Perl, a popular
scripting language running its test suite, Grep performing regular
expression matches in a large text file, and YACR-2, a VLSI channel
router routing a channel with 230 terminals.

5.3 Prediction Performance

The left side of Table 3 shows the baseline statistics for our bench-
mark programs without software support. Shown are the number
of instructions, execution time in cycles on our baseline simulator
(i.e., a 4-way superscalar without fast address generation support –
described in Section 5.5), total loads and stores executed, instruction
and data cache miss ratios for 16k byte direct-mapped caches with
32 byte blocks, and total memory size.

The right side of Table 3 lists the prediction failure rates for
all loads and stores for 16 and 32 byte cache block sizes, i.e., the
case where the prediction circuitry is able to perform 4 or 5 bits
of full addition in the block offset portion of the effective address
computation, respectively.

Overall, the percentage of incorrect predictions is quite high, re-
flecting the case that many pointers are insufficiently aligned to allow
for carry-free addition in the set index part of the effective address



Miss Ratio Mem Failed Predictions (percent)
Benchmark Insts Cycles Loads Stores I-cache D-cache Usage Block Size 16 Block Size 32

(Mil.) (Mil.) (Mil.) (Mil.) 32b 32b Load Store Load Store

Compress 61.5 58.4 14.3 7.5 0.00 15.65 438k 66.24 52.28 66.24 51.36
Eqntott 875.7 627.4 205.2 12.6 0.00 4.70 2704k 8.63 52.84 8.40 50.06
Espresso 474.4 374.0 109.1 25.9 0.16 2.54 400k 12.25 8.14 11.06 7.75
Gcc 121.7 109.5 25.8 19.7 1.63 3.09 1416k 49.94 42.87 47.10 38.88
Sc 840.1 811.3 217.3 91.8 0.17 7.11 493k 40.50 58.98 32.08 55.68
Xlisp 965.2 850.6 290.0 172.2 0.71 1.72 115k 50.21 54.30 43.44 50.83
Elvis 249.3 207.1 67.7 28.6 0.50 0.44 90k 5.90 9.96 4.77 7.48
Grep 122.2 139.0 42.1 1.5 0.03 3.88 377k 4.53 45.63 2.93 44.99
Perl 203.5 214.4 50.0 34.2 3.63 4.63 3625k 45.04 43.40 42.50 41.94
YACR-2 386.9 261.0 59.0 7.1 0.01 0.67 195k 13.91 44.85 13.24 43.07

Alvinn 1015.4 1236.2 362.5 125.1 0.02 4.21 507k 2.44 3.07 2.30 2.86
Doduc 1597.2 1820.5 536.3 195.8 1.55 2.26 144k 73.01 68.68 71.62 66.33
Ear 338.4 416.5 75.6 43.0 0.00 0.02 208k 20.58 25.18 11.18 12.79
Mdljdp2 729.1 787.3 276.9 84.9 0.00 1.52 267k 31.41 16.93 27.35 16.92
Mdljsp2 874.4 1110.7 219.8 75.6 0.00 1.52 227k 29.32 10.43 28.98 10.43
Ora 1057.1 1112.9 231.2 98.2 0.00 0.33 50k 69.52 75.29 65.10 69.91
Spice 1250.6 1388.9 443.9 76.5 0.36 10.16 3227k 86.72 35.71 86.45 35.54
Su2cor 796.1 1073.3 333.8 88.8 0.08 23.55 4131k 26.10 40.24 24.74 36.04
Tomcatv 464.2 431.6 172.8 35.9 0.01 8.63 945k 44.21 32.19 43.60 31.09

Table 3: Program statistics without software support.

calculation. Some of the programs, however, have very low predic-
tion failure rates, e.g., Elvis and Alvinn. For these programs, the
frequency of zero-offset loads is very high, indicating that predic-
tion is working fairly well because effective address computation is
not required. Overall the prediction failure rate decreased when the
block size increased, since misaligned pointers benefited from more
full addition capability in our fast address calculation mechanism.

