
RSRC (COMMON) RSRC (COMMON)

NAME
rsrc_m, rsrc_i − Resource Manager and Iterator Classes

SYNOPSIS
#include <rsrc.h>

template <class TYPE, class KEY>
class rsrc_m : public w_base_t {

friend class rsrc_i<TYPE, KEY>;
public:

NORET rsrc_m(
TYPE∗ space,
int n,
char∗ descriptor=0);

NORET ˜rsrc_m();

void mutex_acquire();
void mutex_release();

bool is_cached(const KEY& k);

w_rc_t grab(
TYPE∗& ret,
const KEY& k,
bool& found,
bool& is_new,
latch_mode_t mode = LATCH_EX,
int timeout = sthread_base_t::WAIT_FOREVER);

w_rc_t find(
TYPE∗& ret,
const KEY& k,
latch_mode_t mode = LATCH_EX,
int ref_bit = 1,
int timeout = sthread_base_t::WAIT_FOREVER);

void publish_partial(const TYPE∗ rsrc);
void publish(
const TYPE∗ rsrc,
bool error_occurred = false);

bool is_mine(const TYPE∗ rsrc);

void pin(
const TYPE∗ rsrc,
latch_mode_t mode = LATCH_EX);

void upgrade_latch_if_not_block(
const TYPE∗ rsrc,
bool& would_block);

void unpin(
const TYPE∗& rsrc,
int ref_bit = 1);

Release Jan 1999 1

RSRC (COMMON) RSRC (COMMON)

// number of times pinned
int pin_cnt(const TYPE∗ t);
w_rc_t remove(const TYPE∗& t) {
w_rc_t rc;
bool get_mutex = ! _mutex.is_mine();
if (get_mutex) W_COERCE(_mutex.acquire());
rc = _remove(t);
if (get_mutex) _mutex.release();
return rc;

}

void dump(ostream &o,bool debugging=1)const;
int audit(bool prt= false) const;

void snapshot(u_int& npinned, u_int& nfree);

unsigned long ref_cnt, hit_cnt;

// iterator
template <class TYPE, class KEY>
class rsrc_i {
public:

NORET rsrc_i(
rsrc_m<TYPE, KEY>& r,
latch_mode_t m = LATCH_EX,
int start = 0)
: _mode(m), _idx(start), _curr(0), _r(r) {};

NORET ˜rsrc_i();

TYPE∗ next();
TYPE∗ curr() { return _curr ? _curr->ptr : 0; }
w_rc_t discard_curr();

private: // disabled methods
NORET rsrc_i(const rsrc_i&);
rsrc_i& operator=(const rsrc_i&);

};

/∗
∗ rsrc_t
∗ control block (handle) to a resource
∗/
template <class TYPE, class KEY>
struct rsrc_t {
public:

NORET rsrc_t() {};
NORET ˜rsrc_t() {};
w_link_t link; // used in resource hash table
latch_t latch; // latch on the resource
KEY key; // key of the resource
KEY old_key;
bool old_key_valid;

Release Jan 1999 2

RSRC (COMMON) RSRC (COMMON)

TYPE∗ ptr; // pointer to the resource
w_base_t::uint4_t waiters; // # of waiters
w_base_t::uint4_t ref; // ref count
scond_t exit_transit; // signaled when

// initialization is done

};

DESCRIPTION
The rsrc_m template class manages a fixed size pool of "resources" (of type T) in a multi-threaded
environment. A structure, rsrc_t, is associated with each resource. Class rsrc_t contains a key, K, a
pointer to the resource and a latch to protect access to the resource. The rsrc_t elements are stored in a
hash table, hash_t. Because of the latches, each resource can be individually "pinned" for any desired
length of time without restricting access to other resources.

The template class rsrc_i is the iterator for the rsrc_m class.

When a entry needs to be added and the table is full, on old entry is removed based on an LRU policy.

The rsrc_m is relatively expensive, so it is probably best used to manage large resources or where high
concurrency is needed. A good example is managing access to pages in a buffer pool.

Requirements:
The rsrc_m template takes two class parameters:

T the class type of the resources to be manages.

K the unique key of the resource for lookup purposes. Note: that K must define K::operator=() for
copying since rsrc_m saves a copy of K u_long hash(const K&) hash function for K because
rsrc_m is hash-table based.

A resource in rsrc_m
can be in one of three states:

unused the resource is free; no key is associated with the resource.

cached the resource is cached and is associated with a key.

in-transit
the resource is begin replaced; its key is being changed.

