
pin_i (ssm) Shore Storage Manager pin_i (ssm)

NAME
pin_i, pin, repin, unpin − Class for Pinning Records

SYNOPSIS
#include <sm_vas.h> // which includes pin.h

class pin_i : public smlevel_top {
public:

enum flags_t {
pin_empty = 0x0,
pin_rec_pinned = 0x01,
pin_hdr_only = 0x02,
pin_separate_data = 0x04,
pin_lg_data_pinned = 0x08 // large data page is pinned

};

NORET pin_i();
NORET ˜pin_i();

/∗ Logical-ID version ∗/
rc_t pin(
const lvid_t& lvid,
const serial_t& lrid,
smsize_t start,
lock_mode_t lmode = SH);

/∗ Physical-ID version ∗/
rc_t pin(

const rid_t rid,
smsize_t start,
lock_mode_t lmode = SH);

void unpin();
void set_ref_bit(int value);
rc_t repin(lock_mode_t lmode = SH);
rc_t next_bytes(bool& eof);
bool pinned() const;
bool pinned_all() const;
bool up_to_date() const;

// methods for accessing the record
smsize_t start_byte() const;
smsize_t length() const;
smsize_t hdr_size() const;
smsize_t body_size() const;
const char∗ hdr() const;
const char∗ body();
bool is_small() const;
const record_t∗ rec() const;
const serial_t& serial_no() const;
const lvid_t& lvid() const;
const rid_t& rid() const;

Release Jan 1999 1

pin_i (ssm) Shore Storage Manager pin_i (ssm)

// methods for changing the record
rc_t update_rec(smsize_t start, const vec_t& data);
rc_t update_rec_hdr(smsize_t start, const vec_t& hdr);
rc_t append_rec(const vec_t& data);
rc_t truncate_rec(smsize_t amount);

// miscellaneous
const char∗ hdr_page_data();
lpid_t page_containing(
smsize_t offset,
smsize_t& start_byte) const;

static void pin_stats(
u_long& pins,
u_long& unpins,
bool reset);

private:
// these methods are disabled
pin_i(const pin_i&);
pin_i& operator=(const pin_i&);

};

DESCRIPTION
Class pin_i supports pinning records in the buffer pool and provides a variety of methods for accessing
information about a record and its contents. A pin_i object is basically a handle to a pinned record. The _i
suffix in a class name indicates that a class is an iterator. Class pin_i is an iterator since it is used to iterate
over all by bytes in a record’s body.

CONSTRUCTORS and DESTRUCTORS
pin_i()

The pin_i constructor simply initializes a pin_i object.

˜pin_i()

If a record is pinned, ˜pin_i un-pins it.

PINNING
pin(lvid, lrid, start, lmode)

The pin method pins a range of bytes of a record. For small records (those that fit on one page),
the entire record body will be pinned. For large records, only one page of the body will be pinned
at a time. For both small and large records, the record header is always pinned as well. The first
two parameters, lvid and lrid specify the logical ID of the record to be pinned.

The start parameter specifies a byte offset into the record body corresponding to a region of the
body to pin. However, the pin operation will always adjust the starting location of the pin to
reflect the beginning of the page containing the byte indicated by the start parameter. The true
starting location and size of the pinned region are available from the start_byte and length
methods, respectively. For example, start=0 will always pin the first page of the record body, as
will start=10 (assuming the record is at least 10 bytes long). In both cases, start_byte will return
0 and length will either the entire record, if small, or approximately the length of a page, if large.

Release Jan 1999 2

pin_i (ssm) Shore Storage Manager pin_i (ssm)

The lmode parameter specifies how the record should initially be locked (ie. the lock mode). The
options are SH (share/read lock) and EX (exclusive/write lock). EX the pinned record will be
eventually updated (through update_rec, unpdate_rec_hdr, append_rec, or truncate_rec). Using
EX in these cases will improve performance and reduce the risk of deadlock, but is not necessary
for correctness.

unpin()

The unpin method unpins the current record (assuming one is pinned). The pin object can then be
used to pin another record. The destructor automatically calls unpin.

set_ref_bit(value)

The set_ref_bit sets the reference bit value to use for the buffer frame containing the currently
pinned body page when the page is unpinned. A value of 0 is a "hate" hint indicating that the
frame can be reused as soon as necessary. By default, a value of 1 is used indicating the page will
be cached until at least 1 sweep of the buffer clock hand has passed. Higher values cause the page
to remain cached longer.

repin(lmode)

The repin method repins the previously pinned record, locking it in the mode specified by lmode
(see pin for further discussion of lmode. The repin method has a number of uses. First, when the
previously pinned record needs to be repinned, it is more efficient to call repin than to call pin
with the ID of the record. Second, it can be used to repin the record after some other operation
has modified the page containing the record. See the RESTRICTIONS section for further infor-
mation on this use of repin. Third, repin can be used to upgrade the lock held on the currently
pinned record. However, this is usually unnecessary since all of the methods in class pin_i that
modify the record will automatically acquire an EX mode lock on the record.

next_bytes(eof)

The next_bytes method gets the next range of bytes available to be pinned. Parameter eof is set to
true if there are no more bytes to pin. When eof is reached, the previously pinned range remains
pinned

pinned()

The pinned methods returns true, if a record is currently being pinned, and false otherwise.

pinned_all()

The pinned_all methods returns true if the pinned region includes the entire record, otherwise.
false is returned.

up_to_date()

The up_to_date method returns true if a record is pinned and pin no changes have been made to
the page containing the record since it was pinned. See the RESTRICTIONS section for infor-
mation on using this method.