5.4 Impact of Software Support

Now we turn our attention to the potential of the software – com-
piler and linker – to improve the prediction accuracy of our fast
address calculation mechanism. The detailed program statistics
for the benchmarks compiled with fast address calculation specific
optimizations are shown in Table 4. The left hand side of the ta-
ble shows the percent change in instruction count, cycle count (on
the baseline simulator without fast address calculation), number of
loads and stores, and total memory size with respect to the program
without fast address calculation optimizations (the results in the left
hand side of Table 3). For the instruction and data cache (16k byte
direct-mapped), the table lists the absolute change in the miss ratio.

Generally, fast address calculation specific optimizations did not
adversely affect program performance on the baseline simulator. The
total instruction count as well as the number of loads and stores exe-
cuted are roughly comparable. The cycle count differences (without
fast address calculation support) were small; the largest difference
was 1.76% more cycles for GCC. Cache miss ratios saw little impact
for both the instruction and data caches.

We also examined total memory usage, as it is an indirect metric
of virtual memory performance. The largest increases experienced
were for Perl, Espresso, and Xlisp where memory demand increased
by as much as 20%. However, the absolute change in memory con-
sumption for these programs was reasonably small, much less than
a megabyte for each. In addition, we examined TLB performance
running with a 64 entry fully associative randomly replaced data
TLB with 4k pages and found the largest absolute difference in the
miss ratio to be less than 0.1% (for Perl). Given these two metrics,

we do not expect software support to adversely impact the virtual
memory performance of these programs.

As the right hand side of Table 4 shows, our software support
was extremely successful at decreasing the failure rate of effective
address predictions. Comparing the prediction failure rates in Table
4 (labeled “All”) to the 32 byte block failure rates of Table 3, we see
that the percentage of loads and stores mispredicted is consistently
lower, the prediction failure rate decreasing by more than 50% in
some cases.

A number of the programs, e.g. Spice and Tomcatv, still possessed
notably high address misprediction rates. To better understand their
cause, we profiled loads and stores to determine which were failing
most. The two dominating factors leading to address prediction
failures were:� array index failures: Many loads and stores using

register+register addressing resulted in failed predic-
tions. Our compiler only uses this addressing mode for ar-
ray accesses, and then only when strength-reduction fails or is
not possible, e.g., an array access not in a loop. (If strength-
reduction is successful, register+constant addressing suf-
fices.) As one would expect, array index values are typically
larger than the 32 byte alignment placed on arrays, resulting in
high prediction failure rates. Table 4 shows (under “No R+R”)
the prediction failure rate for all loads and stores except those
using register+register mode addressing. For many pro-
grams, array index operations are clearly a major source of
mispredicted addresses.� domain-specific storage allocators: a number of programs,
most notably GCC, used their own storage allocation mech-
anisms, this led to many pointers with poor alignment and
increased prediction failure rates.

These factors, however, are not without recourse. We are currently
investigating a number approaches aimed at limiting their effect. A
strategy for placement of large alignments should eliminate many



Insts Cycles Loads Stores Miss Ratio Mem Failed Predictions (percent)
Benchmark % % % % Change Usage Loads Stores

Change Change Change Change I-cache D-cache %Change All No R+R All No R+R

Compress -0.38 +0.50 +0.00 -0.01 -0.00 +0.00 +1.14 23.54 0.00 8.86 3.18
Eqntott +0.40 +0.15 +1.39 -0.04 -0.00 +0.00 +0.11 1.33 1.25 15.40 15.40
Espresso -0.33 -0.59 -0.01 -0.03 -0.00 -0.00 +13.25 3.57 2.52 1.08 1.14
Gcc +0.86 +1.76 +1.01 +0.90 -0.02 +0.00 +1.20 15.71 15.51 9.16 9.00
Sc -0.06 +0.12 -0.01 -0.02 -0.00 +0.00 +1.01 3.53 3.45 16.28 16.27
Xlisp -0.09 +0.80 -0.12 -0.08 -0.01 +0.00 +15.65 1.12 1.12 1.30 1.32
Elvis -0.17 +0.27 -0.30 -0.36 -0.01 -0.00 +1.11 1.36 0.99 2.42 2.42
Grep -0.72 -1.14 -0.95 -24.82 -0.00 -0.00 +3.18 1.08 0.72 3.41 3.51
Perl -0.95 +0.22 -0.53 +0.71 -0.04 +0.01 +20.03 13.31 13.31 11.33 11.09
YACR-2 +0.42 -0.17 +2.33 -0.01 -0.00 -0.00 +0.00 3.66 3.29 23.24 23.67