Rsrc_m Interface

rsrc_m(rsrc, cnt, desc)

The constructor creates a resource manager to manage the resources specified by the array rsrc.
The number of resources (ie. the length of the array) is specified by cnt. The desc is an optional
string used for naming the latches protecting the resources. It can be useful in debugging.

˜rsrc_m()

The destructor destroys the resource manager. There should not be any resources pinned when
the resource manager is is destroyed.

Release Jan 1999 3

RSRC (COMMON) RSRC (COMMON)

grab(ret, key, found, is_new, mode, timeout)

The grab method pins the resource associated with key and sets a latch in mode mode on the
resource. The calling thread should subsequently free rsrc by calling unpin.

If the resource is cached, grab simply returns it. Otherwise, grab will either allocate an unused
resource or find another cached resource to replace using a pseudo-LRU (clock) algorithm. The
calling thread could potentially block if mode causes a latch conflict (i.e.,when there is contention
to the resource). If grab is successful, a pointer to the cached/allocated/replacement resource is
returned in ret. The found flag is set to indicate cache hit/miss. In the case of a cache miss, the
resource returned is said to be in-transit, and the is_new flag indicates whether ret points to:

(1) a previously unused resource (true), or

(2) a previously cached resource of another key (false).

In case 1, the in-transit resource returned simply needs to be initialized with the new key. All
other threads that ask for a resource with the new key will block. The caller should initialize the
resource and subsequently call publish, which formally publishes the new key and resets the
resource’s in-transit status.

In case 2, the in-transit resource returned is temporarily associated with both the new key (as
specified in grab and the old key. All other threads that ask for a resource with any of these keys
will block. The caller sehould first clean up the resource (invalidate the old key) and call
publish_partial, which informs rsrc_m that the old key is no longer valid. The caller should then
proceed as in case 1.

In essense, the caller should proceed as follows:

grab the resource
if not found then
if not is_new then

clean up the resource (optional), e.g.,flush the dirty page
call publish_partial() (optional)

initialize the resource (obligatory), e.g.,read the new page
call publish() (obligatory)

... use the resource ...
call unpin() to free the resource

find(ret, key, mode, ref_bit, timeout)

The find method looks up and pins a cached resource identified by key. It returns an the error
fcNOTFOUND
if the resource is not cached. If the resource is cached, a mode
latch is acquired on the resource and a pointer to the resource is returned in ret. The calling thread
should subsequently free the resource by calling unpin. As in grab,
the calling thread could potentially block if mode causes a latch conflict (i.e.,when there is con-
tention to the resource). The refbit parameter is a hint to the rsrc_m replacement algorithm; refbit
is directly proportional to the duration that a resource remained cached. Thus, a zero refbit implies
that the rsrc_m should reuse the resource as soon as needed after it is unpinned.

pin(rsrc, mode)

Release Jan 1999 4

RSRC (COMMON) RSRC (COMMON)

The pin method pins the resource rsrc. The latch on the resource is acquired in mode mode. The
calling thread should subsequently free rsrc by calling unpin.

publish(rsrc, error_flag)

The publish method makes the resource rsrc, that was previously obtained by a grab call with a
cache miss, available. See the description of grab for more details. The error_flag parameter is
informs the rsrc_m that the resource has not been successfully initialized, and should be invali-
dated.

publish_partial(rsrc)

The publish_partial method partially publishes the resource rsrc that was previously obtained
with a call to grab. See the description of grab for more details.

unpin(rsrc, refbit)

The unpin method releases the latch on the resource rsrc. The refbit parameter is a hint to the
rsrc_m replacement algorithm; refbit is directly proportional to the duration that a resource
remained cached. Thus, a zero refbit implies that the rsrc_m should reuse the resource as soon as
needed.

Rsrc_i Interface

The rsrc_i template is used to iterate over all of the resources in an instance of rsrc_m.

rsrc_m(r, mode, start)

The constructor initilizes an iterator for the rsrc_m instance indicated by parameter r. Each
resource will be pinned (latched) in mode mode. The iterator starts at the start, element in the
array of resources that r manages. The iterator will only return those resources actually in the
hash table.

˜rsrc_m()

The destructor ends the iterator by unpinning and currently pinned resource.

next()

The next method unpins the current resource, advances the iterator to the next resource, and pins
it. Next returns a pointer to the resource after it has advanced. It will return 0 if there are no more
resources. Next skips any resources not in the hash table.

curr()

The curr method returns a pointer to the currently pinned resource.

discard_curr()

The discard_curr method unpins the current resource and removes it from the hash table.

TODO

Release Jan 1999 5

RSRC (COMMON) RSRC (COMMON)

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
latch_t(common), intro(common).

Release Jan 1999 6

