ss_m::index (ssm) Shore Storage Manager ss_m::index (ssm)

NAME
bulkld_index, create assoc, create index, destroy assoc, destroy index, find_assoc, print_index — Class
ss_m Methods for B+Tree Index Operations

SYNOPSIS

#include <smvas.h> // includes smh (where they are decl ared)

/0O Logical -1D version O

static rc_t creat e_i ndex(
const lvid t& I vid,
ndx_t nt ype,
store_property_t property,
const char(key_desc,
concurrency_t cc,
ui nt size_kb_hint, // hint on final size in KB
serial _t& liid);
/0O Physical -1D version O
static rc_t creat e_i ndex(
vid_t vi d,
ndx_t ntype,
store_property_t property,
const char(key_desc,
concurrency_t cc,
stid t& stid, /'l result
const serial _t& | ogi cal _id=serial t::null
)

/1 for backward-conpatibility:
/0O Logical IDversion O

static rc_t creat e_i ndex(
const lvid t& I vid,
ndx_t ntype,
store_property_t property,
const char(key_desc,
ui nt size_kb_hint, // hint on final size in KB
serial _t& liid);

/1 for backward conpatibility:
/0O Physical -1D version O

static rc_t creat e_i ndex(
vid_t vi d,
ndx_t nt ype,
store_property_t property,
const char(key_desc,
stid t& stid,
const serial _t& | ogi cal _id=serial _t::null
)
/0O Logical IDversion O

static rc_t destroy_i ndex(
const lvid t& I vid,

Release Jan 1999 1

ss_m::index (ssm) Shore Storage Manager ss_m::index (ssm)

const serial _t& liid);
/0O Physical -1D version [

static rc_t destroy_i ndex(
const stid t& iid);

/0O Logical 1D version [

static rc_t bul kI d_i ndex(
const lvid t& I vid,
const serial _t& liid,
const lvid t& s_lvid,
const serial _t& s _|fid,
smdu stats t& stats);

/0O Physical -1D version [

static rc_t bul kI d_i ndex(
const stid t& stid,
const stid t& source,
smdu stats t& stats,
bool sort _duplicates = true,
bool | exi fy_keys = true
);
/0O Physical -1 D, variant of above with multiple input files [
static rc_t bul kI d_i ndex(
const stid t& stid,
i nt nsrcs,
const stid tO sour ce,
smdu stats t& stats,
bool sort _duplicates = true,
bool | exi fy_keys = true
);
/0O Logical 1D version [
static rc_t bul kI d_i ndex(
const lvid t& I vid,
const serial _t& liid,
sort_streami & sorted_stream
smdu stats t& stats);

/0O Physical -1D version [

static rc_t bul kI d_i ndex(
const stid t& stid,
sort_streami & sorted_stream
smdu stats t& stats);

/0O Logical 1D version [

static rc_t print_i ndex(
const lvid t& I vid,
const serial _t& liid);

Release Jan 1999 2

ss_m::index (ssm)

Shore Storage Manager

/0O Physical -1D version [

static rc_t
stid t

print_i ndex(
stid);

/0 Logical 1D version [

static rc_t
const lvid t&
const serial _t&
const vec_té&
const vec_té&

create_assoc(
[vid,
liid,
key,
el);

/0O Physical -1D version [

static rc_t
stid t
const vec_té&
const vec_té&

)

create_assoc(
stid,
key,
el

/0 Logical 1D version [

static rc_t
const lvid t&
const serial _t&
const vec_té&
const vec_té&

destroy_assoc(
[vid,
liid,
key,
el);

/0O Physical -1D version [

static rc_t
stid t
const vec_té&
const vec_té&

)

destroy_assoc(
stid,
key,
el

/0O Logical 1D version [

static rc_t
const lvid t&
const serial _t&
const vec_té&
int&

destroy_al | _assoc(
[vid,
liid,
key,
num r enoved) ;

/0O Physical -1D version [

static rc_t
stid t
const vec_té&
int&
);

destroy_al | _assoc(
stid,
key,
num r enoved

/0O Logical 1D version [

static rc_t
const lvid t&

Release

find_assoc(
[vid,

Jan 1999

ss_m::index (ssm)

ss_m::index (ssm) Shore Storage Manager ss_m::index (ssm)

const serial _t& liid,
const vec_t& key,
voi dJ el,
sneize t& el en, /1 if you don’t want the result,
/1 make this 0 on input

bool & found) ;
/0O Physical -1D version [

static rc_t find_assoc(
stid t stid,
const vec_t& key,
voi dJ el,
snsi ze t& el en,
bool & f ound
)

DESCRIPTION

Release

The above class ss m methods manipulate B+tree indexes.