Alvinn +0.12 -0.03 -0.01 -0.00 -0.00 -0.00 +0.20 0.92 0.92 1.77 1.77
Doduc +0.13 +0.21 +0.06 -0.25 -0.02 -0.00 +2.78 20.92 14.11 30.13 28.49
Ear +0.04 +0.09 +0.18 -0.02 -0.00 +0.00 +2.40 12.19 12.19 12.14 12.14
Mdljdp2 +0.02 -0.34 +0.05 -0.00 -0.00 -0.00 +1.87 25.50 5.45 0.18 0.01
Mdljsp2 -0.07 +0.03 +0.10 +0.01 -0.00 +0.00 +0.44 22.17 0.44 0.29 0.01
Ora +0.24 +1.51 +0.00 +0.00 -0.00 +0.00 +10.00 20.28 16.96 1.18 1.18
Spice -0.13 +0.46 +0.12 +0.01 -0.00 +0.00 +0.28 38.00 5.15 12.11 8.26
Su2cor +0.59 +0.54 +0.24 +0.51 -0.00 -0.00 +0.12 22.16 6.62 30.22 18.86
Tomcatv +0.00 +0.03 -0.00 +0.00 -0.00 +0.00 +0.32 38.15 0.04 40.13 35.35

Table 4: Program statistics with software support. The cache block size is 32 bytes.

array index failures.3 In addition, program tuning could rectify
many mispredictions due to domain-specific allocators.

5.5 A Simulation Case Study

Prediction performance does not translate directly into program run-
time improvements. A successful effective address prediction may
or may not improve program performance, depending on whether or
not the access is on the program’s critical path. For example, if a cor-
rect prediction creates a result a cycle earlier but the result is not used
until many cycles later, program performance will be unaffected. A
true measure of performance impact requires a much more detailed
analysis. One possible measure is effective load latency, however,
this metric still does not reflect the processor’s ability to tolerate
(part of) memory latency. To gauge the performance of our fast
address calculation approach in the context of a realistic processor
model, we analyzed the performance of the benchmarks running
on a detailed superscalar timing simulator extended to support fast
address calculation.

Our baseline simulator (used to generate the cycle counts shown
in Table 3 and 4) is detailed in Table 5. The simulator executes
all user-level instructions; it implements a detailed timing model
of a 4-way in-order issue superscalar microprocessor and the first
level of instruction and data cache memory. The pipeline model we
implemented is a traditional 5 stage model, i.e., all ALU operations
begin execution in the third stage of the pipeline (EX) and non-
speculative loads and stores execute in the fourth stage (MEM),
resulting in a non-speculative load latency of 2 cycles. The data
cache modeled is a dual ported 16k direct-mapped non-blocking
cache. Data cache bandwidth is not unlimited, it can only service up
to two loads or one store each cycle, either speculative or otherwise.
Stores are serviced in two cycles using a 16 entry non-merging store
buffer. The store buffer retires stored data to the data cache during
cycles in which the data cache is unused. If a store executes and the3For example, in the case of Spice aligning a single large array to its size
would eliminate nearly all mispredictions.

