CS810: Homework 3 Due date: Tuesday, April 15th, 2003

1. Given a Boolean function f on n variables, define a minterm of f as a conjunction c of several literals $c=\hat{x_{i_{1}}} \wedge \ldots \wedge \hat{x_{k}}$, where each $\hat{x}=$ either x or \bar{x}, such that, a partial assignment according to c satisfies f, and furthermore, no proper subassignment will satisfy f.
(Here a partial assignment according to c, means as follows: each literal which is an unnegated variable is assigned 1 (True), and each negated variable is assigned 0 (False).) e.g., suppose $c=x_{2} \wedge \overline{x_{5}} \wedge x_{9}$, then the partial assignment according to this c sets $x_{2}=1$ and $x_{5}=0$ and $x_{9}=1$. A proper subassignment assigns a proper subset of these literals in c. e.g., for the above c, the partial assignment $x_{2}=1$ and $x_{5}=0$ is a proper subassignment.)

In short, a minterm is a minimal assignment that can make f true. e.g., for the majority function on $2 k-1$ variables, there are exactly $\binom{2 k-1}{k}$ many minterms. What are they?
Replace the notion of Decision tree depth $D C$ as we did in class by minterm size. Carry out the proof of the main switching lemma in terms of this notion of minterm size. Your theorem should read something like this: For any t-AND-OR circuit, if we assign it with a random restriction ρ with prob of $*$ equal to some p, then for any $\Delta \geq 0$, with probability less than α^{Δ} the function after the restriction has any minterm of size $\geq \Delta$. (Here α should be something depend on p and t.)
2. Define a maxterm as a minimal assignment that forces the function f to be false. What's the relationship of maxterm of f and minterm of \bar{f}.
3. Show that if any function has $D C \leq t$, then f can be expressed as both a t-OR-AND as well as a t-AND-OR.
4. Show that if all minterms of f are of size $\leq t$, then f can be expressed as a t-OR-AND.

But not conversely: Consider $f=\left(z \wedge x_{1} \wedge \ldots \wedge x_{n}\right) \vee\left(\bar{z} \wedge y_{1} \wedge \ldots \wedge y_{n}\right)$. f is expressible as an $(n+1)$-OR-AND, but not all minterms of f are of size $\leq n+1$.
Which minterm? Prove it is a minterm.
5. If both f and \bar{f} can be expressed as a t-OR-AND (ie. f can be expressed both as a t-OR-AND as well as a t-AND-OR), then $D C(f) \leq t^{2}$.

