The Anatomy of the Register File
in a Multiscalar Processor

Scott E. Breach

T.N. Vijaykumar

Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton Street
Madison, WI 53706
{breach, vijay, sohi}@cs.wisc.edu

Abstract

This paper presents the operation of the register file in the
Multiscalar architecture. The register file provides the ap-
pearance of a logically centralized register file, yet is imple-
mented as physically decentralized register files, queues, and
control logic in a Multiscalar processor. We address the key
issues of storage, communication, and synchronization re-
quired for a successful design and discuss the complications
that arise in the face of speculation. In particular, the hard-
ware required to implement the register file is detailed, and
software support to streamline the operation of the register
file is described. Illustrative examples detailing important
aspects of the operation of the register file and an evaluation
of its effectiveness are provided.

1 Introduction

The Multiscalar architecture is a novel architecture for ex-
ploiting instruction-level parallelism (ILP) [1] [2] that specu-
latively executes multiple operations in parallel, yet provides
the semblance of sequential execution. An implementation
of this architecture, a Multiscalar processor, is a collection
of execution engines which share a common register names-
pace. Each execution engine, called a stage, views the regis-
ter namespace as a logically centralized register file, though
it is actually comprised of physically decentralized register
files, queues, and control logic. This approach to the design
of the register file allows the processor to exploit communica-
tion locality within a single stage and to recover the precise
architectural state among multiple stages in an efficient man-
ner.

A successful design of such a register file must provide
correct and efficient mechanisms to address the key issues of
storage, communication, and synchronization. The storage
mechanism must provide a means to bind register values to
storage and to distinguish between multiple values created
for the same register. The communication mechanism must

be able to identify the correct value for a register and to de-
liver this value to the appropriate storage. The synchroniza-
tion mechanism must coordinate the concurrent production
and consumption of values bound to registers. Each of the
issues is relatively straightforward in normal execution, but
becomes complex in the presence of unconstrained specula-
tion.

The remainder of this paper focuses on the precise details
of how the register file in a Multiscalar processor manages the
issues identified above. Section 2 provides background infor-
mation on the Multiscalar architecture. Section 3 describes
the basic function of the register file and the interaction of
its components. In Section 4, we explain the role the com-
piler may play to support the operation of the register file.
Section 5 provides examples to illustrate the working of the
register file. Section 6 provides an evaluation of the register
file. Section 7 offers a summary of this work.

2 Multiscalar Execution Model

To support the Multiscalar execution model, the stages of
a Multiscalar processor are organized in the form of a cir-
cular queue (see Figure 1). The processing element of each
stage executes, in either sequential or parallel fashion, the
instructions within a subgraph of the control flow graph of
the program, called a task. (Herein, we do not detail how
tasks are selected in a program, as a proper treatment of
the subject is beyond the scope of this paper.) Intra-task
communication is localized within the stage. Inter-task com-
munication is structured to proceed in one direction (from
predecessor to successor stages) around the circular queue
via point-to-point connections between stages. The control
flow order of the active tasks in execution on the stages, from
least to most recent in the dynamic instruction sequence, is
maintained by means of head and tail pointers to the circu-
lar queue. All control and data dependences between tasks
are enforced via hardware mechanisms to guarantee correct
behavior.

Each cycle that an idle (i.e. not in execution) stage is
available, a speculation (control flow prediction) is made to
invoke the next task in a connected dynamic sequence of
tasks. The speculated task represents the continuation of
the most recent task, and as such, it executes on the stage
which is the immediate successor to the last stage invoked,
indicated by the tail pointer. Upon a successful invocation,

tomain to main
memory memory
! 7
gl el e \ ‘
5™ 8 38 \ |
‘ !
‘ !
o) L ! [Lo 1
processing processing [0 | processing
element element dement | |
— -~ | |
! !
C 1 v ‘ !
->| register fiIe'—-—I regiserfilel— —“—
‘ stagen }

memory memory memory

Figure 1: Organization of a Multiscalar processor.

the tail pointer is advanced to the next stage to activate
the new task (and busy the stage). A stage executes the
instructions that comprise its task until the task is complete.

A stage that has completed its task is ready to update
the processor state to reflect the effects of the task; that is,
to commit the instructions of the task. However, all stages
except the head are in execution via a chain of unverified
speculations (control flow to the next task is not resolved
until the last dynamic instruction of a task). For this reason,
only the task at the head is able to commit its instructions.
Upon a successful commit, the head pointer is advanced to
the next stage to end the task (and idle the stage). In the
event an incorrect execution (due to speculation) is detected,
all stages between the point of the incorrect execution and
the tail are recovered in what is known as a squash.

A squash recovers the correct state of the stages involved
in the incorrect execution in a manner that is transparent to
the program in progress. In the cycle following the detection
of the erroneous execution, all stages between the point of
detection and the tail are marked as squashed, and the tail
is adjusted to resume invocation at the point of detection.
The correct state of each squashed stage is recovered at the
time it is invoked (again). The actions that are necessary
to restore the stages take place in the background of the
corrected execution.

To illustrate the execution model, consider Figure 2 which
shows basic Multiscalar operation on a 4-stage processor.
Relevant portions of the control flow graph of a sample pro-
gram are provided, with each task represented by a lettered
box. Task A is followed by either task B or task C, each
of which is followed by task D. Task D either loops back to
itself, or proceeds to some other portion of the program. As-
sume prior to the code fragment shown, registers r2 and r3

were created by some task. Register rl is created in task A,
neither created nor used in tasks B or C, and used in task
D. Register r2 is used and created in task B or task C and
subsequently used in task D. Register r3 is neither created
nor used in tasks A, B, or C, but is used in task D.