ACCESSING THE RECORD
start_byte()

Release Jan 1999 3

pin_i (ssm) Shore Storage Manager pin_i (ssm)

The start_byte method returns the offset, from the beginning of the record, where the pinned
region starts. Ie. it is the offset of the location pointed to by the body method. Note: the value
returned by start_byte may not be the start location passed to pin since pinned regions are always
aligned on page boundaries.

length()

The length method returns the length, in bytes, of the pinned region.

hdr_size()

The hdr_size method returns the size, in bytes, of the record header.

body_size()

The body_size method returns the size, in bytes, of the entire record body (not just the portion
pinned).

hdr()

The hdr method returns a pointer to the pinned header. Note that the pointer is const since the
header can only be updated via update_rec_hdr.

body()

The body method return a pointer to the pinned region of the body. Note that the pointer is const
since the body can only be updated via the update methods described below.

is_small()

The is_small method returns true if the record body fits on the same page as the header and thus
is pinned in it’s entirety.

serial_no()

lvid()

The serial_no and lvid methods return the logical ID of the pinned record assuming it was pinned
using logical IDs. Note: theses IDs are the "snapped" values -- ie. they are the volume ID where
the record is located and the record’s serial# on that volume. Therefore, these may be different
than the ones passed in to pin the record.

rid()

The rid method return the physical ID of the record.

rec()

The rec method returns the pointer record_t structure that is used internally to access records on
pages. Most uses of this structure, such as finding the size of the record, are already provided by
other pin_i methods. The primary use of this method is debugging or to do things not provided by
other pin_i methods.

Release Jan 1999 4

pin_i (ssm) Shore Storage Manager pin_i (ssm)

UPDATING A PINNED RECORD
update_rec(start, data)

update_rec_hdr(start, hdr)

append_rec(data)

truncate_rec(amount)

These methods are used to change a pinned record. They correspond to the class ss_m methods of
the same name describe in file(ssm). They can be called on any pinned record regardless of where
and how much is pinned. Using these methods when a record is pinned is considerably more
efficient than calling the corresponding ss_m methods. Also, the up_to_date method will return
true after calling one of these methods, even though they update the record.

OTHER MEMBER FUNCTIONS
hdr_page_data()

The hdr_page_data method returns a pointer to beginning of the page containing the pinned
record header. This is used by the Shore VAS when sending entire pages of records to the client.
A page can be interpreted with the shore_file_page_t(ssm) class (undocumented).

page_containing(offset, start_byte)

The page_containing returns the page ID of the page containing the start_byte offset from the
beginning of the record body. This function is not currently supported.

pin_stats(pins, unpins, reset)

The pin_stats method return the number of pins and unpins performed. The pins parameter will
equal the sum of all pin and repin calls. The unpins parameter will equal the sum of all unpin
repin calls.

CAVEATS
While a pin_i is valid, a page is fixed in the buffer pool. Pages should not be fixed for long periods of time,
and a thread that pins multiple pages in the buffer pool runs the risk of exhausting the buffer pool
resources.

It is risky to pin and update two records concurrently, that is, to update one record while another record is
pinned. If the records are on the same page, updating one record can invalidate the pin of the other record.
The method repin can be used to re-validate the pin of the second record, however, it is still a risky propo-
sition: read on.

On the other hand, if the two records are on different pages, and if the thread is not observing a protocol to
order the pins, (more importantly, all threads in the VAS must observe the same protocol), latch-latch
deadlocks can occur (pages are latched when they are fixed), if fine-grained (record) locking is in effect.
Whereas deadlock detection is performed on locks, latches are much lighter-weight and do not perform
deadlock detection.

ERRORS
To Do.

EXAMPLES
To Do.

Release Jan 1999 5

pin_i (ssm) Shore Storage Manager pin_i (ssm)

VERSION
This manual page applies to Version 2.0 of the Shore Storage Manager.

SPONSORSHIP
The Shore project is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-91-C-Q518.
Further funding for this work was provided by DARPA through Rome Research Laboratory Contract No.
F30602-97-2-0247.

COPYRIGHT
Copyright (c) 1994-1999, Computer Sciences Department, University of Wisconsin -- Madison. All Rights
Reserved.

SEE ALSO
file(ssm), scan_file_i(ssm), intro(ssm),

Release Jan 1999 6