Fetch Width 4 instructions
Fetch able to fetch any 4 contiguous
Interface instructions per cycle
I-cache 16k direct-mapped, 32 byte blocks,

6 cycle miss latency
Branch 1024 entry direct-mapped BTB with
Predictor 2-bit saturating counters, 2 cycle

misprediction penalty
Issue in-order issue of up to 4 operations
Mechanism per cycle, allows out-of-order completion,

can issue up to 2 loads or 1 store per cycle
Functional 4-integer ALU, 2-load/store units, 2-FP adders,
Units 1-integer MULT/DIV, 1-FP MULT/DIV
Functional integer ALU-1/1, load/store-2/1,
Unit Latency integer MULT-3/1, integer DIV-12/12,
(total/issue) FP adder-2/1, FP MULT-4/1, FP DIV-12/12
D-cache 16k direct-mapped, write-back, write-allocate,

32 byte blocks, 6 cycle miss latency,
two read ports, one write port (dual ported
via replication), non-blocking interface,
1 outstanding miss per register

Store Buffer 16 elements, non-merging

Table 5: Baseline Simulation Model.

store buffer is full, the entire pipeline is stalled and oldest entry in
the store buffer is retired to the data cache.

A number of modifications were made to the simulator to support
fast address calculation. Stores are allowed to execute speculatively,
in fact, we want them to as our processor model requires that all
loads and stores execute in order. Delaying a store to the MEM
stage of the pipeline could have the effect of delaying a later load.
When a store is executed, it is entered into a store buffer queue.
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Figure 6: Speedups, with and without software support over baseline model execution time for a 16K byte data cache with 16 and 32 byte blocks. The dashed
bars indicate where there was improvement with register+register mode speculation.

If the store address is mispredicted, the store is re-executed in the
following cycle and its address in the store buffer is updated.

When a memory access is mispredicted in the EX stage of the
modified pipeline, the access must re-execute in the MEM stage.
In this event, we continue to issue instructions into the pipeline;
however, loads and stores issued in the following cycle stall their
data cache access until the MEM stage. Thus, even if the load or
store would have been correctly speculated, there is no benefit. The
only exception to this rule is that a load may speculatively execute
immediately after a misspeculated load. The advantage of this issue
strategy is that work continues to progress into the pipeline whenever
possible. In addition, program performance will not degrade over the
baseline model if address prediction fails often (assuming sufficient
data cache bandwidth).

Figure 6 shows execution speedups as a function of three design
parameters: with and without software support, with 16 and 32 byte
blocks, and with and without register+register mode specu-
lation. Also shown are the average speedups for the integer and
floating point codes, weighted by the run-time (in cycles) of the
program. All speedups are computed with respect to the execution
time (in cycles) of the baseline program (no fast address calculation
specific optimizations) running on the baseline simulator.

On the average, fast address calculation without software support
improves the performance of integer programs by 14%, largely inde-
pendent of block size or register+register mode speculation.
The floating point programs show a smaller speedup of 6%. This is
a very positive result – even without software support, one could ex-
pect program performance to consistently improve, and by a sizable
margin for integer codes.

The combination of software and hardware manages to give
somewhat better performance improvements. We found an aver-
age speedup of 19% for all integer programs, with no individual
program speedup less than 6%. For the floating point programs,
speedups were smaller in magnitude with an average of 7.5%. The
compiler optimizations have a positive effect on most programs, and
tend to assist more where the hardware-only approach is ineffective,
(e.g., Compress).

The consistent speedup across all programs is a very important
property of fast address calculation for it allows the designer a trade-
off between a longer cycle time and increased performance for inte-
ger programs. For example, if fast address calculation increases the
cycle time by 5%, the average floating point performance will still
improve slightly while the average integer performance will improve
by a sizable 13.5%.

We performed all simulations with 16 and 32 byte cache blocks,
i.e. where the prediction circuitry is able to perform 4 or 5 bits of
full addition in parallel with cache access, respectively. The impact
of increasing the block size was positive but small in magnitude for
most programs, resulting in an overall difference of less than 3%
for all experiments. In all cases, the improvement in the average
performance was less than 1%.