To begin execution, task A is invoked on stage 0. A spec-
ulation is made that task B will be executed, hence it is
invoked on stage 1. As the only successor to task B, task
D is invoked on stage 2. A speculation is made that control
will loop back and execute task D again, so another instance
of task D is invoked on stage 3. At this point, all stages
are active and busy executing instructions from their respec-
tive tasks. During execution, it is detected that an earlier
speculation incorrectly invoked task B. Accordingly, stages
1, 2, and 3 are squashed, and the correct task, task C, is
invoked on stage 1. As the only successor to task C, task
D is invoked on stage 2, while task A is committed at the
same time. Again, the loop back is speculated, and another
instance of task D is invoked on stage 3.

As execution unfolds with tasks A, B, D, and D in stages 0,
1, 2, and 3 respectively, stage 0 creates a value for register rl.
This value must be propagated to stages 1, 2, and 3 to ensure
that all stages have the latest (and correct) value for register
rl. Likewise, stage 1 creates a value for register r2 which
must be propagated to stages 2 and 3. At the point task B is
squashed, the former value of register r2 must be recovered in
stage 1. In addition, stages 2 and 3 must recognize that the
value of register r2 that propagated is not correct and that
tasks in execution on these stages must not use the incorrect
value of register r2. The value of register rl created and
propagated by stage 0, however, can be used in stages 2 and
3, as it is indeed a correct value. Since none of the active
tasks create a value for register r3, the value propagated to
all stages is correct.

In the following section, Section 3, we show how the basic
functionality of a logically centralized register file can be im-
plemented as a physically decentralized collection of register
files, queues, and control logic. In Section 4, we show how
the compiler may be involved in the operation of the register
file by providing information that is readily available from a
simple analysis of the program control flow graph.

3 Distributed Register File Structure

3.1 Basic Organization

The basic components of the register file in a Multiscalar
processor are a modified register storage, a register queue,
and a collection of register control bit masks connected to
a pipeline core (see Figure 3). The register storage serves
as a repository for register values. It is comprised of two
register banks to maintain past register state (of the execu-
tion of predecessor tasks) and present register state (of the
execution of the current task). The queue serves as the mech-
anism for communication and harbors register values whose
communication to successor tasks is imminent. The register
control is responsible for coordination of communication and
synchronization. It performs this function via simple logical
operations on a collection of bit masks: create mask, accum
mask, recv mask, sent mask, recover mask, and squash mask
(the following subsections illustrate the use of these masks).

head
tail

head
tail

‘vo e‘vo keB invok E‘HVO keD ‘

create r2
creeler3
cre erl I
|
UseT2 user2 I
creater2 creater2 I
|
us¥r
user2 I
users \ invokeC
= ——

commlt A
tail head
|nvoke D |nvoke

Figure 2: Illustration of the execution model of the Multiscalar architecture.

3.2 Storage

A register may be updated with a value from a predecessor
task or a value from the current task. Conceptually, only
a single set of register storage is required per stage, as the
value produced by the current task logically displaces the
value produced by the predecessor task. The nature of spec-
ulation is such that incorrect execution can occur at any time
in any active stage except the head. Hence, it must be pos-
sible to recover at any time correct values for a stage whose
register file is updated with incorrect values. The recovery
may be performed by having unaffected stages propagate the
correct register values to the squashed stages. Unfortunately,
a naive approach to this solution contains several pitfalls. If
it is not possible to rely on squashed stages to supply the pre-
cise identity of the registers to be recovered, the unaffected
stages must by default send all registers. As squashes need
not be rare, the register communication bandwidth required
in this case is prohibitive. Indeed, it may be possible to rely
on the squashed stages to identify the registers to be recov-
ered. However, bidirectional communication between stages
is required instead of unidirectional communication, which
complicates the overall control structure.

A solution to the performance and complexity problems
caused by one register set is to have two register sets, a past
register set and a present register set. The past register set
contains register values that have been created by predeces-
sor tasks, and the present register set provides working stor-
age for the register values of the current task. Logically, each
register set has its own distinct storage; one bank of registers
is the storage of the past set, and one bank of registers is the
storage of the present set. Physically, if the past and present
sets are separated into disjoint register banks, an expensive
copy operation (of present to past) is required each time a
task is committed. To avoid this multiple register copy op-
eration, we maintain a collection of pointers using additional
control bits to provide the illusion of two distinct past and
present register banks, somewhat similar to approaches pro-
posed to implement boosting [3] and precise interrupts [4].

The control bits consist of two bit masks, the past mask
and the present mask. The physical registers are divided into

two banks, bank 0 and bank 1. The bit corresponding to reg-
ister r; in the past or present mask determines the physical
bank which contains the corresponding instance of register
r;. At the time a task is invoked, the past and present masks
are identical. As the current task executes, the past and
present masks are inspected and manipulated to coordinate
register accesses. A register read inspects the present mask
to access the appropriate register bank. A register write
inspects the past mask (and chooses the other bank) to ac-
cess the appropriate register bank and updates the present
mask to reflect the bank which contains the present value of
the register. In this way, register values from the past and
present are kept distinct. At the time a task is committed,
the past mask is updated with the present mask. In the
event a task is squashed, the present mask is updated with
the past mask, effectively discarding the (incorrect) present
registers and retaining the (correct) past registers.

3.3 Communication

As a task executes, it produces register values. The create
mask of a task identifies all registers for which values may
be created by the execution of a task. Some of the register
values need to be forwarded to succeeding tasks (and stages).
In particular, the last instruction that writes into a register
which is live outside the current task needs to propagate
the register value. This approach requires an indication of
which instruction is the last one to update a register in a
task. (An earlier instruction, for example any instruction
that writes a register specified in the create mask, could also
forward a register value, but this increases the chances of a
later task being squashed from the use of an incorrect register
value.) Nonetheless, the last instruction in a task to update
a register can be determined in a straightforward manner
from the control flow graph, as is discussed in Section 4.
(If no indication is available regarding when a register value
should be propagated, the task must wait until the end of
its execution to propagate the values of registers specified in
the create mask.)

