
scan_index_i (ssm) Shore Storage Manager scan_index_i (ssm)

NAME
scan_index_i − Class for Scanning B+tree Indexes

SYNOPSIS
#include <sm_vas.h> // which includes scan.h

class scan_index_i {
public:

enum cmp_t { bad_cmp_t=badOp, eq=eqOp,
gt=gtOp, ge=geOp, lt=ltOp, le=leOp };

/∗ Logical-ID version ∗/
NORET scan_index_i(
const lvid_t& lvid,
const serial_t& stid,
cmp_t c1,
const cvec_t& bound1,
cmp_t c2,
const cvec_t& bound2,
concurrency_t cc = t_cc_kvl);

/∗ Physical-ID version ∗/
NORET scan_index_i(
const stid_t& stid,
cmp_t c1,
const cvec_t& bound1,
cmp_t c2,
const cvec_t& bound2,
concurrency_t cc = t_cc_kvl);

NORET ˜scan_index_i();

rc_t curr(
vec_t∗ key,
smsize_t& klen,
vec_t∗ el,
smsize_t& elen);

rc_t next(bool& eof)

void finish();
bool eof();
rc_t error_code();

};

DESCRIPTION
Class scan_index_i supports scanning a range in a B+ tree index. The scan is controlled by a scan_index_i
object. Multiple scans can be open at one time. More information on indexes and key types is can be found
in the SSM interface document.

Release Jan 1999 1

scan_index_i (ssm) Shore Storage Manager scan_index_i (ssm)

scan_index_i(lvid, stid, c1, bound1, c2, bound2, cc)

The scan_index_i constructor is used to initialize a scan. The lvid and stid parameters specify the
index to be scanned. The bound1 and bound2 parameters specify the keys marking the beginning
and end of the scan, respectively. The c1 and c2 parameters specify how comparisons should be
made with their corresponding bounds. Valid values are:

eq: Only keys equal to the bound will be returned.
Valid for c1 or c2.

gt: Only keys greater than the bound will be returned.
Valid only for c1.

ge: Only keys greater than or equal to the bound will
be returned. Valid only for c1.

lt: Only keys less than the bound will be returned.
Valid only for c2.

le: Only keys less than or equal to the bound will
be returned. Valid only for c2.

The cc parameter specifies the granularity of locks acquired for concurrency control. See
enum(ssm) for a description of the values. Here are the effects of all valid values for file scan:

t_cc_none:
The file is IS locked, but no locks are obtained on any pages or entries in the file.

t_cc_kvl:
The file is IS locked and the keys of the index entries are locked. Next-key locking provides
phantom protection.

t_cc_modkvl:
The file is IS locked and the keys of the index entries are locked. No next-key locking is done.
The only permissible scans are those where both bounds are eq.

t_cc_im:
The value in an entry is treated as a (physical) record identifier, and that record’s lock is obtained.
Next-record locking provides phantom protection. This locking protocol not useful for VASs that
use logical identifiers.

t_cc_file:
The file is SH locked, so no finer-granularity locks are obtained.

˜scan_index_i()

The destructor frees all resources used by the scan.

curr(key, klen, el, elen)

The curr method copies out the current key and element. They are copied to the memory
addressed by the key and el vectors. The klen parameter will be set to the length of the key copied
out. The elen parameter will be set to the length of the element copied out.

Release Jan 1999 2

scan_index_i (ssm) Shore Storage Manager scan_index_i (ssm)

next(eof)

The next method advances the scan to the next key/element pair. If the upper bound of the scan
has been reached, eof will be set to true.

finish()

The finish method frees all resources used by the scan.

eof()

If the upper bound of the scan has been reached, the eof method will return true.

error_code()

The error_code method will return any error code generated by the other scan member methods.
For more information on errors, see ERRORS section below.

Updates While Scanning

A common question is what is the effect of changes to an index made by a transaction that is also scanning
the index? It is not safe to change anything in the file while scanning. Instead, a list of changes should be
made during the scan and only performed after the scan is complete.

ERRORS
A scan_index_i object remembers if an error has occured while constructing the scan or while scanning.
An error that occurs in constructing the scan (such as having a bad index ID), can be detected by calling
error_code. Alternatively, the error can be detected on the first call to next which will return the remem-
bered error code. Therefore, if an error occurs while constructing or scanning, repeated calls to next will
all return the first error code and no progress will be made on the scan.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
intro(ssm), btree(ssm), scan_file_i(ssm), scan_rt_i(ssm)

Release Jan 1999 3