Considering the prediction failure rate of register+register
mode addressing, we examined program performance with and with-
out speculation of this mode. The only programs which experi-
enced any change in performance were Compress, Espresso, and
Grep. Grep’s stellar performance improvement is the result of many
register+register accesses to small arrays which benefit from
limited full addition in the block offset portion of address computa-



R+R Speculation No R+R Speculation
Benchmark Hardware Software Hardware Software

Only Support Only Support

Compress 24.21 16.47 8.92 +0.00
Eqntott 3.02 1.40 2.95 1.33
Espresso 5.38 3.06 3.95 2.01
Gcc 20.85 7.26 20.31 6.65
Sc 13.10 2.71 13.10 2.65
Xlisp 17.43 1.17 17.43 1.17
Elvis 2.49 1.31 2.46 1.04
Grep 2.63 1.10 1.94 0.40
Perl 19.40 7.98 18.55 7.41
YACR-2 5.07 3.87 4.68 3.49

Alvinn 1.33 1.00 1.33 1.00
Doduc 22.68 13.49 17.37 7.28
Ear 8.95 10.32 8.95 10.32
Mdljdp2 21.11 19.56 7.06 3.28
Mdljsp2 18.81 16.32 2.68 +0.00
Ora 24.72 14.03 21.03 10.97
Spice 45.86 32.44 7.46 3.07
Su2cor 19.92 20.33 7.65 5.72
Tomcatv 32.52 33.56 4.22 2.77

Table 6: Memory Bandwidth Overhead, numbers shown are the total failed
speculative cache accesses as a percentage of total references.

tion. Average speedup increased less than 1% for the integer codes
and was unchanged for the floating point codes. The overall lack-
luster improvement is the result of high failure rates when predicting
register+register mode addresses. Without a means to effec-
tively predict register+register mode loads and stores, their
speculation appears to have little overall benefit, especially in light
of increased demand on cache bandwidth.

Table 6 shows the increase in the number of accesses to the data
cache (in percent of total accesses). These numbers reflect memory
accesses that were mispredicted and actually made during execution;
in other words, these results are the overhead in cache accesses due
to speculation. Without compiler support, a large fraction of the
speculative memory accesses are incorrect (as shown in Table 3),
requiring more cache bandwidth, as much as 45% for Spice. The
compiler optimizations cut down this extra bandwidth significantly.
For most programs the increase in the required cache bandwidth is
less than 10%, and the maximum increase in bandwidth is less than
34%; without register+register mode speculation the band-
width increases are at most 11%. Despite the increase in cache
accesses due to speculation, the impact of store buffer stalls was sur-
prisingly small, typically less than a 1% degradation in the speedups
attained with unlimited cache store bandwidth. (The results in Fig-
ure 6 include the performance impact of store buffer stalls.)

A fitting conclusion to our evaluation is a comparison between
the performance of our implementation and the performance po-
tentials explored in Figure 2. Realized performance with respect
to the potential performance of 1 cycle loads is quite good. With
software support, most programs realized at least half of the per-
formance potential, with more than half of the programs exceeding
80%. Comparing the speedup of the integer programs (19% with
hardware and software support) to the speedup with a perfect cache
(only 8%) reveals a perhaps more striking result – fast address cal-
culation consistently outperforms a perfect cache with 2 cycle loads.

6 Related Work

Golden and Mudge [GM93] explored the use of a load target buffer
(LTB) as a means of reducing load latencies. An LTB, loosely based
on a branch target buffer, uses the address of a load instruction to
predict the effective address early in the pipeline. They conclude
the cost of the LTB is only justified when the latency to the first
level data cache is at least 5 cycles. Our approach has two distinct
advantages over the LTB. First, our approach is much cheaper to
implement, requiring only a small adder circuit and a few gates for
control logic. Second, our approach is more accurate at predicting
effective addresses because we predict using the operands of the
effective address calculation, rather than the address of the load. In
addition, we employ compile-time optimization to further improve
performance.

An earlier paper by Steven [Ste88] goes as far as proposing a
4-stage pipeline that eliminates the address generation stage and
executes both memory accesses and ALU instructions in the same
stage. Steven proposes the use of an OR function for all effec-
tive address computation. Steven’s approach was only intended as a
method for speeding up stack accesses, all other accesses require ad-
ditional instructions to explicitly compute effective addresses. The
performance of this pipeline organization was not evaluated.