The register values in flight pass between stages via queues.
As a value propagates, it is written into the past register set

pipeline

from to

previous next

stage stage
——

Figure 3: Basic components of the Multiscalar register file.

of the current stage and is propagated to the next stage as
determined by the task in execution. The passage of regis-
ters between stages is recorded on the recv mask and the sent
mask of a task. The appropriate bit in the recv mask is set
to indicate that the register has been received by the current
stage; the appropriate bit in the sent mask is set to indicate
that the register has been sent to the next stage. A register
value need not be propagated by a stage if the task in exe-
cution creates another instance of the same register. As per
sequential execution semantics, the more recent value is the
one that is to be used by successor stages. If the passage of
a register is not blocked by a stage, it propagates around the
ring until it reaches the stage that created it. Nevertheless, a
register value can only propagate among the active stages in
the processor, which implies that register values must wait at
the tail (until such time as the tail advances). Accordingly,
each register value propagates at most once around the ring,
although most register values propagate far less, depending
upon the characteristics of the tasks [5].

3.4 Synchronization

To provide synchronization between tasks, the control in each
stage must identify if and when the correct register values
for an instruction to execute are available. In particular, the
control must (i) recognize what register values are produced
by all predecessor tasks, (ii) determine if these register val-
ues are still in flight, and (iii) wait until such time as these
register values are received.

The create mask of a task is not sufficient to coordinate
the production and consumption of register values among all
(possibly non-adjacent) tasks. As a task may require register
values from any one of its predecessors, only the combined
create masks of all predecessors supplies the required infor-
mation. This amalgam of create masks is assembled into
the accum mask (or cumulative create mask) of a task. The
accum mask is provided to a task being invoked by its im-
mediate predecessor. To assemble the accum mask (for the

next task invoked), a stage performs the bitwise OR of the
accum mask and the create mask of the current task. The
accum mask synchronizes the consumption of registers in the
current task with the production of registers in the predeces-
sor tasks. Of the registers indicated on the accum mask, any
that have not yet been received (indicated by the recv mask),
are busy. A read of a busy register may require a stall in the
stage; a write of a busy register never stalls, as it produces,
rather than consumes a register value.

An important consideration with regard to the mechanism
defined above is that it provides a means to set bits in the
accum mask, but no means to clear bits in the accum mask.
In short order, all bits of the accum mask would become
set. As such, any task invoked would expect to wait in all
cases for all registers. To deliver the desired semantics of
this strategy, any bit of the accum mask that corresponds
to a register instance that has made a complete cycle back
to its creator must be cleared at the next task invocation.
In order to provide this functionality, each bit of the accum
mask must be tagged with its corresponding creator stage.
The drawback of such an approach is that log,(n), where
n is the number of stages, times as many bits are required
to represent the accum mask, and hence must be communi-
cated between stages at task invocation. An alternative to
this technique is to produce the accum mask by combining
create masks unchecked in the hardware, but relying on the
compiler to explicitly remove dead registers via a kill mask
for each task. (This alternative is under investigation.)

3.5 Recovery from Incorrect Execution

In the event of incorrect execution due to speculation, a
mechanism must be in place to recover the proper register
state in each stage. In the most basic terms, any register
which has been created in a stage that is a part of the incor-
rect execution must be recovered. The recovery actions are
simple for incorrect register values that have been contained
within a stage; the two bank register storage allows all incor-
rect registers to be discarded from the present storage with
the past storage preserving the correct values. As might be
expected, the recovery actions are more complex for incor-
rect register values that have been propagated from a stage
(to other stages). In any event, the goal is to recover the
minimal amount of register state to afford correct execution.

The difficulty that arises in recovery is not identifying
which registers must be recovered; rather, it is discovering
precisely which successor stages have been modified by incor-
rect register values. Without analyzing the aggregate register
state information from all stages at the same time, optimal
recovery is not possible. In general, though, correct recovery
does not require this level of detail. Instead, recovery can be
performed, not all at once, but distributed over time, as each
squashed stage is invoked again. To approach the problem,
it is necessary to identify the extent of the incorrect execu-
tion. The extent may be broken down into what stages have
been affected and into what registers within stages have been
affected.

The affected stages are those stages from the point of the
squash to the tail. The stage at the point of the squash and
the stage at the tail are recorded in the prediction hardware
as the squash head and squash tail respectively. The actual

head remains as it is, and the actual tail is changed to the
stage at the point of the squash (as this stage is where task
invocation resumes). Thus, the stages between the squash
head and the squash tail are to be recovered. No other stages
participate in recovery because no other stages could have
been affected by the incorrect execution.

The determination of which registers to recover can be
made via simple logical operations on the register control
bit masks. For each squashed stage, all registers which have
been produced and propagated from the corresponding task
are placed on a recover mask. That is, the recover mask
indicates the registers for which the stage must propagate
correct values to replace the incorrect ones. The stage as-
sumes the role of creator for each register to ensure that all
stages see the corrective update. A squash mask is provided
to synchronize the recovered values. The squash mask is the
combined recover masks of all predecessor stages involved in
the recovery process (the analog to the accum mask for the
create masks).

The squash mask is transferred along with the accum mask
to each stage that invokes a task in the midst of an out-
standing squash. As each squashed stage is invoked again, it
receives a squash mask from its immediate predecessor stage
and removes any registers in the squash mask from its recv
mask. To assemble the squash mask (for the next stage to
be invoked again), the stage produces a recover mask (of its
prior incorrect execution) and performs the bitwise OR of
the squash mask and this recover mask. The registers in the
squash mask of the product are removed from the sent mask
of the stage. The earlier difficulty with respect to a means
to set bits, but no means to clear bits, is not an issue for
the squash mask because its scope is confined to the stages
between the squash head and squash tail.

