
ss_m::init (ssm) Shore Storage Manager ss_m::init (ssm)

NAME
ss_m, set_shutdown_flag, setup_options − Class ss_m Methods for Initialization

SYNOPSIS
#include <sm_vas.h>

class ss_m;

static void ss_m::set_shutdown_flag(bool clean);
ss_m::ss_m();
ss_m(ss_m::LOG_WARN_CALLBACK_FUNC callback = 0);

static rc_t ss_m::setup_options(option_group_t∗);
ss_m::˜ss_m();

DESCRIPTION
These methods of class ss_m control initializing and shutting down the Shore storage manager (SSM).
Constructing an instance of ss_m starts the SSM. Destroying the instance causes the SSM to shut down.

During construction, the SSM follows the steps discussed in the Recovery section of The Shore Storage
Manager Programming Interface.

setup_options(option_group_t ∗∗)

The setup_options method adds storage manager specific options to the option_group_t. These
options must be initialized before the ss_m constructor is called.

ss_m(ss_m::LOG_WARN_CALLBACK_FUNC callback = 0)

The ss_m constructor initializes all SSM data structures, and performs recovery based on the
current log. Only one instance of ss_m may be in existence at any one time (this is enforced by
the constructor). The single optional argument is a callback function that is called when the the
active transactions have used so much log space that there is a threat of running out of log. The
details of this procedure are in the section LOG_WARN_CALLBACK_FUNC, below. If no such
callback function is provided, when the threshold is exceeded the SSM returns to the calling func-
tion with the error value RC(E_LOGSPACEWARN).

Part of SSM initialization includes allocating a buffer pool. The buffer pool is located in shared memory, so
the operating system must have shared-memory support to accommodate the size of the buffer pool. If
insufficient shared memory is available, the SSM prints a message indicating how much shared memory it
is trying to acquire, and exits.

set_shutdown_flag(clean)

The set_shutdown_flag method can be used to simulate a crash. If clean is set to false, the SSM
will not flush any buffers when ˜ss_m() is called. If clean is set to true, all data pages and logs
are flushed to disk, and no recovery processing will be needed when the SSM is restarted. This is
the normal operation of the storage manager.

Release Jan 1999 1

ss_m::init (ssm) Shore Storage Manager ss_m::init (ssm)

˜ss_m()

The ss_m destructor flushes all buffers in the buffer pool to disk (unless
set_shutdown_flag(clean) was used to defeat this) and frees all the resources used by the SSM.

LOG_WARN_CALLBACK_FUNC

At all times there must be enough log space left to abort a transaction. In the SSM, log space is finite (the
SSM does not archive parts of log on tertiary storage), so the value-added server must assist in keeping
adequate log space available. The run-time option sm_log_warn determines a threshold (in percentage of
the log) at which the threat of running out of log exists. When all the active transactions in the system
together have used that much of the log, the SSM issues a callback to the value-added server, which then
chooses a victim (transaction) to abort.

The callback function has the following type, which is in the ss_m namespace:

typedef w_rc_t (∗LOG_WARN_CALLBACK_FUNC) (
xct_i∗ iterator,
xct_t∗& victim,
w_base_t::base_stat_t curr,
w_base_t::base_stat_t thresh

);

The first argument, iterator, iterates over the transactions in the system. Its methods xct_t∗∗ xct_i::next()
and xct_t∗∗ xct_i::curr() return pointers to transaction data structures.

The second argument, victim, is where the resulting chosen victim is returned.

The arguments curr and thresh are simply advisory information: the current number of bytes of log used by
all active transactions in the system, and the threshold that was exceeded before the callback was made.

The callback function must analyze data structures that are internal to the storage manager, so the source
code for this function must include the definitions of these data structures. To accomplish this, the follow-
ing macros and inclusions are required:

#define SM_LEVEL 1
#define SM_SOURCE
#define XCT_C
#include "sm_int_1.h"
#include "e_error_def_gen.h"

/∗ Define your callback function here: ∗/
w_rc_t out_of_log_space (

xct_i∗ iterator ,
xct_t ∗& victim,
w_base_t::base_stat_t curr,
w_base_t::base_stat_t thresh

)
{

/∗ this function must return one of three states:
∗
∗ a valid xct_t∗ in victim AND the w_rc_t value
∗ RC(E_USERABORT) (in which case, victim is aborted
∗ by the SSM after the calling SSM method completes)
∗
∗ OR
∗

Release Jan 1999 2

ss_m::init (ssm) Shore Storage Manager ss_m::init (ssm)

∗ the w_rc_t value RCOK (in which case victim is ignored)
∗
∗ OR
∗
∗ the any other w_rc_t value (in which case victim is ignored,
∗ but the error code is returned to the caller of the
∗ calling SSM method, and the SSM method is not applied)
∗/

...

return RCOK;
}

The detection of threat of log-space overrun occurs whenever any value-added server thread calls a SSM
method that might generate any log. The detection and callback occur at the beginning of the method call;
subsequent aborting of the victim occurs upon exit from the SSM method.

It is important that the callback function not return the same victim more than once, so the callback func-
tion must take precautions to save state in a thread-safe manner.

If no such callback is provided in the SSM constructor, when the threshold is exceeded the SSM returns to
the calling function with the error value RC(E_LOGSPACEWARN).

ERRORS
Failure to properly construct/destruct the SSM will result in a fatal error that will print a message and exit
the program.

See errors(ssm) for more information on error-handling.

EXAMPLES
To Do.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
intro(ssm), volume(ssm), options(common), transaction(ssm)

Release Jan 1999 3