Jouppi [Jou89] considers a notably different pipeline organization
that has a separate address generation pipeline stage, and pushes the
execution of ALU instructions to the same stage as cache access.
This pipeline organization removes the load-use hazard that occurs
in the traditional 5-stage pipeline, but instead introduces an address-
use hazard and increases the mispredicted branch penalty by one
cycle. The address-use hazard stalls the pipeline for one cycle if
the computation of the base register value is immediately followed
by a dependent load or store. The R8000 (TFP) processor [Hsu94]
adopts this pipeline in an attempt to assist the instruction sched-
uler in tolerating load delay latencies. Hsu argues that the nature
of floating point code (the target workload of the R8000) provides
more parallelism between address calculation and loads than be-
tween loads and the use of their results. In a recent paper, Golden
and Mudge [GM94] compare this pipeline organization (which they
name “AGI”) with the traditional 5-stage pipeline (which they name
“LUI”) to determine which is more capable of tolerating load la-
tency. They found that for a single issue processor with short load
latencies and dynamic branch prediction, an AGI pipeline performs
slightly better than a LUI pipeline, as long as the branch predic-
tion accuracy is more than 80%. In spite of this observation, both
pipelines still suffer from many untolerated load latencies.

AMD’s K5 processor [Sla94] overlaps a portion of effective ad-
dress computation with cache access. The lower 11 bits of the
effective address is computed in the cycle prior to cache access. The
entire 32 bit effective address is not ready until late into the cache
access cycle, just in time for the address tag check.

The idea of exploiting the two-dimensional structure of memory
is being used in several other contexts, such as paged mode DRAM
access [HP90]. A strong parallel to this work can be found in
[KT91]. Katevenis and Tzartzanis propose a technique for reducing
pipeline branch penalties by rearranging instructions so that both
possible targets of a conditional branch are stored in a single I-cache
line. The high bandwidth of the I-cache is used to fetch both targets
of a branch instruction. The branch condition is evaluated while the
I-cache is accessed and the condition outcome is used to late-select
the correct target instruction.

7 Concluding Remarks

In this paper we presented the design and evaluation of fast address
calculation, a novel approach to reducing the latency of load in-
structions. The approach works by predicting early in the pipeline
the effective address of a memory access and using this predicted



address to speculatively access the data cache. If the prediction is
correct, the cache access is overlapped with non-speculative effec-
tive address calculation. Otherwise, the cache is accessed again in
the following cycle, this time using the correct effective address.

The predictor’s impact on the cache access critical path is minimal.
The prediction circuitry adds only a single OR operation before cache
access can commence. In addition, verification of the predicted
effective address is completely decoupled from the cache access
critical path.

Our evaluation shows that without software support, the prediction
accuracy of the basic hardware mechanism varies widely. For the 19
programs examined, prediction success rates ranged from 13 to 98%.
However, detailed timing simulations of the programs executing on a
superscalar microprocessor resulted in consistent program speedups
– an average speedup of 14% for the integer codes and 6% for
the floating point codes. With the addition of simple compiler
and linker support, prediction accuracy increased significantly, with
success rates ranging from 62 to 99%. Simulated performance with
software support increased as well, resulting in average speedup of
19% for the integer codes and 7.5% for the floating point codes.
We also measured the increase in cache bandwidth due to access
speculation and found it was generally very low for our design. With
software support, speculation required at most 34% more accesses.
By preventing register+register addressing mode speculation,
cache bandwidth requirements drop to at most 11% more accesses,
with little impact on overall performance.

We feel the consistent performance advantage of fast address
calculation coupled with the low cost of its use, in terms of hardware
support, software support, and cache bandwidth demand, makes this
approach an attractive choice for future processor designs.

Acknowledgements

We thank Scott Breach, Jim Goodman, Alain Kägi, Jim Larus, An-
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