In the event another squash occurs before an outstanding
squash has been entirely recovered, it is not the case that the
recovery information for the new squash is stacked upon the
recovery information for prior (possibly multiple) outstand-
ing squashes. Such an approach may require the assemblage
of an unbounded quantity of state. Instead, the recovery
information for the new squash is integrated directly into
the recovery information for the prior outstanding squashes.
Any registers which have been recovered need not be recov-
ered again, unless required by the new squash and are added
to the existing recover mask.

4 Compiler Support

To improve the efficiency of the register file, the compiler
may be of assistance by providing information that would
otherwise not be available (delaying register file actions) or
otherwise have to be computed at run-time (complicating
register file design). We limit the discussion of compiler sup-
port in this paper to (i) a determination of which register
values a task may produce (that is, the create mask) and
(ii) an indication of which instructions are the last updates
of the registers. This information is readily available from a
simple analysis of the control flow graph.

If a single path of control is maintained throughout a task,
the analysis to be performed is straightforward. The create
mask is determined by noting the destination registers of all
instructions within the task. The create mask can be opti-

if (cond1) { while (c || ! z) { x = max(a, b);
x = valxif; if (x<y){ y =min(c, d);
y = valycondl; z=X; if (cond) {
} } z=foo(x,y);
else{ elseif (y <x) {
X = valxelse; z=y,; W=X+Yy+7Z
if (cond2) { }
x =valx; else {
y = valycond2; z=0;
} break
else{ }
z=valz X=2*y-z
y=2*x+
} iF((x&&y)){
w =valw; 0;
cond1 forward x
forwardy
T F cond
T F
forward x definex
forwardy cond2
release Z _ — — calfdo
T F %]
~ _ _, retun
release z
release z release x, y
forward x forward z
forward y
release z
forward w
definez releasec, X, y
forward w forward z

Figure 4: Identification of forward and release for tasks with
simple control flow, loop, and procedure call.

mized to include only register values that are live outside the
task with a live register analysis. With only a single path of
control, it is simple to determine which is the last instruc-
tion in a task to update a register. This instruction is tagged
with a forward bit so that when the instruction is executed,
the value created for its destination register is propagated to
successor stages. Tagging an instruction with a forward bit
can be accomplished in a variety of ways. The two ways that
appear most promising are (i) using special opcodes for such
instructions (which we call op-and-send instructions) and (ii)
using a specially inserted bit mask, similar to the GUARD
instructions proposed in [6].

If the path of control in a task is complex, the situation
becomes more involved. The instructions may be tagged with
forward bits as before, but the determination of the create
mask may be somewhat problematic. As the dynamic path
through the task is unknown, the create mask must allow for
all possibilities and must reflect the union of registers created
on all possible paths through the task. Depending upon the
actual dynamic path of execution through the task, some
register values indicated in the create mask may never be
produced (due to the conservative nature of the create mask).
Unfortunately, it is not possible to determine which registers
fall into this category until the end of the task is reached
at run-time. As the registers on the create mask imply the
need for synchronization with successor tasks, waiting until
the end of the task to fulfill the obligations on the reserved
registers could significantly delay the execution of successor
tasks.

The performance penalty caused by the conservative na-
ture of the create mask can be overcome with the use of a
release instruction. The function of this instruction is to re-
lease the reservations made on registers by the conservative
create mask. The release instructions are inserted at appro-

priate points in the code where it is known that a particular
register value cannot be created by any subsequent execution
of the task (because execution has proceeded down a path
that cannot create the register value), even though the create
masks indicates that the task might create the value. The
execution of the release instruction causes the propagation of
the specified registers. Thereby, successor tasks which might
be waiting on the released register value are able to proceed
without further delay.

A task that contains a procedure call requires special han-
dling. The compiler may conservatively assume that all reg-
isters are created, causing increase in the register traffic. Al-
ternatively, the compiler may compute the exact create mask,
requiring inter-procedural dependence analysis. Fortunately,
most compilers (including the Multiscalar compiler) follow
caller/callee save conventions for procedure calls. This prac-
tice motivates a simple, yet effective, solution. The register
values that are created inside the procedure are not live af-
ter the procedure call returns. The only exception to this
rule are values returned in a register and global variables
allocated to a register. The create mask would necessarily
include any values returned and any global variables modi-
fied by the callee procedure.

Figure 4 shows three examples of forwards and releases.
In the figure, only the last update of a value down a path is
a forward, other updates are indicated as define. The release
indicates the affected values. All the variables are assumed
to be register allocated.

The first example shows forwards and releases in the pres-
ence of acyclic control flow in the task. If cond! is true,
then z and y are forwarded by the instructions that compute
them. Since z is not defined down this path, it is released.
The same actions are taken if cond2 is true. Note that the
earlier define of z (if cond1 is false) does not forward it. If
cond2 is false, then the instruction that computes z forwards
it, and z and y are released. Since w is independent of control
flow, it is always forwarded.

The second example shows a task which contains an entire
loop. All iterations of the loop are performed within the
task. The registers that are created in the loop can only be
forwarded/released when the loop is exited. This behavior
is manifest because a guarantee of no more defines of the
registers can be given only at the exit points of the loop. In
the example, there are two exit points from the loop, the
loop condition (¢ || !2) being found false or the break being
executed. All of z, y, z and ¢ are defined in the loop. If the
loop is exited via the break, then z is forwarded, and z, ¥ and
¢ are released. If the loop is exited due to the fall through
of the loop, then all are released. Note that since the two
exit paths merge, the hardware may encounter releases for
the registers, even though it had already forwarded /released
them in the break. In this case, the redundant releases are
ignored.

The third example shows a task which contains a proce-
dure call. That is, all the instructions of foo are performed
within the task. Assuming no global register allocation in
the procedure foo, the return value, z, is released after the
call returns. All the registers created within the procedure
foo are completely “hidden” from other tasks because they
are neither included in the create mask of the task nor for-
warded/released from within foo.

