ERRLOG (COMMON) ERRLOG (COMMON)

NAME
ErrLog — Shore Error Logging Class

SYNOPSIS
#i ncl ude <sysl og. h>

class ErrlLog;

LogPriority {

| og_none = -1, /'l none

| og_energ = LOG_EMERG /1 no point in continuing (syslog s LOG EMERG
|l og fatal = LOG _ALERT, /1 no point in continuing (syslog s LOG ALERT)
log internal = LOGCRIT, // internal error

|l og_error = LOG ERR, /1l client error

| og_warning = LOG WARNI NG, // client warning

l og_info = LOG I NFQ, /1 just for yucks

| og_debug=L0OG_DEBUG, /1 for debugging gory details

s

/1 The following __omanip functions are defined to correspond
/1l to the LogPriority:

/!l emerg, fatal, internal, error, warning, info, debug
/1
/1 Log messages nust end with the new __omani p function
/1 flushl
/1
enum Loggi ngDest i nation {
| og_to_ether, /1 no logging - for testing this package

log to_unix_file,
log_to_open_file,
| og_to_sysl ogd,

|l og_to_stderr

1
typedef void (CErrLogFunc)(ErrLog O void O;

class logstream // forward
class ErrLog {
Err Log(
const char [dent,
Loggi ngDesti nation dest, // required

void [arg = 0, /1l one of
/1 pathname, (log_to_unixfile)
/1 "-" means sane as log to_stderr
/!l FILE O (1 og_to_openfile)

/1l syslog facility (log_to_sysl ogd)
/1 ignored for log to_stderr
LogPriority level = log_ error
char [ownbuf = 0,
int ownbufsz =0 // length of ownbuf, if ownbuf is given
)
“ErrLog();

/] sanme name

Release Jan 1999 1

ERRLOG (COMMON) ERRLOG (COMMON)

| ogstream cl og;

void | og(enum LogPriority prio, const char dormat, ...);
const char Oident();

Loggi ngDesti nation destination();

LogPriority getlogl evel ();

const char [getl ogl evel name();

LogPriority setlogl evel (LogPriority prio);

static ErrLog Oind(const char 0Od);

static void apply(ErrLogFunc func, void [arg);

}

DESCRIPTION

Release

The class ErrLog provides a unified, flexible interface to syslog and to Unix files for issuing errors or
informational messages. A process can have many ErrLogs at once. Each ErrLog has an identity. If two
ErrLogs are instantiated with the same ident, the class returns an error. The class keeps all instances of
ErrLogsin alist so that an ErrLog can be located by itsident with the method ErrL og::find.

When an ErrLog is created, along with its identity, the caller must specify the ErrLog’'s destination, addi-
tional information that depends on the destination, the logging level for the log object, and the buffer to be
used by the log for buffering messages. For example:

#i ncl ude <errl og. h>

ErrLog O og_syslog =
new ErrLog("syslog", log to syslogd, (void LOG USER, |og error);

Log messages will be sent to the syslog daemon, under the facility name "user". Only messages of priority
log_error and higher will be sent. The default buffer will be used to buffer the messages.

The class ErrLog has two mechanisms for generating log messages, one mechanism is compatible with
C++ output streams; the other mechanism is similar to the syslog() function. To use C++ output-stream-
stylelogging, in place of an ostream use the member of the ErrLog called clog, which is an object of class
logstream (derived from ostream).

| og_sysl og->clog << warning << "Warning: Do not pass go." << flushl;

The message "Warning: Do not pass go" will not be sent because the warning priority is lower than the
error priority. The log message ends with the __omanip function flushl, which causes the log to be flushed.
The log is also flushed each time the priority of the message changes. For example, the following state-
ment cause three distinct messages to be processed:

| og_sysl og->cl og << debug << "testing" << error "Qops"
<< info << "interesting" << flushl;

Each of the messages has the priority given prior to the message, and the log is flushed four times: once
before each priority change and at the end by flushl. The __omanip functions emerg, fatal, internal, error,
warning, info, and debug are ignored if they are used with an ostream (such as cerr). The function flushl
isequivaent to flush if it is used with an ostream rather than with alogstream.

In the following example, the caller gives a buffer for use by the log. (The default buffer is 1000 bytes in
size; only if messages might exceed 1000 bytes in length isit necessary to provide a buffer.)

Jan 1999 2

ERRLOG (COMMON) ERRLOG (COMMON)

char [bi g_buf fer[10000];
ErrLog [og_stderr =

new ErrLog("errors", log to stderr, (void DO, log_error,
bi g buffer, sizeof(big_buffer));
| og_stderr->log(log error, "Error: % passed go.", "George");

The message "Error: George passed go." will be printed on the standard error file because the priority of
the message is the priority of the log. The method log() is used here to print the message; this style of log-
ging can be mixed with the output-stream-style of logging shown in the previous example. Each invoca-
tion of log() flushes the log. This method is similar to the syslog() function call, but it does not recognize
the "%m" format. The ErrLog class does not have the capability to handle "%m".

A log can be attached to an aready-open file if the file has been opened with fopen(). The constructor for
ErrLog then takes aFILE [asitsthird parameter.

FI LE 0 = fopen(...);
ErrLog [og_openfile =
new ErrLog("information", log to_open_file, f, log_info);

Finaly, an ErrLog can be attached to a Unix file. The file is created if it does not exist, and if the file
already exists, it is opened for appending.

ErrLog Oog file =
new ErrLog("tracing", log_to_unix_file, "/my/path/debug.out”, |og_debug);

The ErrLog class does not log to Shore objects because it is meant not to rely on the Shore Value-Added
Server being part of the processin which itislinked.

VERSION
This manual page appliesto Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAABQ7-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT

Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

Release Jan 1999 3

