
ERRLOG (COMMON) ERRLOG (COMMON)

NAME
ErrLog − Shore Error Logging Class

SYNOPSIS
#include <syslog.h>

class ErrLog;

LogPriority {
log_none = -1, // none
log_emerg = LOG_EMERG, // no point in continuing (syslog’s LOG_EMERG)
log_fatal = LOG_ALERT, // no point in continuing (syslog’s LOG_ALERT)
log_internal = LOG_CRIT, // internal error
log_error = LOG_ERR, // client error
log_warning = LOG_WARNING,// client warning
log_info = LOG_INFO, // just for yucks
log_debug=LOG_DEBUG, // for debugging gory details

};

// The following __omanip functions are defined to correspond
// to the LogPriority:
// emerg, fatal, internal, error, warning, info, debug
//
// Log messages must end with the new __omanip function
// flushl.
//
enum LoggingDestination {

log_to_ether, // no logging - for testing this package
log_to_unix_file,
log_to_open_file,
log_to_syslogd,
log_to_stderr

};

typedef void (∗ErrLogFunc)(ErrLog ∗, void ∗);

class logstream; // forward
class ErrLog {

ErrLog(
const char ∗ident,
LoggingDestination dest, // required
void ∗arg = 0, // one of :

// pathname, (log_to_unixfile)
// "-" means same as log_to_stderr
// FILE ∗, (log_to_openfile)
// syslog facility (log_to_syslogd)
// ignored for log_to_stderr

LogPriority level = log_error,
char ∗ownbuf = 0,
int ownbufsz = 0 // length of ownbuf, if ownbuf is given

);
˜ErrLog();

// same name

Release Jan 1999 1

ERRLOG (COMMON) ERRLOG (COMMON)

logstream clog;
void log(enum LogPriority prio, const char ∗format, ...);
const char ∗ ident();
LoggingDestination destination();
LogPriority getloglevel();
const char ∗ getloglevelname();
LogPriority setloglevel(LogPriority prio);
static ErrLog ∗find(const char ∗id);
static void apply(ErrLogFunc func, void ∗arg);

}

DESCRIPTION
The class ErrLog provides a unified, flexible interface to syslog and to Unix files for issuing errors or
informational messages. A process can have many ErrLogs at once. Each ErrLog has an identity. If two
ErrLogs are instantiated with the same ident, the class returns an error. The class keeps all instances of
ErrLogs in a list so that an ErrLog can be located by its ident with the method ErrLog::find.

When an ErrLog is created, along with its identity, the caller must specify the ErrLog’s destination, addi-
tional information that depends on the destination, the logging level for the log object, and the buffer to be
used by the log for buffering messages. For example:

#include <errlog.h>

ErrLog ∗log_syslog =
new ErrLog("syslog", log_to_syslogd, (void ∗)LOG_USER, log_error);

Log messages will be sent to the syslog daemon, under the facility name "user". Only messages of priority
log_error and higher will be sent. The default buffer will be used to buffer the messages.

The class ErrLog has two mechanisms for generating log messages; one mechanism is compatible with
C++ output streams; the other mechanism is similar to the syslog() function. To use C++ output-stream-
style logging, in place of an ostream use the member of the ErrLog called clog, which is an object of class
logstream (derived from ostream).

log_syslog->clog << warning << "Warning: Do not pass go." << flushl;

The message "Warning: Do not pass go" will not be sent because the warning priority is lower than the
error priority. The log message ends with the __omanip function flushl, which causes the log to be flushed.
The log is also flushed each time the priority of the message changes. For example, the following state-
ment cause three distinct messages to be processed:

log_syslog->clog << debug << "testing" << error "Oops"
<< info << "interesting" << flushl;

Each of the messages has the priority given prior to the message, and the log is flushed four times: once
before each priority change and at the end by flushl. The __omanip functions emerg, fatal, internal, error,
warning, info, and debug are ignored if they are used with an ostream (such as cerr). The function flushl
is equivalent to flush if it is used with an ostream rather than with a logstream.

In the following example, the caller gives a buffer for use by the log. (The default buffer is 1000 bytes in
size; only if messages might exceed 1000 bytes in length is it necessary to provide a buffer.)

Release Jan 1999 2

ERRLOG (COMMON) ERRLOG (COMMON)

char ∗big_buffer[10000];
ErrLog ∗log_stderr =

new ErrLog("errors", log_to_stderr, (void ∗)0, log_error,
big_buffer, sizeof(big_buffer));

log_stderr->log(log_error, "Error: %s passed go.", "George");

The message "Error: George passed go." will be printed on the standard error file because the priority of
the message is the priority of the log. The method log() is used here to print the message; this style of log-
ging can be mixed with the output-stream-style of logging shown in the previous example. Each invoca-
tion of log() flushes the log. This method is similar to the syslog() function call, but it does not recognize
the "%m" format. The ErrLog class does not have the capability to handle "%m".

A log can be attached to an already-open file if the file has been opened with fopen(). The constructor for
ErrLog then takes a FILE ∗∗ as its third parameter.

FILE ∗f = fopen(...);
ErrLog ∗log_openfile =

new ErrLog("information", log_to_open_file, f, log_info);

Finally, an ErrLog can be attached to a Unix file. The file is created if it does not exist, and if the file
already exists, it is opened for appending.

ErrLog ∗log_file =
new ErrLog("tracing", log_to_unix_file, "/my/path/debug.out", log_debug);

The ErrLog class does not log to Shore objects because it is meant not to rely on the Shore Value-Added
Server being part of the process in which it is linked.

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

Release Jan 1999 3