5 Working Examples

Herein, we provide two examples to illustrate some of the
basic concepts of the register file. The examples show the be-
havior of the register file in the case of normal and squash sit-
uations. The normal situation example (see Figure 5) walks
through the synchronization and communication of registers
among the stages in a 4-stage Multiscalar processor. The
squash situation example (see Figure 6) shows the process of
recovery unfold following a squash in a 4-stage Multiscalar
processor.

In the normal situation example, we show the execution of
a sequence of tasks with the accompanying manipulation of
the control bit masks that orchestrate synchronization and
communication among the stages. The sequence begins as
stage 0 invokes the prologue of the loop, continues as stages
1 and 2 each invoke a body of the loop, and ends as stage 3
invokes the epilogue of the loop. Note that the <f> follow-
ing an instruction indicates that the instruction forwards its
result. In addition to following the sequence of instructions
for each stage, we have supplemented the control information
with some additional bit masks to improve the navigability of
the register state for the reader. The supplemental bit masks
are a busy mask to identify registers on which the task must
wait, a forward mask to indicate registers that have been
forwarded by the task, and a release mask to show registers
that have been released by the task. (The supplemental bit
masks are not part of the actual register control.)

For this example, we have assumed perfect prediction of
the loop. In addition, we make use of the ability of the
compiler to use a register as a local temporary by not in-
cluding it in the create mask (in the case of r4). It should
be noted that this example is not a cycle-by-cycle record of
events. Instead, it only provides enough detail to follow the
general operation of the synchronization and communication
mechanism. Notice that once it has been determined that
a register is to be forwarded or released, it is propagated at
the next available opportunity. In a situation where multiple
registers are ready, we employ the heuristic of giving priority
to a register created within the stage over a register created
from a previous stage. Observe that the loop constant (size
in r3) is simply passed through the stages, as it is not on the
loop body create mask. The loop induction variable (s in r2)
is created and propagated for each stage, whereas the loop
dependent variable (val in rl) is created and propagated for
stage 1, but passed for stage 2.

In the squash situation example, we show the execution
of a sequence of tasks which results in a squash and follow
the subsequent recovery. We employ the same format as the
previous example to assist the reader in following the pro-
gression of events. Although this example is similar to the
previous one, it does not have the benefit of perfect predic-
tion of the loop. The sequence begins as stage 0 invokes the
prologue of the loop and continues as stages 1, 2, and 3 each
invoke a body of the loop. However, in this instance, the
loop ought to have executed only once. Hence, a squash oc-
curs at stage 2. Observe that all stages from the stage at
the point of the squash to the stage at the tail must take
recovery action, as indicated by the squash head and squash
tail.

The recovery begins as stage 2 is invoked again with a

EEEE

2l] Ee] [
2T lelg
r3[0 0] [@] [9] tail
ra[0 0] [°] [9]

bank 0 bank 1
acccreaterecvsent
[0] Z r2=-1<f>
[0][1
g % stage 1
= m preaent bquwd el past_present busy fwd rel
0]r2[0 0]r[0] [[T][9][]
0]r2[T | [9][T] [[o][T][]
0] T - o]a0] [[[[T] :
0]ra[0 0]ra[0 -mmm tail
bank 0 bank 1 bank 0
acc createrecvsent acc createrecvsent
[0] Z 13 =M[max] <f> Z 2=r2+1<f>
o] [L T
0] T T stage 2
[[[©] [[°] []
ﬁ prm bus,lfwd el pa pr&ant bus;fwd el past present busy fwd rel
[T |§| 1[0 o]n[0] [[E[0][0]
0r21 -1 0r21 0 Ofr2[T 0] [T] [7]
0|r3[T T 0[r3[0 0[r3[0 7] [9] [9] X
0]r4[0 0] ra[T 0]r4[0 9] [0] [9] tail
bank 0 bank 1 bank 0 bank O bank 1
acc createrecvsent acc createrecvsent acccreaterecvsent
PO O] ri=1<> [T O[] ra=Mbuf +r2] O] [0] r2=r2+1<f>
o] [[o] 2 AR BlB|c
o] [T] [0] [T 0 0 0] [0] [0
0] 5l [0 [0 [[0 8] [[0 o [[0 stage 3
past_present busy fwd rel past_present busy fwd rel past present busy fwd rel past present busy fwd rel
PIER] RE 2 REE 0]1[0 o)n[0]] @[] [
PIER O e] PIER] PR ol[0] [[o][o] [0
PIER T el CdPIRR] Rl ole[1] [[3][T] [0
[0l 0] [3] ol [=] [0 [T 0]ra[T olu[o] [[o][o] [o]
bank 0 bank 1 bank 0 bank 1
acccreaterecvsent acc createrecvsent acccreaterecvsent
[1] rl=r1 r4<f> Z r4 = M[buf +r2] OO r3=0
T 0 0
T][] [©
%] 9] ﬂ (] [©] [o] [0
pH prm bus/rwd Tel past | pramt busy fwd rel past present busy fwd rel
T [0]n[T 7] [9][C [0 [9] [T] o]a[0] [[T[0][]
_ 1l 1 r21 0| [O]r2[T [0 [T] [9] T [92[0] [[9][9][T]
i T [0]n[o 1 [0]r3[0 9] [9] [] | [O]=[T] [[°][T][7]
| r2=-1<f> [0]r4[T Ofra[T 1] [°] [©] o|ra[0] [[9][9][0]
3= Mimax] <t> | bank 0 bank 0 bank 1
r1=1<f> | acc createrecvsent acc createrecvsent
L1 1 [[[T 0] [9]
T T 0] [T
0 T [T [T
= [0l [0 [9] [0 5 ol 1
2=r2+1<f> past present Dusylwd G
r4 = M[buf +r2] | 2 0]r1[0
r41=0 | s=-1; 1 0]r2[0
Fo size = max 1oL
val = 0|r4| 0
| do{ bank 0
| S++: acccreaterecvsent
if (buf[s]) { [[A]
| val = buf[s]; ule
| T
} while (s < size); 0] 3
releaserl | size = 0; pas pramt husyfwd C]
r2<r3 |
2 ri 0
—_ T 0 12|
F T Ofr3[T
T 0]|r4| 0
[——y — 7 bank 0
| 3=0 | acc createrecvsent
O]
L ——l 0] 1
H T
10| [0] [°] [©

