
ss_m::volume (ssm) Shore Storage Manager ss_m::volume (ssm)

NAME
generate_new_lvid, create_vol, destroy_vol, add_logical_id_index, has_logical_id_index,
get_volume_quota, print_lid_index, vol_root_index, get_du_statistics − Class ss_m Methods for Volume
Management

SYNOPSIS
#include <sm_vas.h> // which includes sm.h

static rc_t generate_new_lvid(lvid_t& lvid);
static rc_t create_vol(

const char∗ device_name,
const lvid_t& lvid,
uint4 quota_KB,
bool skip_raw_init = false,
vid_t local_vid = vid_t::null);

static rc_t destroy_vol(const lvid_t& lvid);
static rc_t add_logical_id_index(

const lvid_t& lvid,
uint4 reserved_local,
uint4 reserved_remote);

static rc_t has_logical_id_index(
const lvid_t& lvid,
bool& has_index);

static rc_t get_volume_quota(
const lvid_t& lvid,
smksize_t& quota_KB,
smksize_t& quota_used_KB);

static rc_t print_lid_index(const lvid_t& lvid);

/∗ Logical-ID version ∗/
static rc_t vol_root_index(

const lvid_t& v,
serial_t& liid);

/∗ Phsical-ID version ∗/
static rc_t vol_root_index(

const vid_t& v,
stid_t& iid);

static rc_t vol_root_index(
const vid_t& v,
stid_t& iid);

// Volume space utilization statistics

static rc_t get_du_statistics(
lvid_t vid,
sm_du_stats_t& du,
bool audit = TRUE);

static rc_t get_du_statistics(
const lvid_t& vid,
const serial_t& serial,
sm_du_stats_t& du,

Release Jan 1999 1

ss_m::volume (ssm) Shore Storage Manager ss_m::volume (ssm)

bool audit = TRUE);
/∗ Physical-ID version ∗/
static rc_t get_du_statistics(

vid_t vid,
sm_du_stats_t& du,
bool audit = TRUE);

static rc_t get_du_statistics(
const stid_t& stid,
sm_du_stats_t& du,
bool audit = TRUE);

DESCRIPTION
The above class ss_m methods manage volumes.

Volumes are a logical unit of storage that are mapped to devices, which are physical units of storage
(corresponding to disks or disk partitions).

A volume is identified uniquely and persistently by a logical volume ID (lvid_t). Volumes can be used
whenever the device they are located on is mounted by the SSM. Volumes have a quota. The sum of the
quotas of all the volumes on a device cannot exceed the device quota. Volumes are located on devices.
Device management methods are described in device(ssm).

The basic steps to begin using a new volume are:

format_dev():
initialize the device

mount_dev(): allow use of the device

generate_new_lvid: generate a unique ID for the volume

create_vol: create a volume on the device

add_logical_id_index: add logical ID facility to the volume

VOLUMES INITIALIZATION METHODS
generate_new_lvid(lvid)

The generate_new_lvid method generates a universally unique volume id and returns it via lvid.
Currently, the ID is generated using the network address of the server combined with a timestamp.

create_vol(device_name, lvid, quota_KB, skip_raw_init, local_vid)

The create_vol method create_vol creates and formats a new volume on a device. When a
volume is stored on a raw device, formatting it involves the time consuming step of zero-ing every
page. This is necessary for correct operation of recovery. In some situations (during testing, for
example), this zeroing is unnecessary. In this case, setting skip_raw_init to true disables the zero-
ing. Creating a volume make the volume available for use. The local_vid parameter is only
meant to be a temporary hack for those VASs using the physical ID version of the SSM interface.
Local_vid is used to specify the local handle that should be when a volume is mounted. The
default value vid_t::null indicates that the SSM can use any number it wants to use. Note:
currently there is a limit of one volume per device.

Release Jan 1999 2

ss_m::volume (ssm) Shore Storage Manager ss_m::volume (ssm)

destroy_vol(lvid)

The destroy_vol method destroys a volume on a device. After a destroy_vol the device remains
mounted and another volume can be created on the device.

add_logical_id_index(lvid, reserved_local, reserved_remote)

The add_logical_id_index method sets up the logical ID index on volume lvid and should be
called after create_vol. The logical ID index is used to map logical ID serial numbers, type
serial_t, to physical locations on the volume or to IDs on other volumes. The reserved_local
parameter reserves a certain number of intra-volume (local) serial numbers. The reserved_remote
parameter reserves inter-volume serial numbers. The reserved serial numbers will not be allo-
cated by any calls which generate serial numbers and therefore can be used for other things by the
VAS.

has_logical_id_index(lvid, has_index)

The has_logical_id_index method sets has_index to true if volume lvid contains a logical ID
index.

print_lid_index(lvid)

The print_lid_index method is a debugging function that prints the logical ID index to standard
output.

ROOT INDEX METHODS
The root index of a volume is a special B+tree index available on every volume. It can be used to store
hooks (roots) into the data on a volume. A common use of a this index is to associate a string name with a
record, index or file ID containing information about the contents of the volume. For example, in a data-
base system, this might be the ID for the catalog. The index is accessed just like any other B+tree index.
See btree(ssm) for more information. Note: keys with the prefix "SSM_RESERVED" are reserved for use
by the SSM.

vol_root_index(lvid, serial)

The vol_root_index method returns (in serial)
the serial number (logical ID) of the root index for volume lvid.

SPACE UTILIZATION METHODS
The following methods provide disk space utilization statistics for volumes, files, and indexes.

get_volume_quota(lvid, quota_KB, quota_used_KB)

The get_volume_quota method returns the quota (in K-bytes) in quota_KB and the amount of the
quota allocated in quota_used_KB, for volume lvid.

get_du_statistics(lvid, du, audit)

The get_du_statistics method gathers space utilization statistics for volume lvid. The use of "du"
stems from similarity, in purpose, to the "du" command found on some operating systems. The
statistics are returned in the du parameter. When the audit parameter is set to true,
the entire volume is share (SH) locked and the statistics are audited for correctness. The error
code fcINTERNAL will be returned at the first sign of an auditing problem. If fcINTERNAL is

Release Jan 1999 3

ss_m::volume (ssm) Shore Storage Manager ss_m::volume (ssm)

returned it indicates either there is a problem with the integrity of the volumes data structures
(possibly indicating inaccessible garbage) or there is a bug in the auditing code. When the audit
parameter is set to false, only an intention-share (IS) locks are obtained on the volume and all files
and indexes. Therefore the statistics gathering methods may not see a consistent version of the
volume as things can be changing while statistics are gathered.

get_du_statistics(lvid, serial, du, audit)

The get_du_statistics method gathers space utilization statistics for a specific file or index indi-
cated by the logical ID: lvid, serial. The statistics are returned in the du parameter. The audit
parameter works as described in the previous methods except that it is the index or file that is SH
locked when audit is true.

ERRORS
All of the above methods return a w_rc_t error code.

See errors(ssm) for more information on error handling.

TRANSACTION ISSUES
Many of the above methods cannot be run within the scope of a transaction. The reason for this restriction
is to avoid the implication that rolling back (aborting) the transaction would rollback the effect of the
method.

TODO

EXAMPLES
TODO

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
intro(ssm), device(ssm).

Release Jan 1999 4