Common Parameters
There are anumber of common parameters for these methods:
Ivid Logical volume ID of volume containing an index.

liid Logical index ID, the serial number of an index. (The Physical-1D versions of these methods take a
store ID instead of the logical volume and index 1D pair.)

key A vector pointing to the key portion of an index entry.
el A vector pointing to the element portion of an index entry.

create index(lvid, ntype, property, key desc, size kb_hint, liid)

The create_index methods creates a new B+tree index on the volume lvid, and returns its seria
number in liid. The ntype parameter specifies the type of implementation used for the index.
Valid values for the ntype parameter are t_btree, indicating a B+tree allowing entries with dupli-
cate keys, and t_uni_btree, indicating a B+tree only alowing entries with unique keys. The pro-
perty parameter specifies whether the index is temporary. See enum(ssm) for more information
onss m::store property _t.

The key_desc parameter is a string describing the the type of the keys to be stored in the index.
The syntax of key desc isasfollows:

<key_type_str> <key_type>[<v_key_type>

<key_type> = <type> <l en>
<v_key_type> = <type> <var> <l en>
<type> = Iil | 1u1 I 1f1 | Ibl
<var > ='0O | NULL

<l en> =[1-9][0-9]0O

A <key type> contains atype ('i’ for integer, 'u’ for unsigned, 'f’ for float, 'b’ for binary), and a
length. A <v_key type>, which isthe last part of <key type str>, can contain an optional indica-
tor (') for variable length field. A <key type str> is composed of multiple <key type>, and a
<v_key type>;i.e. only thelast field can be variable length.

Jan 1999 4

ss_m::index (ssm) Shore Storage Manager ss_m::index (ssm)

For exanple the key_desc "i 4f 8b[1000" specifies a
key that contains:
1. a 4 byte integer
2. an 8 byte float (double)
3. avariable length binary field that could be as |ong as
as a 1000 bytes.

The SSM applies a function to the key values, the result of which is a string of bytes that can be
lexicographically compared, and yield the correct order. The SSM contains such functions for
keys of the following types: signed and unsigned integer keys of length 1, 2, or 4, floating point
keys of length 4 or 8. Byte strings keys are not interpreted; they are stored as presented to the
SSM.

The size kb_hint parameter allows the caller to give a hint about the final size of the index (in K-
bytes). This helps the SM determine where to allocate space for the index. For now, the hint's
main purpose is to determine whether the index will fit on one page or on many. A value of 0
should be used if it is known the index will be small or if the fina size of the index is unknown.
Otherwise a value larger than ss m::page sz/1000 should be used. Small (one-page) indexes are
available only with the logical-ID API. Thisisbecause it is possible to re-map the logical ID to a
new index when the tree grows to assume a different form.

create index(lvid, ntype, property, cc, key desc, size kb_hint, liid)

This form of create index allows you to associate with the index, a locking protocol other than
t_cc_kvl. See enum(ssm) for more information on ss_m::concurrency_t.

See the "ROOT INDEX METHODS" section of volume(ssm) for information on how to keep
track of the indexes on avolume.

destroy_index(Ivid, liid)

The destroy_index methods destroys the index and deallocates all space used by it. The spaceis
not available for reuse until the transaction destroying the index commits.

bulkld_index(lvid, liid, s Ivid, s Ifid, stats)

This bulkld_index method bulk loads the empty index, identified by Ivid and liid. The entries to
load must be located, in sorted order, in the file identified by s _Ivid and s Ifid. The header of each
record in the file contains the key and the body contains the element (value) associated with the
key. Statisticsfor the newly loaded index are returned in stats, specifically in the btree field.

bulkld_index(lvid, liid, sorted_stream, stats)

This bulkld_index method is identical to the one above except that rather than getting entries
from a file, the entries come from sorted stream. Note: this method has not been extensively
tested and may change in the future. See sort_stream_i(ssm) for more information.

print_index(lvid, liid)
The print_index method is prints the contents of the index. It is meant to be a debugging tool.

create assoc(lvid, liid, key, €l)
The create_assoc method adds a new entry associating key with the element (value) el.

Release Jan 1999 5

ss_m::index (ssm) Shore Storage Manager ss_m::index (ssm)

destroy_assoc(lvid, liid, key, €l)
The destroy_assoc method destroys the entry associating key with the element (value) €.

destroy_all_assoc(lvid, liid, key, num_removed)

The destroy_all_assoc method destroys all entries with key as a key. The number of entries
removed is returned in num_removed.

find_assoc(lvid, liid, key, €, elen, found)

The find_assoc method finds key in the index and and writes the associated element (only the first
one found) to the address specified by el. At most elen bytes will be written. If the element is not
needed, set elen to 0. Elen will be set to the length actually written. If key is found, then found
will be set to true. A more comprehensive lookup facility, allowing range searches, is available
from the class scan_index_i described in scan_index_i(ssm)

ERRORS
All of the above methods return aw_rc_t error code. If an error occurs during a methods that is updating
persistent data (the create, destroy, and bulk load methods will update data) then the index could be in an
inconsistent state. The caller then has the choice of aborting the transaction or rolling back to the nearest
save-point (see transaction(ssm)).

See errors(ssm) for more information on error handling.

EXAMPLES
To Do.

VERSION
This manual page appliesto Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAABQ7-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
scan_index_i(ssm), sort_stream_i(ssm) intro(ssm),

Release Jan 1999 6