Figure 5: Synchronization and communication among stages.

new task. Notice that the loop induction variable (s in r2) register is not added to the recover mask. Nevertheless, the
is placed in the recover mask since it was created and prop- register is on the squash mask provided by stage 2, so it is
agated during the prior incorrect execution; the register is removed from the recv mask and returned to the busy mask
removed from the sent mask because its earlier propagation to ensure that stage 3 waits until the correct register value
was incorrect. The recovery continues as stage 3 is invoked is propagated.

again with a new task. Although the loop induction variable
was created during the prior incorrect execution, the value
was not propagated (as seen from the sent mask), so the

head tail
stage 0 stage 1 stage 2 stage 3
past present busy fwd rel past present busy fwd el past present busy fwd el past present busy fwd rel

1
r2

[0]r2[1] [o] [[[©]
[0]r2[1] o] [2] [} 9]
o3 o] o [xffo] [[O]
0] [10JOfF [[
bark 0 bank 1 bank 0

acc createrecv sent sqsh revr

[o] [o] 2] [©] [9]
1of [(9] 2] [©] 9]
o] [[©] 12 [©] 9]
(o] [°] [9] [o] [9] [9]

acc createrecv sent sqsh revr

A 2] P EE]
A o] e o] [9]
@o] [_][offo]fo] [0] [9]
A (B e0fe] 1 [©
bank 1 bank 0

2l CEPIR T PR e
[t [1] [9][1][9] [9]r2[L] (o] [[©]
Bo]] [9][9][9] [9]r3[0] (2] 1] [
aI] o] [Ofoffo] [[of=[e] [_1 [©][°][9]

bank 1 bank 0 bank 1

acc cresterecvsent sgsh revr acc createrecvsent sqsh revr

[2] o] 9] [O] [©] ra=miouf +r21 [2] [£] [O] [©] [O] [O] r2=r2+1<t>
2 O] [©] (2] 12 2] [°] [°] [©]
1] 0] 2] [0] [©] [©] 1]] [°] [9] [©] [7]
(o] [°] [] [] [0] [©] [°] [°] [°] [©] [°] [7]

L] 2] 2] O] [O] [©] ri=r1nra<t>
EE e
HIUIEIEEGE
(o] [[9] [o] [9] [9]

tail

head i i
squash squash
stage 0 stage 1 :
9 9 head tail
past present busy fwd rel past present busy fwd rel
PeE EeEE F RE P REHR
[ofr2f] =11 [O] [Z][©] “1] [ofr2[1) [o] [0][1]]o0]
[ofr3f1] [o1 [9][2][°] iy 5 1ol [
o]0 1 [Oof[o] [9] O]ra[1] [3] [o][0] [9] il
bank 0 bark 1 bank 0 bank 1 tal
acc createrecvsent sgsh revr acc createrecvsent sqsh rvr
E o] [0] [O] ri=r1nrra<t>
1 1] [o] [©
0] 1|[0] [0
5] 91 [[5] [5] [© stage 2
Past present busy fwd el Past present busy fwd el
1 0]r1[T 2][9] [0] 1 0]r1[0 [0] [9] [0]
—1| [0]r2[T] [0 [0][T][0] [] [O]=[0 (0] [9] [7]
0| [0]r3[0 o e [[O=3T [0
o|4[T] [=] [0][°][o] 0]r4[0 [°] 0] [7] tail
bank 0 bank 1 bank 0 bank 1 a
acc createrecv sent sgsh revr acc createrecvsent sgsh revr
1] [[[E [©] [© 1] [©] [F] [©] [O] [0] r3=1<f>
7] [[[[0 [© 71 [o] [[] [o] [=
7] 9] [2] [=] [o] [© Blelajujujo
pjujojojalo [[0 [7] [] [0] [@ stage 3
past pr busy fwd el past present busy fwd rel
s=-1;] O]9 eIl 1 Pe] 1 EEE]
size = max 0 | [9]r2fo] 1o} [9] [] rofr2o] | [1][9][9]
val = 1; o [ofrsf] [2] [Oof[] [©] [ofrso] 1 o]l [©l
do { Ofr4[©] Olejo] 1 [Of=] [o] [f[x][]
S+ bank 0 bank 1 bank 0 bank 1
if (buf[s]) { acc createrecvsent sgsh revr acccreaterecvsent sqsh revr
val "= buffs; 1 [[0 [9 [2 [[9] [©] [°] [] r4=0<r>
: . [of [} o] [o] [o1 [9] [[2] [©]
} while (s < size); 1| [T [T] [0] [0 1] 9] [T] [©] [©] [7]
1 size = 1; (o] [°] [9] [o] [9] [0 (o] (2] [°] [o] [] [9]
| if (val 1= 0) {
| 11=0 foo =0;
YN }
[buf [3
Lol [3]°]
mac[0]

Figure 6: Recovery

6 Evaluation

All of the results in this paper have been collected on a sim-
ulator that faithfully represents the Multiscalar architecture.
The simulator accepts annotated big endian MIPS instruc-
tion set binaries (without architected delay slots of any kind)
produced by the Multiscalar compiler, a modified version of
GCC 2.5.8. In order to provide results which accurately re-
flect reality, the simulator performs all of the operations of a
Multiscalar processor and executes all of the program code
except system calls on a cycle-by-cycle basis.

6.1 Machine Model

The machine model that we consider in this paper is based
on the organization in Figure 1. We have limited the eval-

following a squash.

uation to 4-stage and 8-stage Multiscalar processors of this
organization. Each stage has been fixed in the configuration
of 16 kbytes of direct mapped instruction cache in 64 byte
blocks and 3 kbytes of direct mapped task cache in 48 byte
blocks (each block is a task header consisting of the target
addresses, the return addresses, and the create mask of some
task). A full crossbar interconnects the stages to twice as
many banks of interleaved data cache. Each bank has been
fixed in the configuration of 8 kbytes of direct mapped data
cache in 64 byte blocks and 256 address resolution entries [1]
(which constitutes a total data cache of 64 kbytes and 128
kbytes for 4-stage and 8-stage processors respectively). The
control flow prediction has been fixed in a PAs configuration
[7] with 4 targets per prediction and 6 outcome histories. The
prediction storage is composed of a first level history table
that contains 64 entries of 12 bits each (2 bits for each out-

Int FP

Function Latency || Function Latency
add/sub 1 sp add/sub 2
shift /logic 1 sp mult 4
multiply 4 sp divide 12
divide 12 dp add/sub 2
memory load 2 dp mult 5
memory store 1 dp divide 18
branch 1

Table 1: Instruction latencies.

come due to 4 targets) and second level pattern tables that
contain 4096 entries of 3 bits each (1 bit target taken/not
taken and 2 bits target number). The control flow predic-
tion is supplemented by a 16 entry return address stack.

The processing element of the machine model is a tradi-
tional 5 stage pipeline (IF/ID/EX/MEM/WB) with 1-way
issue that drains between task invocations. The pipeline
stalls on all WAW hazards and on any RAW hazards that
cannot be handled via bypassing. Any instruction discon-
tinuity (procedure call, taken branch, jump, etc) incurs an
unschedulable 1 cycle instruction refill penalty. Instruction
cache hits require 1 cycle to return 4 words. Data cache hits
require 2 cycles to return 1 word (2 load delay slots). Any
read access that misses in the instruction or data cache stalls
the entire pipeline at the point of the access. Any write ac-
cess that misses in the (write allocate) data cache is handled
in the background. All memory requests are handled by a
single 4 word memory bus that queues in FIFO order. Each
memory access requires a 10 cycle access latency for the first
4 words and 1 cycle for each additional 4 words. Arithmetic
instructions are serviced by pipelined functional units, one
for integer computation and one for floating point computa-
tion, with the latencies indicated in Table 1.

6.2 Benchmarks

Benchmark || Useful Instructions |

eqntott 1338.8 M
espresso 733.5 M
cmp 1.4 M
wC 1.3 M
tomcatv 2111.2 M

Table 2: Benchmark dynamic instruction counts.

To serve as benchmarks, we have used egntott with input
int_pri_8.eqn and espresso with input #.in from the SPEC92
integer suite; 2 common Unix utilities, emp from the GNU
diffutils 2.6 with input cecep.c and we from the GNU texu-
tils 1.9 with input cccp.c (Note: these are the same utili-
ties, albeit from different source code, with the same inputs
as used by the IMPACT group in [8]); and a f2c transla-
tion of tomcatv from the SPEC92 floating point suite. All
have been compiled with the Multiscalar compiler at opti-
mization level -O2. All benchmarks have been simulated
to completion and verified instruction-by-instruction during
simulation. Dynamic instruction counts for the benchmark
are given in Table 2.

Useful Instructions Per Cycle

1 Cycle 2 Cycle
Benchmark 1 | 2 | 9 1 | 2 | 0
eqntott 1.85 | 1.88 | 1.88 | 1.83 | 1.86 | 1.86
espresso 1.26 | 1.28 | 1.28 | 1.24 | 1.26 | 1.26
cmp 2.97 | 297 | 297 | 2.97 | 2.97 | 2.97
wc 2.06 | 2.06 | 2.06 | 2.04 | 2.04 | 2.04
tomcatv 1.73 | 1.73 | 1.73 | 1.73 | 1.73 | 1.73

Table 3: Instruction Per Cycle (IPC) on 4-stage processor
for 1 and 2 cycle latency with 1, 2, and co bandwidth.

Useful Instructions Per Cycle

1 Cycle 2 Cycle
Benchmark 1 [2 | o0 1 [2 |
eqntott 2.86 | 290 | 290 | 2.74 | 2.77 | 2.77
espresso 1.39 | 1.40 | 1.40 | 1.37 | 1.38 | 1.38
cmp 5.31 | 5.32 | 5.32 | 5.31 | 5.31 | 5.31
wc 3.74 | 3.74 | 3.74 | 3.58 | 3.59 | 3.59
tomcatv 2.57 | 2.57 | 2.57 | 2.57 | 2.57 | 2.57

Table 4: Instruction Per Cycle (IPC) on 8-stage processor
for 1 and 2 cycle latency with 1, 2, and co bandwidth.

6.3 Results

One measure of execution performance is the number of
useful instructions completed per cycle, or IPC. In these sim-
ulations, useful instructions are all instructions executed, ex-
cept release instructions inserted by the compiler (the release
instructions still consume execution cycles, but are not in-
cluded in the dynamic instruction counts). The results for
instructions per cycle are presented in Table 3 and Table
4 for a 4-stage and a 8-stage Multiscalar processor respec-
tively. The cycle counts for a particular run may be com-
puted by dividing the instruction count in Table 2 by the
IPC value for the corresponding benchmark. (For example,
eqntott on a 4-stage processor with 1 register bandwidth and
1 cycle latency runs for 1338.8M insts/1.85 insts per cycle =
723.TM cycles).

To evaluate the effect of the register file on performance,
we vary the register communication bandwidth and latency.
We compare configurations for communication bandwidth
between adjacent stages of 1 and 2 registers per cycle to an
ideal configuration of infinite registers per cycle. We consider
pipelined communication latencies between adjacent stages
of 1 and 2 cycles respectively.

The instructions per cycle figures shown are somewhat pes-
simistic due to the non-aggressive processing element design
under consideration. At present, within a stage we employ
only 1-way issue and force the pipeline to drain between task
invocations to simplify simulation. In addition all cache miss
and data hazards incur stall cycles. Any instruction discon-
tinuity (procedure call, taken branch, etc) incurs a 1 cycle
pipeline refill stall.

In this context, the results indicate that a modest com-
munication bandwidth between adjacent stages of 1 register
per cycle performs nearly as well as infinite communication
bandwidth. Likewise, the small increase in communication
latency between adjacent stages from 1 to 2 cycles has only
a small effect on performance in terms of instructions per

Avg % Total Avg

Reg Reg | Reg Queued
Benchmark || In Flight | Bandwidth All | Tail
eqntott 0.92 23.0% | 0.84 | 1.88
espresso 0.56 14.1% 1.29 | 3.48
cmp 0.39 9.8% | 0.67 | 1.74
wce 1.14 28.6% 0.88 | 1.61
tomcatv 0.47 11.8% | 1.92 | 8.13

Table 5: Register communication bandwidth on 4-stage Mul-
tiscalar processor

Avg % Total Avg

Reg Reg | Reg Queued
Benchmark || In Flight | Bandwidth All | Tail
eqntott 1.53 19.1% | 0.44 | 1.40
€spresso 0.87 10.8% | 0.73 | 3.17
cmp 0.71 8.8% | 0.40 | 1.68
wce 2.08 26.0% 0.48 | 1.20
tomcatv 0.72 9.0% | 0.93 | 6.01

Table 6: Register communication bandwidth on 8-stage Mul-
tiscalar processor

cycle.

We present statistics for the utilization of the register com-
munication hardware in Table 5 and Table 6 for a 4-stage
and a 8-stage Multiscalar processor respectively. We limit
our consideration to the configuration of 1 register per cycle
between adjacent stages with a latency of 1 cycle. Such a
configuration is capable of supporting a bandwidth of n reg-
isters per cycle in the communication ring, where n is the
number of stages. We see from the figures that generally less
than a fourth of the available bandwidth is actually used.
Moreover, we find that the queues among the stages contain
no more than a single register most of the time.

Of particular interest, the queue at the tail stage contains
many more registers than the queues of all stages on average.
This outcome comes as no surprise, as no register may prop-
agate past the tail. Even so, in absolute terms the number
of registers queued at the tail stage is usually quite small. In
the cases of espresso and tomcatv, the disparate occupancy
of the queue at the tail stage is attributable to the high
number of average dynamic instructions per task for these
benchmarks. Specifically, loop bodies which execute many
instructions tend to occupy stages for many cycles, thereby
preventing the registers at the tail from propagation.

Concern for this behavior may be unfounded for two rea-
sons. First, the occupancy of the queues (from the tables
above) includes registers that have propagated from prede-
cessor stages, but which cannot be passed due to register
reservations, as well as registers that have been propagated
by the current stage, yet cannot be sent. Only the regis-
ters from the current stage occupy queue storage; the reg-
isters from predecessor stages occupy the past register stor-
age. Second, it should be pointed out that the figures are
pessimistic since we do not yet use compiler analysis to sup-
press the propagation of registers which are not live across
the task boundary. In fact, most of the registers queued are,
in fact, dead registers. At present, we are exploring strategies

to prevent the propagation of dead registers from a task.

7 Summary

This paper described the register file in a Multiscalar pro-
cessor. As this component of the architecture is the primary
focus of all inter-instruction communication, its proper orga-
nization is a critical issue to avoid a potential performance
impasse. We addressed the key issues of storage, commu-
nication, and synchronization that are central to a success-
ful design and discussed the complications that arise in the
presence of speculation. We provided details of the hard-
ware required to implement the register file, and discussed
how software may assist in streamlining the operation of the
register file. We evaluated the register file in terms of the
overall execution performance and considered the utilization
of several configurations on a number of benchmarks. The re-
sults indicate that the performance of modest configurations
rivals that of ideal configurations. In this ongoing research,
we continue to pursue hardware and software alternatives to
further improve performance.

Acknowledgements

This work was supported in part by NSF grant CCR-9303030
and by ONR grant N00014-93-1-0465. We would like to
thank the anonymous reviewers and the computer architec-
ture group at the University of Wisconsin-Madison for their
helpful comments. In addition, we would like to express our
appreciation to the IMPACT group in the CRHC at the Uni-
versity of Illinois for assistance with benchmarks.

References

[1] M. Franklin. The Multiscalar Architecture. PhD thesis, Uni-
versity of Wisconsin-Madison, Tech Report 1196, November
1993.

[2] M. Franklin and G.S. Sohi. The expandable split window
paradigm for exploiting fine-grain parallelism. In Proc. of
ISCA 19, pages 58—67, May 1992.

[3] M.D. Smith, M.S. Lam, and M.A. Horowitz. Boosting beyond
static scheduling in a superscalar processor. In Proc. of ISCA
17, pages 344-354, May 1990.

[4] J.E. Smith and A.R. Pleszkun. Implementing precise inter-
rupts in pipelined processors. IEEE Transactions on Comput-
ers, 37(5):562-573, May 1988.

[5] M. Franklin and G. S. Sohi. Register traffic analysis for stream-
lining inter-operation communication in fine-grain parallel pro-
cessors. In Proc. of MICRO-25, pages 236—245, December
1992.

[6] D.N. Pnevmatikatos and G.S. Sohi. Guarded execution and
branch prediction in dynamic ilp processors. In Proc. of ISCA
21, pages 120-129, April 1994.

[7] T. Yeh and Y.N. Patt. A comparison of dynamic branch pre-
dictors that use two levels of branch history. In Proc. of ISCA
20, pages 257266, May 1993.

[8] R.E. Hank, S.A. Mahlke, R.A. Bringmann, J.C. Gyllenhaal,
and W.W. Hwu. Superblock formation using static program
analysis. In Proc. of MICRO-26, pages 247255, December
1993.

